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Abstract 9 

Kinetic models predict the metabolic flows by directly linking metabolite concentrations and 10 

enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that 11 

faithfully reproduce the effect of different genetic or environmental perturbations remains an 12 

open challenge due to the intractability of existing algorithms. This paper introduces K-FIT, an 13 

accelerated kinetic parameterization workflow that leverages a novel decomposition approach to 14 

identify steady-state fluxes in response to genetic perturbations followed by a gradient-based 15 

update of kinetic parameters until predictions simultaneously agree with the fluxomic data in all 16 

perturbed metabolic networks. The applicability of K-FIT to large-scale models is demonstrated 17 

by parameterizing an expanded kinetic model for E. coli (307 reactions and 258 metabolites) 18 

using fluxomic data from six mutants. The achieved thousand-fold speed-up afforded by K-FIT 19 

over meta-heuristic approaches is transformational enabling follow-up robustness of inference 20 

analyses and optimal design of experiments to inform metabolic engineering strategies.  21 
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Introduction and Background 23 

The pressing need for the rapid development of truly predictive models of metabolism to 24 

accelerate build-design-test cycles for metabolic engineering has been widely reported (Cheng 25 

and Alper, 2014; Dromms and Styczynski, 2012; Long et al., 2015). Advances in synthetic 26 

biology (Chae et al., 2017; Cho et al., 2018; Stovicek et al., 2017) have alleviated the challenge 27 

of genome editing, placing the onus on the identification of suitable genetic modifications in 28 

metabolic engineering projects. Kinetic models of metabolism can alleviate the limitations of 29 

stoichiometric strain design techniques by quantitatively describing the relationship between 30 

fluxes, enzyme levels, and metabolite concentrations based on mechanistic and/or approximate 31 

rate law formalisms. The promise of superior product yield and production rate prediction 32 

offered by kinetic models comes at the expense of substantially increased experimental data 33 

requirements and complexity in model assembly, parameterization and interpretation of results. 34 

Long parameterization times stemming from poor scalability of existing parameterization 35 

frameworks ultimately preclude the deployment of follow up statistical analyses for large-scale 36 

kinetic models limiting insights into (i) the robustness of resolution of kinetic parameters given 37 

mutant flux datasets, (ii) kinetic parameter confidence levels, and (iii) the need for follow up 38 

measurements to improve prediction. These challenges motivate the development of K-FIT, a 39 

decomposition-based approach for parameterization of kinetic models using steady-state 40 

fluxomic and/or metabolomic data collected for multiple perturbation mutants. K-FIT builds 41 

upon the concept of Ensemble Modeling (EM) by anchoring concentrations and kinetic 42 

parameters to a reference strain. Unlike earlier efforts that employed a genetic algorithm 43 

(Khodayari et al., 2014) to parameterize kinetic models, K-FIT achieves three orders of 44 

magnitude improvement in efficiency by relying on a customized decomposition approach to 45 
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compute steady-state fluxes in mutant networks.  K-FIT was first benchmarked against EM for 46 

three test kinetic models of increasing size ranging from 100 to 953 kinetic parameters to 47 

demonstrate the increase in computational savings with model size. K-FIT remained tractable 48 

even for a near genome-scale kinetic model containing 307 reactions, 258 metabolites, and 2,367 49 

kinetic parameters parameterized with 1,728 steady-state fluxes from six single gene-deletion 50 

mutants determined using 13C-metabolic flux analysis (13C-MFA) (Long et al., 2018). The 51 

parameterization was carried out 100 times with random initializations and was completed within 52 

48 hours of cumulative computation time. The best solution was recovered 44 out of 100 times 53 

providing confidence that convergence to the true optimum was indeed achieved. The kinetic 54 

model k-ecoli307 accurately recapitulated fluxes to within 15 mmol/gdw-h of the fluxes reported 55 

by 13C-MFA while also predicting fluctuations in glucose uptake in response to genetic 56 

perturbation and flux rerouting through energy metabolism to meet biosynthetic NADPH 57 

demands. The yield predictions of acetate, lactate, and malate for engineered strains were found 58 

to be within 30% of the experimental yield for metabolites derived from central metabolism. K-59 

FIT offers, with no additional effort, local kinetic parameter sensitivity information through the 60 

computation of gradients allowing for optimality testing of all obtained solutions. This gradient 61 

output also enables the straightforward computation of parametric uncertainty, establishment of 62 

confidence intervals for kinetic parameters and derivation of metabolic control coefficients. This 63 

post-parameterization information can aid in the interpretation of kinetic model predictions, 64 

suggest efficient experiment design to improve prediction fidelity and ultimately inform 65 

metabolic engineering strategies. 66 

Results 67 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/612994doi: bioRxiv preprint 

https://doi.org/10.1101/612994


 

4 
 

In this section, first a schematic representation of the workflow of K-FIT is described. The 68 

performance of K-FIT is benchmarked against the Ensemble Modeling (EM) (Khodayari et al., 69 

2014) using three test kinetic models to assess the impact of model scale-up on the 70 

computational savings afforded by K-FIT. The applicability of K-FIT to near genome-scale 71 

models is then demonstrated by parameterizing an expanded kinetic model for E. coli (k-72 

ecoli307) containing 307 reactions, 258 metabolites, and 2,367 kinetic parameters parameterized 73 

using 13C-labeling data for ten proteinogenic amino acids from six single gene-deletion mutants 74 

(Long et al., 2018). Local regression based standard deviations for all estimated elementary 75 

kinetic and Michaelis-Menten parameters are computed by leveraging the gradient calculations 76 

embedded within K-FIT. The predictive capability of k-ecoli307 is then assessed by comparing 77 

predicted product yields against experimentally measured yields for six over-producing strains 78 

not used during model parameterization.  79 

The K-FIT Algorithm 80 

K-FIT is a gradient-based kinetic parameter estimation algorithm using steady-state flux 81 

measurements from multiple genetic perturbation mutants. The schematic workflow for K-FIT is 82 

shown in Figure 1 and Supplementary Figure S1. Reaction fluxes are related to metabolite 83 

concentrations using mass-action kinetics after decomposition of the enzyme catalytic 84 

mechanism into elementary steps (see supplementary methods for the detailed procedure for 85 

elementary step decomposition) as described by Tran et al (Tran et al., 2008). Conservation of 86 

mass across enzyme complexes and metabolites is therefore expressed as a system of bilinear 87 

equations. This formalism was chosen because it is mechanistically sound, obeys mass 88 

conservation laws and is inherently thermodynamically feasible (Saa and Nielsen, 2017). At the 89 

same time, it allows for easy integration of allosteric regulation without the need to derive 90 
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cumbersome case-specific nonlinear rate laws. The K-FIT algorithm iteratively applies the 91 

following three steps till the optimal set of kinetic parameters is found: (i) K-SOLVE, (ii) 92 

Steady-State Flux Evaluator (SSF-Evaluator) and (iii) K-UPDATE. 93 

 The objective of K-SOLVE is to anchor kinetic parameters to a reference state which is typically 94 

the wild-type (WT) network similar to the procedure described by Tran et al. (Tran et al., 2008). 95 

This is needed because for arbitrary assignment of values to the elementary kinetic parameters 96 

enzyme and metabolite conservation balances are not always satisfied. K-SOLVE uses as input 97 

the WT reverse fluxes of all elementary steps and the WT enzyme fractions. WT net fluxes are 98 

treated differently than mutant net fluxes. While net fluxes from the mutant networks form the 99 

sum of squares objective function to be minimized, net fluxes in the WT network are fixed in the 100 

model to their experimentally resolved values. This ensures that the inferred kinetic parameters 101 

remain consistent with both experimental WT flux measurements and inherently satisfy mass 102 

conservation laws for both enzymes and metabolites. Consequently, the specified (i) reverse WT 103 

elementary fluxes and (ii) WT enzyme fractions along with (iii) the specified net WT fluxes fix 104 

all degrees of freedom in the system of equations. Unique values for all kinetic parameters can 105 

thus be assigned so as they inherently satisfy mass balances across metabolites and enzymes in 106 

the WT network. This is an important consideration as mass balances are not always satisfied 107 

under metabolic steady-state for an arbitrary assignment of values to the kinetic parameters. 108 

Kinetic parameters anchored by K-SOLVE are then used by SSF-Evaluator to compute the 109 

steady-state fluxes and concentrations across all mutants, one at a time. The system of bilinear 110 

algebraic equations in metabolite and enzyme fractions resulting from the elementary step 111 

decomposition of enzyme catalysis is partitioned into two sub-problems. The first bilinear sub-112 

problem, representing conservation of mass across enzyme complexes, is reduced to a system of 113 
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linear algebraic equations in enzyme fractions in the mutant network when the metabolite 114 

concentrations in the mutant network are specified. Similarly, the second bilinear sub-problem 115 

describing conservation of mass across all metabolites reduces to a system of linear algebraic 116 

equations in metabolite concentrations in the mutant network when the enzyme fractions in the 117 

mutant network are specified. By iterating between these two linear sub-problems, the steady-118 

state enzyme levels and metabolite concentrations in each mutant is identified. SSF-Evaluator 119 

begins with fixed-point iterations and switches to Newton steps closer to the solution. A semi-120 

implicit Euler integration step is carried out whenever the Jacobian matrix in the Newton step 121 

becomes singular. Convergence is achieved when the concentrations of enzyme complexes and 122 

metabolites remain almost unchanged between successive iterations. This iterative scheme 123 

therefore enables the direct evaluation of steady-state fluxes (almost) without the need to 124 

integrate any ODEs and contributes to the speed-up of the kinetic parameterization process.  125 

The calculated fluxes for all mutants are compared against the corresponding measured fluxes 126 

and the sum of squared residuals (SSR) representing the variance-weighted squared deviation of 127 

predicted fluxes from experimental data, as well as the first- and second-order gradients are 128 

computed by K-UPDATE. The WT reverse elementary fluxes and WT enzyme fractions are then 129 

updated using a Newton step and the core loop of K-FIT is repeated by returning to K-SOLVE 130 

until the minimum deviation of predicted fluxes from experimental measurements is reached. 131 

Note that the computation of first- and second-order gradients uses as input the local sensitivity 132 

of fluxes with respect to kinetic parameters. These local sensitivities can readily be computed by 133 

solving a system of linear equations (see supplementary methods) as opposed to having to 134 

perform costly forward sensitivity analysis. This enables K-FIT to confirm that any reported 135 

solution is indeed optimal while also allowing for the assembly of the covariance matrix from 136 
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which approximate confidence intervals for all estimated kinetic parameters can efficiently be 137 

derived. 138 

Benchmarking K-FIT against Ensemble Modeling 139 

The computational performance of the K-FIT algorithm was first compared against solution with 140 

a genetic algorithm (GA) operating on a population of models constructed using the Ensemble 141 

Modeling (EM) approach. Three test models of increasing sizes were used to assess the impact of 142 

model size on parameter estimation speed and solution reproducibility. The first small model 143 

containing 14 reactions, 11 metabolites, and 100 kinetic parameters was adapted from the three 144 

glycolytic pathways in E. coli and was parameterized using flux distributions from four single 145 

gene-deletion mutants (Supplementary Fig. S2a). The second medium-sized kinetic model 146 

containing 33 reactions, 28 metabolites, and 235 kinetic parameters was adapted from a previous 147 

study (Greene et al., 2017) and was parameterized using flux distributions from seven single 148 

gene-deletion mutants (Supplementary Fig. S2b). The third test model describing carbon flows 149 

through central and amino acid metabolism was adapted from the model developed by Foster et. 150 

al., (2019 (Under Review)). This model (Supplementary Fig. S2c) contains 108 reactions, 65 151 

metabolites, and 953 kinetic parameters and was parameterized using flux distributions from 152 

seven single gene-deletion mutants. The test models along with the data required for kinetic 153 

parameterization is provided in supplementary tables ST1 – ST12. 154 

Kinetic parameters were estimated in 9 minutes, 30 minutes, and 4 hours for the three models, 155 

respectively, using K-FIT. In contrast, GA required 60 hours, 726 hours, and 4,278 hours, 156 

respectively, to parameterize the same three models. Computational speed-up increased from 157 

100-fold for the small model to 1000-fold for the core kinetic model upon switching from GA to 158 

K-FIT. This dramatic reduction in parameterization time arises from the (largely) integration-free 159 
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steady-state flux evaluation using the SSF-Evaluator step and the fact that K-FIT traverses the 160 

variable space in a highly economical manner (i.e., Newton steps) requiring fewer than 500 161 

steady-state flux evaluations to identify the optimal solution. In contrast, the GA approach relies 162 

on iterative recombination of kinetic parameter vectors and required as many as 20,000 steady-163 

state flux evaluations before finding the same solution (Khodayari et al., 2014) but without 164 

confirming optimality. SSF-Evaluator evaluated steady-state fluxes, on average in 0.42 seconds, 165 

1.13 seconds and 6.12 seconds, respectively, for the three models, whereas, numerical integration 166 

required 3.5 seconds, 120 seconds and 440 seconds, respectively. Bypassing integration also 167 

enables SSF-Evaluator to handle stiff systems of ODEs arising from the large dynamic range of 168 

kinetic parameters and ensuring that steady-state fluxes are always within a mass imbalance of 169 

just 0.001 mol%. It is important to note that Newton’s method can only guarantee convergence 170 

to a local and not necessarily the global minimum of SSR. As a safeguard against failure to reach 171 

the true minimum, models were parametrized using K-FIT from 100 random initial starting 172 

points to determine the reproducibility of the obtained best solution. For the three test models K-173 

FIT exhibited a best solution recovery of 98%, 93%, and 60%, respectively. This high solution 174 

reproducibility provides confidence that K-FIT is able to consistently converge to the lowest 175 

SSR of 0 for the small model, 8.9 for the medium-sized model, and 1.3 for the core model, 176 

respectively. Notably, no alternate optima in the vicinity of the best solution (within an SSR of 177 

100) was detected for any of the three models implying that the best SSR minimization solution 178 

is the only good kinetic parameterization candidate. The inherent ability of K-FIT to quickly 179 

calculate local sensitivities of predicted fluxes to metabolite concentrations was leveraged to 180 

confirm whether SSFEstimator reported steady-state concentrations that are stable. To this end, 181 

the eigenvalues of the Jacobian matrix (Greene et al., 2017) at metabolic steady-state were 182 
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calculated to confirm that the real part of all eigenvalues were strictly negative for all iterations 183 

and problems solved.  184 

Parameterization of a kinetic model (k-ecoli307) for E. coli with near-genome-wide 185 

coverage 186 

Following the application to three test models of increasing models, K-FIT was then deployed 187 

for the parameterization of k-ecoli307, an E. coli kinetic model with near-genome-wide coverage 188 

similar to k-ecoli457 (Khodayari and Maranas, 2016).  The expanded model containing 307 189 

reactions, 259 metabolites and 2,367 kinetic parameters, and encompasses central metabolism, 190 

expanded amino acid, fatty acid, and nucleotide pathways and lumped pathways for 191 

peptidoglycan biosynthesis. Compared to k-ecoli457 (Khodayari and Maranas, 2016), k-ecoli307 192 

lacks the pathways for anaerobic metabolism and secretion of organic acids as it was 193 

parameterized using data under aerobic growth only. Flux data for six single gene-deletion 194 

mutants were computed using 13C-Metabolic Flux Analysis (13C-MFA) to recapitulate the 195 

measured labeling distribution of 10 proteinogenic amino acids grown with 1,2-13C-glucose as 196 

the carbon tracer (Long et al., 2018). This provided a total of 1,728 MFA-determined fluxes 197 

across six single gene-deletion mutants from upper glycolysis for kinetic parameterization. All 198 

69 substrate level regulatory interactions for 26 reactions in the expanded model were transferred 199 

from k-ecoli457. Complete cofactor balances were not included in k-ecoli307. Instead, k-200 

ecoli307 only accounts for the net moles of ATP, NADH and NADPH produced or consumed in 201 

any reaction and disregards the recycling of ADP, AMP, NAD and NADP back to the 202 

phosphorylated/reduced form of the cofactor. This simplification is necessary to avoid metabolite 203 

pool dependencies in the stoichiometry matrix. These dependencies force the total concentration 204 

of (ATP + ADP + AMP), (NAD + NADH), and (NADP + NADPH) to be held constant across 205 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/612994doi: bioRxiv preprint 

https://doi.org/10.1101/612994


 

10 
 

all mutants (Vallabhajosyula et al., 2006) while allowing only the ratios of metabolite 206 

concentrations ATP/ADP, ADP/AMP, NAD/NADH and NADP/NADPH to vary across mutants 207 

(Greene et al., 2017). 208 

The expanded model was parameterized using flux distributions from the six mutants Δpgi, 209 

Δgnd, Δzwf, Δeda, Δedd, and Δfbp with 288 fitted fluxes per mutant.100 fluxes were inferred 210 

using 13C labeling data whereas 207 reactions were growth-coupled. Parameterization using the 211 

K-FIT algorithm was completed in 48 hours on an Intel-i7 (4-core processor, 2.6GHz, 12GB 212 

RAM) computer with a minimum SSR of 131.05 and a solution reproducibility of 44%.  The 213 

recapitulation of the experimentally measured fluxes by K-FIT for the six mutants is shown in 214 

Supplementary Figure S3. All predicted fluxes were within 15 mmol/gdw-h of their 215 

corresponding flux reported by 13C-MFA. This corresponds to a maximum deviation of only 216 

10% from the experimentally determined fluxes. Flux distributions for Δeda, Δedd, and Δfbp 217 

mutants were largely unchanged from WT (Supplementary Figures S3a, S3b, and S3c) alluding 218 

to the dispensability of the corresponding genes. In contrast, carbon flux was significantly 219 

rerouted in response to the knockout of pgi, zwf, and gnd genes. Glucose uptake remained similar 220 

to WT for the Δzwf mutant but routed completely via the EMP pathway (Supplementary Figure 221 

S3d). The non-oxidative pentose phosphate pathway (TKT and TAL reactions) operated in 222 

reverse to generate ribose-5-phosphate for nucleotide biosynthesis. Glucose catabolism solely via 223 

the EMP pathway increased acetate and biomass yields by 10%. The expanded model also 224 

revealed that the loss of NADPH production via the oxidative pentose phosphate pathway was 225 

compensated by a 90% increase in the flux through the transhydrogenase reaction in the Δzwf 226 

strain (Supplementary table ST20). Glucose uptake for the Δgnd mutant was decreased by less 227 

than 10% compared to WT (Supplementary Figure S3e). Δgnd was the only strain with a 228 
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measurable flux through the ED pathway by rerouting 24.9 mmol/gdw-h of flux through EDD 229 

and EDA reactions is a ten-fold increased flux through the ED pathway relative to the WT 230 

network. Similar to Δzwf, the reversal of flux through the non-oxidative pentose phosphate 231 

pathway generated the required ribose-5-phosphate for nucleotide biosynthesis.  232 

Of all the mutants, Δpgi involved the most significant flux rerouting relative to WT. Glucose 233 

uptake was reduced by 75% compared to WT resulting in a 70% reduction in growth rate 234 

(Supplementary Figure S3f). Flux redirection through the glyoxylate shunt and reduction of 235 

acetate secretion improved carbon routing towards biomass precursors, thereby increasing the 236 

biomass yield by 22% compared to WT. Interestingly, the ED pathway was found to carry only 2 237 

mmol/gdw-h of flux with almost all of the carbon being metabolized via the pentose phosphate 238 

pathway (Supplementary Figure S3f). In addition, an 80% reduction in flux through glycolysis 239 

along with the absence of acetate secretion lowers overall glycolytic ATP production. This loss 240 

is compensated by the reversal of flux through the transhydrogenase reaction relative to WT 241 

which allows the oxidation of excess NADPH generated by the oxidative pentose phosphate 242 

pathway (Supplementary Table ST20). k-ecoli307 captured that non-competitive inhibition of 243 

the EDA reaction by glyceraldehyde-3-phosphate limits flux through the ED pathway in all 244 

strains but Δgnd. In the Δgnd mutant, a 37-fold increase in the concentration of 6-245 

phosphogluconate provided the necessary driving force to overcome this product inhibition, 246 

thereby allowing a flux of 24.9 mmol/gdw-h through the ED pathway. In contrast, in mutant 247 

Δpgi a two-fold increase in the concentration of glyceraldehyde-3-phosphate maintains the 248 

inhibition on the ED pathway which could not be overcome by a 40% increase in the 249 

concentration of 6-phosphogluconate (Hoque et al., 2011).  250 
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A total of 2,461 Km and Vmax values were subsequently assembled using the estimated 251 

elementary kinetic parameters (Supplementary Table ST13). Contrary to conventional thought, 252 

the total number of Michaelis-Menten parameters (i.e., ܭ௠ and ௠ܸ௔௫) exceeded the number of 253 

elementary kinetic parameters (i.e., ݇௣). This is because the number of elementary kinetic 254 

parameters per reaction increases linearly with the number of participating species (reactants, 255 

products or regulators) (see section 1 in the Supplementary methods). However, the Michaelis-256 

Menten formalism requires parameters for every combination of species in the rate expression 257 

yielding a quadratic increase in parameters (Cleland, 1963). For example, for an ordered bi-258 

substrate reaction ܣ + ܤ ⇌ ܥ +  ten elementary kinetic parameters are needed as described in 259 ,ܦ

the Supplementary methods. Using the Michaelis-Menten formalism requires two ௠ܸ௔௫ terms 260 

(one for the forward reaction and one for the reverse reaction) and ten ܭ௠ terms (four ܭ௠s for 261 

individual metabolite concentrations [ܣ], [ܤ], [ܥ] and [ܦ] and six ܭ௠s one for each pair [ܣ][ܤ], [ܦ][ܤ] ,[ܥ][ܣ] ,[ܦ][ܥ] 262 and triplet [ܣ][ܤ][ܥ] and [ܤ][ܥ][ܦ]).  Note that the Michaelis-Menten 263 

formalism requires two fewer parameters than using elementary kinetics for a reversible, uni-uni 264 

reaction (Cleland, 1963) and only one fewer parameter for a bi-uni or uni-bi reaction.  However, 265 

for bi-bi and higher-order reaction mechanisms, the Michaelis-Menten formalism always 266 

requires more parameters than the elementary kinetics description (Cleland, 1963). These two 267 

competing effects yield the relatively close number of elementary and MM parameters for k-268 

ecoli307. Nevertheless, the true number of Michaelis-Menten parameters would have been much 269 

larger than the ones required for the elementary kinetics description if complete cofactor 270 

metabolism, protons, water and phosphate groups were included in k-ecoli307. The larger 271 

number of Michaelis-Menten parameters may explain the reported highly correlated Michaelis-272 

Menten parameters leading to multicollinearity (Heijnen and Verheijen, 2013). 273 
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At the optimal solution, the Hessian matrix computed by K-UPDATE represents the 274 

inverse of the covariance matrix computed in linear regression (Wiechert et al., 1997). The 275 

positive square root of the diagonal terms of this covariance matrix correspond to the standard 276 

deviation, in the kinetic parameters. The relative uncertainty in parameter estimation is defined 277 

as the ratio of standard deviation computed from the covariance matrix to the estimated 278 

parameter value. The standard deviation conceptually quantifies the sensitivity of the SSR 279 

objective function to local changes in the value of the inferred parameter. Large values for the 280 

standard deviation imply insensitivity of the SSR objective function to changes in the value of 281 

the inferred parameter. Note that this inference of standard deviation using linear regression is a 282 

local approximation and generally should be viewed as an overestimate of the true uncertainty as 283 

it captures neither covariances nor nonlinear effects for larger changes in parameter values. 284 

Using this method, the standard deviation representing the uncertainty in estimation for WT 285 

reverse elementary fluxes, enzyme fractions, and elementary kinetic parameters was computed. 286 

All 1,129 reverse elementary fluxes in the WT network were resolved with a relative uncertainty 287 

 of less than 1%. Furthermore, the average standard deviation for the inferred enzyme 288 (௥ݒ/௩ߪ)

fractions (ߪ௘) was only 0.04 mol/mol-total enzyme. A total of 793 out of 1,238 enzyme fractions 289 

had a standard deviation of less than 0.1 mol/mol-total enzyme and were resolved with high 290 

precision (Supplementary Figure S4a). However, 208 enzyme fractions (mostly with near zero 291 

values) were inferred with a standard deviation exceeding the corresponding parameter value 292 

leading to a relative uncertainty (ߪ௘/݁) exceeding 100% (Figure 2a) due to their small absolute 293 

value. These enzyme fractions include fractional abundances corresponding to 126 free enzymes 294 

and 19 inhibitor-bound enzyme complexes from the TCA cycle and aspartate metabolism, and 63 295 

metabolite-bound enzyme complexes in the ED pathway, TCA cycle and aspartate metabolism. 296 
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The large relative uncertainty in inference for these enzyme fractions alludes to insufficient 297 

fluxomic data for precise kinetic parameterization of these pathways. Uncertainty of inference 298 

propagates from the enzyme fractions to the elementary kinetic parameters, leading to 393 out of 299 

2,367 elementary kinetic parameters having a relative uncertainty (ߪ௞௣/݇௣) exceeding 100% 300 

(Figure 2b). Notably, 50 out of 69 kinetic parameters describing inhibition of enzyme catalysis 301 

were resolved with a relative uncertainty of less than 10%. Well resolved inhibition kinetic 302 

parameters include the inhibition of the oxidative pentose phosphate pathway by NADPH, 303 

product inhibition of the ED pathway by glyceraldehyde-3-phosphate, and product inhibition of 304 

cis-Aconitase by isocitrate. The narrow standard deviation also places a non-zero lower bound on 305 

the 1ߪ-confidence interval for these inhibition constants implying the essentiality of regulatory 306 

interactions in k-ecoli307 to explain the available experimental flux datasets.  307 

Upon computing the uncertainty in estimation of Michaelis-Menten parameters, 231 of 308 

the 570 Vmax parameters from branched-chain amino acid and fatty acid biosynthetic pathways 309 

were resolved with a relative uncertainty (ߪ௏௠௔௫/ ௠ܸ௔௫) of less than 10% (Figure 2c). In contrast, 310 

217 Vmax parameters from nucleotide biosynthesis, aspartate metabolism, serine metabolism, 311 

and the TCA cycle were resolved with a relative uncertainty exceeding 100%. Similarly, 893 of 312 

1,891 Km parameters from the EMP pathway, pentose phosphate pathway, TCA cycle and fatty 313 

acid biosynthesis were resolved with a relative uncertainty (ߪ௄௠/ܭ௠) of less than 10% (Figure 314 

2d), whereas 633 Km parameters from nucleotide biosynthesis, amino acid metabolism and the 315 

glyoxylate shunt were resolved with a relative uncertainty exceeding 100%. As expected, the 316 

estimation uncertainty for the elementary kinetic parameters propagated to Km and Vmax. 317 

However, the fraction of unresolved Michaelis-Menten parameters was substantially higher 318 

(33.4% of all Km and 38.1% of all Vmax) than the fraction of poorly resolved elementary kinetic 319 
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parameters (16.6%). The higher fraction of unresolved Michaelis-Menten parameters stems from 320 

the fact that Michaelis-Menten parameters are assembled as a nonlinear combination of 321 

elementary kinetic parameters due to which the high relative uncertainty for any one elementary 322 

kinetic parameter can propagate to multiple Michaelis-Menten parameters. It is important to note 323 

that the approach used for computing standard deviations is based on statistical analysis of linear 324 

regression which only holds true in the neighborhood of the optimal solution. The analysis can 325 

be confounded by the nonlinear behavior of the kinetic model upon moving further away from 326 

the optimal solution. In addition, by looking at a single parameter at a time information of 327 

covariances between parameters is lost and the inferred uncertainty significantly overestimates 328 

the true parametric uncertainty. A more rigorous profile-likelihood method (Antoniewicz et al., 329 

2006) can be employed to account for the nonlinear structure of the kinetic model that generally 330 

results in narrower confidence intervals as commonly seen in 13C-MFA. 331 

The predictive capability of the model was evaluated by comparing the model prediction of 332 

product yields in engineered strains with the corresponding experimental yield. The genetic 333 

perturbation mutants considered for evaluation of predictive capability were not included in the 334 

training dataset for kinetic parameterization. Of the six over-producing strains evaluated, the 335 

kinetic model successfully predicted the yields of acetate, malate, and lactate to within 30% of 336 

the reported experimental yield (Table 1).  This indicates that the genetic perturbations in the 337 

training dataset for parameterization and that the regulatory structure of the expanded kinetic 338 

model is sufficient to explain the phenotypic response of E. coli to perturbations in the EMP 339 

pathway. The yield predictions for acetate and malate were superior to those by k-ecoli457 due 340 

to the fact that both the training dataset for parameterization of the expanded model and 341 

cultivation of the engineered strains were at the same mid-exponential growth phase, whereas, 342 
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the training dataset for k-ecoli457 was generated during late exponential growth phase. The 343 

transcriptomic and fluxomic differences between these two growth conditions limits the carbon 344 

flux through acetate metabolism in the late exponential growth phase (Ishii et al., 2007). Unlike 345 

predictions for core metabolism, product yields originating from peripheral metabolism were 346 

poorly predicted by both models. This is because, growth-coupling of peripheral metabolic 347 

pathways limits the flux through these pathways to less than 5 mmol/gdw-h in all mutants. The 348 

limited redirection of fluxes within peripheral metabolism when compared to central metabolism 349 

leads to insufficient fluxomic data for kinetic parameterization of peripheral metabolic pathways 350 

and therefore, adversely impacts the prediction fidelity of both kinetic models.  351 

 352 

Discussion 353 

This manuscript details the development of K-FIT, an accelerated kinetic parameterization 354 

algorithm based on steady-state fluxomic data. The K-FIT algorithm estimates kinetic parameters 355 

by solving a nonlinear least-squares minimization problem to recapitulate experimentally 356 

measured steady-state metabolite concentrations and fluxes using an iterative loop comprised of 357 

three steps: K-SOLVE, SSF-Evaluator, and K-UPDATE. The computational savings afforded by 358 

bypassing ODE integration improves parameterization speed of K-FIT by over three orders of 359 

magnitude compared to the GA-based EM procedure for a core model of metabolism containing 360 

953 kinetic parameters. These savings are likely to become even more pronounced for larger 361 

models. These computational savings enable the evaluation of reproducibility of kinetic 362 

parameterization within reasonable time even for large-scale models, which was previously not 363 

possible using meta-heuristic methods. The parallelizable architecture of SSF-Evaluator 364 
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improves the scalability of the procedure while allowing compatibility with GPU-based 365 

computing architectures which affords significant improvements in computation speed. The 366 

iterative scheme presented in SSF-Evaluator is inherently numerically stable which allows it to 367 

handle stiff systems of equations with ease while permitting reliable calculation of first- and 368 

second-order gradients. Furthermore, the ability to calculate gradients enables local statistical 369 

analysis of the inferred kinetic parameters. 370 

The applicability of K-FIT to large-scale models was demonstrated using an expanded kinetic 371 

model of E. coli containing 307 reactions, 258 metabolites, and 2,367 kinetic parameters, 372 

parameterized using fluxes elucidated using 13C-MFA. In order to avoid any error propagation 373 

arising from flux projection from simpler models, a recently developed two-step computational 374 

pipeline (Foster et al., 2019 (Under Review)) was used for kinetic parameterization using 13C-375 

labeling data. First, fluxes were elucidated for the expanded model in the WT and six single 376 

gene-deletion strains using 13C-MFA. The elucidated fluxes were then used to parameterize the 377 

kinetic model corresponding to the same stoichiometric model. Although the expanded kinetic 378 

model recapitulated the fluxes better than a core model for E. coli, product yield predictions in 379 

engineered strains did not differ significantly compared to those predicted by the core model. 380 

Compared to k-ecoli457, yield predictions for acetate and malate were better recapitulated by k-381 

ecoli307 because k-ecoli307 was parameterized using fluxomic data generated in the mid-382 

exponential growth phase. This similarity in growth conditions between the training dataset and 383 

the engineered strains limits any proteome re-allocations that could lower the predictive 384 

capabilities of parameterized kinetic models. Yield predictions for metabolites from peripheral 385 

metabolism by both k-ecoli307 and k-ecoli457 differed from experimental yields by almost 386 

100% (Table 1). This was traced back to insufficient fluxomic data from peripheral metabolism 387 
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across the considered mutants due to growth coupling. Since most amino acids are not 388 

catabolized by E. coli, reliable parameterization of these pathways requires model expansion to 389 

amino acid pool turnover by protein synthesis and degradation. Additional fluxomic and 390 

metabolomic data from overproducing strains and auxotrophs will also help capture the link 391 

between genetic perturbations and increased flux through peripheral metabolism as the WT strain 392 

of E. coli does not secrete any amino acids during the mid-exponential growth phase.  393 

A novel feature introduced by K-FIT is the rapid computation of local sensitivity of predicted 394 

fluxes and metabolite concentrations to kinetic parameters, which enables easy computation of 395 

the gradient and Hessian of the least-squares objective function for efficient traversal of the 396 

feasible kinetic parameter space. Since the Hessian represents the inverse of the covariance 397 

matrix in the neighborhood of the optimal solution, K-FIT is able to compute uncertainty in 398 

parameterization estimation with no added cost. Interestingly, reverse elementary fluxes in the 399 

WT strain were precisely estimated with a mean relative uncertainty of less than 1%. WT 400 

enzyme fractions were also resolved with a mean standard deviation of 0.04 mol/mol-total 401 

enzyme. However, the low abundance of 208 enzyme complexes relative to their corresponding 402 

standard deviation leads to a relative uncertainty exceeding 100%. This large relative uncertainty 403 

propagates to elementary kinetic parameters and Michaelis-Menten parameters due to nonlinear 404 

mapping of WT enzyme fractions to kinetic parameters. It is important to note that uncertainty 405 

analysis based on linear regression is accurate only near the optimal solution and a rigorous 406 

analysis accounting for the nonlinear behavior of the kinetic model will be required to compute 407 

the accurate confidence intervals further away from the optimal solution. Accurate confidence 408 

intervals will provide insights into resolvability of kinetic parameters for the set of experimental 409 

data and enable the identification of informative mutants (Zomorrodi et al., 2013)  and design of 410 
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experiments (Banga and Balsa-Canto, 2008) to pin down the poorly resolved kinetic parameters. 411 

Furthermore, using accurate confidence intervals, additional insights into reaction reversibility 412 

and importance of regulatory interactions can be gleaned. Currently, the statistical significance of 413 

regulatory interactions can only be evaluated using frameworks such as SIMMER (Hackett et al., 414 

2016) 415 

Overall, K-FIT highlights the data-demanding nature of the kinetic parameterization problem. 416 

Although kinetic parameterization was performed using only steady-state flux data, steady-state 417 

metabolite concentration data can also be included in the SSR objective function. In all studies 418 

enzyme levels were assumed to remain the same in mutants as in WT with the exception of 419 

enzymes that are associated with knock-out genes which were set to zero.  Nevertheless, enzyme 420 

levels in mutant strains can be pre-specified in K-FIT if the information is known a priori. 421 

Ideally, one would want to integrate allosteric with transcriptional regulation so that the enzyme 422 

concentrations in the mutant networks can be related to the altered metabolite concentrations 423 

(Fuhrer et al., 2017). This would ultimately enable the integration of mutant network data 424 

generated under both genetic and environmental perturbations and improve its predictive 425 

capabilities. Furthermore, the local sensitivity of fluxes and metabolite concentrations with 426 

respect to kinetic parameters directly map to elasticity coefficients used in metabolic control 427 

analysis. They can thus be used to calculate flux and concentration control coefficients at 428 

minimal additional cost to inform metabolic engineering strategies. 429 

Methods 430 

Kinetic parameterization using K-FIT 431 
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K-FIT is a gradient-based kinetic parameterization algorithm that minimizes the least-squares 432 

objective function representing the weighted squared deviation between predicted and measured 433 

steady-state metabolic fluxes (and possibly metabolite concentrations) across multiple genetic 434 

perturbation mutants. The full mathematical description for the K-FIT algorithm is provided in 435 

the supplementary methods. The least-squares NLP is solved using the Levenberg-Marquardt 436 

algorithm (Madsen et al., 2004) in conjunction with the active-set method for enforcing linear 437 

inequality constraints (Gill et al., 1984). K-FIT is encoded and implemented in MATLABTM and 438 

run on an Intel-i7 (4-core processor, 2.6GHz, 12GB RAM) computer. K-FIT is tested using 439 

kinetic models at different size scales. The full source-code is made available on GitHub. 440 

Computation of standard deviations for estimated kinetic parameters was performed using linear 441 

regression tools applied to a local linearization of mutant fluxes using Taylor series expansion 442 

(Wiechert et al., 1997). Briefly, the Covariance matrix ࡯ is computed by inverting the Hessian 443 ࡴ 

computed by K-UPDATE. When the linear approximation holds, the diagonal of the covariance 444 

matrix represents the estimation variance of kinetic parameters. The approximate standard 445 

deviation of kinetic parameter ݇௣ (ߪ௣) is evaluated as ߪ௞௣ = ඥܥ௣௣. The approximate 1446 ߪ 

confidence interval is computed as ݇௣ ±  ௞௣. Note that this method of analysis does not capture 447ߪ

covariance between parameters which is expected to significantly lower uncertainty. 448 

 Construction of the expanded kinetic model of E. coli, k-ecoli307 449 

The expanded metabolic model is constructed by de-lumping the central and peripheral 450 

metabolic pathways in the core model (Foster et al., 2019 (Under Review)) based on the reported 451 

biomass composition (Neidhardt and Curtiss, 1996). The expanded model contains 307 reactions 452 

and 258 metabolites. Atom mapping for the additional reactions were obtained from the 453 
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previously published genome-scale carbon mapping model for E. coli (Gopalakrishnan and 454 

Maranas, 2015). The amino acid labeling data for flux elucidation was obtained from the 455 

published work by Long et al (2018). Metabolic fluxes and 95% confidence intervals were 456 

elucidated using 13C-metabolic flux analysis as described earlier (Antoniewicz et al., 2006; 457 

Gopalakrishnan and Maranas, 2015). The mechanism and allosteric regulation of enzyme-458 

catalyzed reactions in the model were obtained from k-ecoli457, the near-genome-scale kinetic 459 

model for E. coli (Khodayari and Maranas, 2016). The standard deviation ߪ௝ corresponding to 460 

the estimated flux ௝ܸ to be used as a weighting factor in the K-FIT algorithm is computed from 461 

the lower and upper bounds of the confidence interval ௝ܸ௅஻ and ௝ܸ௎஻ reported by 13C-MFA as 462 

௝ߪ = ௏ೕೆ ಳି௏ೕಽಳଷ.ଽଶ . The input files containing the model, reaction mechanism descriptions, and 463 

experimental data used for kinetic parameterization are provided in Supplementary Tables ST13 464 

– ST16. Computed kinetic parameters were also packaged into Michaelis-Menten parameters as 465 

described earlier (Khodayari and Maranas, 2016). The estimated kinetic parameters and 466 

Michaelis-Menten parameters are reported in Supplementary Tables ST21 and ST22. 467 
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Figure 1: Overview of the core loop of the K-FIT algorithm 
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Figure 2: Distribution of relative uncertainty in estimation for (a) WT enzyme fractions, (b) 
elementary kinetic parameters, (c) , and (d)  in k-ecoli307. (a) Distribution of values 
assumed by WT enzyme fractions (red bars) and standard deviations (green bars) for estimated 
enzyme fractions.  

(a) 
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Table 1: Comparison of predicted product yields (mol/mol glucose) with experimental yields in 
engineered over-producing strains of E. coli. The experimental yields and predictions by k-
ecoli457 were obtained from previously published data by Khodayari and Maranas (Khodayari 
and Maranas, 2016) 

Product 
Perturbed 
Enzyme 

Predicted 
Yield 

Predicted 
Yield  

(k-ecoli457) 

Experimental 
Yield 

Acetate 0.1x RPI 0.93 0.2 0.75 
L-Valine 0.1x THRD 0.03 0.02 0.34 
Lactate 0x ACKr 1.4 1.11 1.13 

Malate 
0.3x PTA; 
10x PPCK 

0.16 0.84 0.15 

Artemisinin 2x PDH 0.17 0.03 0.38 
Naringenin 2xACCOAC 0.026 0.012 0.008 

 

 

References: 

Khodayari, A., and Maranas, C.D. (2016). A genome-scale Escherichia coli kinetic metabolic model k-
ecoli457 satisfying flux data for multiple mutant strains. Nat Commun 7, 13806. 
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Supplementary Figure S1: Overview of the K-FIT algorithm showing the flow of information 
between various components. 
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Supplementary Figure S2: Test models used to benchmark the performance of K-FIT against 
GA-based EM procedure. (a) Small model containing 14 reactions and 11 metabolites. (b) 
Medium-sized model containing 33 reactions and 28 metabolites. (c) Core model containing 108 
reactions and 65 metabolites. Reactions knocked out in the single gene-deletion mutants are 
indicated using a red X. 

(a) 
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(b) 
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Supplementary Figure S3: Flux distribution through central metabolism of the expanded model 
for E. coli in (a) Δeda, (b) Δedd, (c) Δfbp, (d) Δzwf, (e) Δgnd, and (f) Δpgi mutant strains. 
Reactions representing metabolite flows between central and peripheral metabolism are indicated 
using green arrows. Fluxes elucidated using 13C-MFA are shown in green and the corresponding 
flux prediction by the expanded kinetic model is shown in brown. Reactions corresponding to the 
knocked-out genes in each mutant strain are indicated using red arrows. Flux measurements for 
PFK and FBP were not fitted due to poor resolution 13C-MFA 

(a) 
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Supplementary Figure S4: Distribution of standard deviations for estimated (a) WT enzyme 
fractions, (b) elementary kinetic parameters, (c) , and (d)  in k-ecoli307 

(a) 
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Supplementary Figure S5: Distribution of values assumed by (a) WT enzyme fractions, (b) 
elementary kinetic parameters, (c) , and (d)  in k-ecoli307 
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