
Action kinematics as an organising principle in the
cortical control of human hand movement

James Kolasinski∗, Diana C. Dima, David M. A. Mehler, Alice
Stephenson, Sara Valadan, Slawomir Kusmia, Holly E. Rossiter

Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff
University, Maindy Road, CF24 4HQ

Abstract

Hand movements are controlled by neuronal networks in primary motor cortex (M1)1,2,3.
The organising principle encoding hand movements in M1 does not follow an anatomical
body map, but rather a distributed representational structure in which motor primitives
are combined to produce motor outputs4,5. Electrophysiological recordings in primates
suggest that M1 neurons encode kinematic features of movements, such as joint position
and velocity6,7,8,9,10. Human imaging data concur: relative differences in movement kine-
matics are mirrored by differences in the associated patterns of M1 activity3,11. However,
M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stim-
uli12, raising questions regarding the origins of kinematic motor representations: are they
relevant in top-down motor control, or are they an epiphenomenon of bottom-up sensory
feedback during movement? Here we show that the kinematic signature of a wide variety
of naturalistic hand movements is encoded in human M1 prior to the point of movement
initiation. Using a powerful combination of high-field fMRI and MEG, a spatial and tem-
poral multivariate representational similarity analysis revealed that patterns of M1 activity
mirrored kinematic, but not muscle-based features of naturalistic hand movements prior
to movement onset. Comparable M1 activity was not observed for an ethological action
model based functional mappings proposed in M113. Our spatial and temporal analyses
provide firm evidence that the top-down control of dexterous movements activates cortical
networks in M1 encoding hand kinematics.

1. Main text

Mounting evidence supports the encoding of movements in M1 based on

kinematics and synergistic muscle activation, rather than the anatomy of
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the peripheral musculature4,5. Measurements from individual M1 neurons in

non-human primates reveal the encoding of multiple kinematic features, such

as speed, direction, and position in the same cells in a time-varying manner6.

The same neuronal populations have been shown to encode instantaneous

features during motor execution, as well as the target kinematic end point

and upcoming movement trajectory7,8,9,10.

In the human brain, evidence of neuronal tuning to multiple kinematic fea-

tures has been reported during the production of intended movements from

M1 microelectrode recordings made in tetraplegic patients14. The encoding

of kinematic features of hand movements in M1 has also been supported by

human imaging studies. Patterns of fMRI activity in sensorimotor cortex

have been shown to mirror the relative differences in the final joint config-

uration across a range of prehensile movements11. Similarly, the represen-

tational structure of fMRI activity in M1 during finger flexion is consistent

with patterns of finger co-use during naturalistic hand movements3.

However, the functional relevance of kinematic encoding in M1 to human

motor control remains a fundamental unknown. As well as their role in

motor output, M1 neurons exhibit rapid and integrative responses to so-

matosensory signals12,15. Kinematic information is inextricably linked to

proprioceptive and tactile signals: specific patterns of movement are as-

sociated with specific patterns of sensory feedback. Are kinematic motor

representations reported in human M1 functionally relevant in the process

of top-down motor control, or an epiphenomenon generated by bottom-up

sensory feedback during human movement production?

We addressed this question using a spatiotemporal multivariate representa-

tional similarity analysis to ask where in the human brain and when during

movement production are the kinematics of human hand movements en-

coded? This approach combined high-field fMRI and MEG data with kine-
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Hand movements

Abduct fingers Pinch: thumb and little finger
Cylinder Grip Pinch: thumb and index finger
Hook Grip Pinch: thumb and middle finger
Spherical Grip Pinch: thumb and ring finger
Index finger flexion (45°) Ring finger flexion (45°)
Index finger flexion (90°) Ring finger flexion (90°)
Index and middle finger flexion (90°) Ring and little finger flexion (90°)
Index finger and thumb roll Rock fingers
Little finger flexion (45°) Squeeze: thumb and fingers
Little finger flexion (90°) Abduct thumb
Middle finger flexion (45°) Extend thumb
Middle finger flexion (90°) Flex thumb
Middle and ring finger flexion (90°) Twiddle: thumb and index finger

Table 1: Outline of the 26 hand movements used in the motor task. Instructional videos presented
in Video S1.

matic data glove recordings made during a broad repertoire of prehensile

and non-prehensile hand movements. Probing recordings of human brain

activity with high spatial resolution from fMRI and high temporal resolu-

tion from MEG offers a powerful means to identify the location and tim-

ing of kinematic information encoding. Together this information was used

to dissociate the relevance of kinematic information in M1 to top-down or

bottom-up processes in motor control, as well as a relevance of alternative

muscle-based or ethological action based models.

Ten right-handed participants performed a range of 26 prehensile and non-

prehensile hand movements16,17 (Table 1, Video S1) in two fMRI sessions

(1.5 hours total fMRI data per participant), two MEG sessions (1.5 hours to-

tal MEG data per participant), and a behavioural testing session (35 minutes

kinematic data recording). In each session participants wore a right-handed

14-channel fibre optic data glove; kinematic data were recorded through-

out all sessions. Electromyography (EMG) data were acquired during MEG

sessions to validate the movement onset measures calculated from the data
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Figure 1: Spatial and temporal evidence for the encoding of hand kinematics in pri-
mary motor cortex prior to movement production. Kinematic, muscle, and ethological
action models of hand movement were used in a spatiotemporal representational similarity anal-
ysis. Top row: fMRI data show that kinematic information was encoded consistently in primary
motor cortex across all ten participants; complementary MEG data revealed temporal encoding of
kinematic information (blue box) prior to movement onset (green line). The muscle model (mid-
dle row) and ethological action model (bottom row) showed very limited evidence of encoding,
outside of M1 in the post-central gyrus and offered no evidence of significant temporal encoding
during movement production. MEG temporal searchlight plots: data presented are from beta
band analysis; full analysis presented in Figure 4, green line - movement onset defined by the
data glove; blue regions - significant peaks in representational similarity between MEG data and
the motor model; dashed line - correlation noise ceiling. EMG onset violin plots based on data
presented in Figure S10. Model matrices reproduced in a larger format in Figure S2.
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Figure 2: Single participant fMRI representational similarity analysis cortical search-
lights using individual kinematic models of hand movement. Cortical heatmaps of the left
(A) and right (B) hemisphere, show consistent encoding of kinematic information in the left mo-
tor cortex, contralateral to movement. Heatmaps were constructed from individually thresholded
cortical searchlights for each participant, derived using their own kinematic model (C) (Omnibus
threshold, α = 0.01, maximum accuracy distribution calculated from peak correlation value across
10,000 searchlight permutations with label-switching). Supra-threshold range of Spearman’s ρ for
each participant presented in Table S2.
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Figure 3: Comparison of movement models in spatial searchlight analysis reveals
a significantly greater model fit for the kinematic model over the muscle model.
Wilcoxon signed-rank test (one-sided) test applied to the difference between the kinematic and
muscle model rho-value maps. Significant region of kinematic model fit aligned with Brodmann
Area 4. Statistical maps subject to FDR correction (α = 0.05).

glove.

To probe the spatial and temporal correspondence between patterns of brain

activity and hand kinematics, data glove recordings were used to construct a

kinematic model quantifying the similarity of the kinematic signals measured

during each of the 26 movements (Figure 1: Top row, Figures S2 and S3).

The kinematic model quantified the distance between the displacement mea-

sures for each movement pair across the 14 channels (Pearson correlation),

subject to a Fisher Z-transformation and averaged across the 14 recording

channels. The resulting kinematic model exhibits strong split-half and inter-

session consistency within participant (Figure S1). A grand average of the

kinematic model across sessions and participants was subject to non-classical

multidimensional scaling for visualisation of the relative dissimilarity of each

movement across two dimensions (Video S2). In both the spatial and tempo-

ral representational similarity analysis, the kinematic model was investigated
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Figure 4: MEG temporal representational similarity analysis searchlight in motor
cortex reveals encoding of kinematic information prior to movement onset. Temporal
MEG searchlight analysis reveals evidence of the kinematic encoding of hand movements prior
to movement onset (green bar). Distinct significant peaks in the correspondence between the
kinematic model and MEG data (blue) were observed in the beta band (-210 ms to -85 ms) and
the alpha band (-175 ms to -115 ms). An additional significant peak in the beta band analysis
was observed after movement onset (1260 ms - 1350 ms). No such significant peaks were observed
for the muscle model or ethological action model. Green line - movement onset defined by the
data glove; blue regions - significant peaks in representational similarity between MEG data and
the model; dashed line - correlation noise ceiling.
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alongside two other models. A muscle based model was constructed from

high-density EMG recordings (15 channels) made in an independent cohort

of 10 participants performing the same range of hand movements (Figure 1:

Middle row). An additional ethological action model classified movements

into precision prehensile, power prehensile, and non-prehensile, based on the

notion of ethological maps in primate M113 (Figure 1: Bottom row).

We first used high-resolution fMRI data to perform a cross-validated corti-

cal surface-based searchlight representational similarity analysis to find ev-

idence for the spatial encoding of kinematic information during movement.

In each participant and each cortical searchlight, the unsmoothed pattern

of fMRI activity during movement was used to construct a representational

dissimilarity matrix (RDM)18. The RDM was compared to the participant’s

individual kinematic model, resulting in representational similarity surface

maps of Spearman’s ρ values for each participant, which were subject to

an omnibus threshold (α = 0.01; suprathreshold range for each participant

outlined in table S2) and used to construct a cross-participant heatmap.

This analysis assessed where the relative dissimilarities in the kinematic

recordings across the different hand movements were mirrored by the rela-

tive differences in the pattern of fMRI activity elicited by performing the

same movements. The searchlight revealed a strong and consistent represen-

tational similarity in the contralateral pre-central region of the anatomical

hand-knob19 across participants (Figure 1). Specifically, the fMRI search-

light results revealed the consistent encoding of the kinematic information

in Brodmann Area 4 during the production of hand movements across par-

ticipants (Table 2)20.

Inspection of the single-subject cortical searchlight results for the kinematic

model highlights the consistent and spatially limited correspondence of the

kinematic model and fMRI data at the level of individual participants and
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models in contralateral M1 (Figure 2A). A highly comparable result was

also observed using the kinematic model constructed from the data glove

recordings made in the behavioural testing session (Figure S4), highlighting

the applicability of this result to real-world hand use in an upright sitting

position. No such consistent representational similarity was observed in

the corresponding searchlight of movement-related activity in the ipsilateral

hemisphere at the group level (Figure 2B and Figure S4B).

Equivalent spatial searchlight analyses for the muscle model and the etho-

logical action models revealed more limited evidence of consistent cortical

encoding across participants, centred on somatosensory cortex in the post-

central gyrus; specifically Brodmann Area 3b (Figure 1). Inspection of the

single-subject cortical searchlights for both of the muscle and ethological

action models again revealed more limited evidence of representational sim-

ilarity in pre-central and parietal regions (Figures S6 and S7). In light of

the interest in contrasting the kinematic and muscle models11, a Wilcoxon

signed-rank test (one-sided) was used to demonstrate the superior fit of the

kinematic model in comparison to the muscle model in a localised region

principally corresponding to Brodmann Area 418 (Figure 3).

Ultra high field fMRI data analysed at the level of individual subjects offered

detailed spatial resolution, revealing the encoding of kinematic information

in the hand knob region of M1. However, fMRI offers relatively poor tempo-

ral resolution to understand the point in time at which the kinematic model

matches the pattern of brain activity. The boundary between motor and

somatosensory cortex is increasingly blurred by evidence of sensory process-

ing in M112 and motor modulation of sensory afferents21. The observed

representational similarity of fMRI activity and hand kinematics may result

from top-down control of motor function or bottom-up proprioceptive infor-

mation passed back to M1 and S1. In order to dissociate the driving force
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behind the kinematic model fit observed in the fMRI data, a temporal rep-

resentational similarity analysis of MEG data was used to identify the point

during movement preparation or execution at which kinematic information

is encoded in the M1.

A cross-validated fixed-effects representational similarity analysis was ap-

plied, comparing a group average kinematic model derived from data glove

recordings made in the MEG scanner to the pattern of alpha (7-14 Hz),

beta (15-30 Hz), and gamma (30-100 Hz) band MEG brain activity in M1

(Figure S9) in 20 ms sliding windows during movement preparation and ex-

ecution. The muscle model and ethological action model were assessed in

equivalent analyses. In light of the interest in contrasting the kinematic and

muscle models, the kinematic and muscle models were each assessed in a

partial correlation to discount the contribution of the other.

In both the alpha and beta band analysis, there was significant correspon-

dence between the MEG data and the kinematic model both preceding

movement onset, and in the case of the beta band, after movement on-

set (Figure 4). In the beta band, the kinematic model mirrored the pattern

of brain activity in a significant peak from -210 ms to -85 ms relative to

movement onset (peak Spearman’s ρ: 0.32). There was also a significant

peak in the correspondence between the kinematic model and MEG data in

the beta band after movement onset in the beta band (1260 - 1350 ms; peak

Spearman’s ρ: 0.35).

In the alpha band a correspondence between the kinematic model and MEG

data was observed prior to movement onset from -175 ms to -115 ms (peak

Spearman’s ρ: 0.37). No significant peaks were observed in the correspon-

dence between the M1 MEG signal in the alpha, beta, or gamma band and

either the muscle model or the ethological action model (Figure 4).
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Model
Peak heatmap
overlap
(Participants)

Peak Vertex
Anatomical
location

Kinematic 10 8052 Area 4

Muscle 4

1904
4781
7266
11766

Area 2
VIP
SCEF
Area 23c

Ethological 8 8070 Area 3b

Table 2: Outline of peak anatomical correspondence between movement models and fMRI cal-
culated using across participant cortical heatmaps. Peak regions calculated as centre of gravity of
areas of peak overlap; peaks separated by a minimum of 20mm. Vertex positions and anatomical
definitions are based on HCP S1200 32k release20.

An analogous MEG temporal searchlight analysis during action observa-

tion revealed limited evidence of a correspondence between the kinematic

model and brain activity in the alpha band in action observation during the

movement videos preceding each movement block (Figure S5). During ac-

tion observation a correspondence between the MEG signal and kinematic

model was observed from 315 ms - 380 ms in the beta band, relative to

stimulus onset (peak Spearman’s ρ: 0.32). No peaks in any frequency band

were observed for the muscle model or the ethological action model during

the period of video observation.

Taken together, the MEG and fMRI results presented here strongly implicate

the encoding of kinematic information in M1 as an organising feature in the

top-down control of movement, rather than as a result of bottom-up sensory

signals elicited by motor activity.

Using 7T fMRI we pinpointed a consistent encoding of kinematic informa-

tion firmly in a localised region of Brodmann area 4 in M1. A temporal

multivariate analysis of MEG data allowed us to further unpack this result,

delving into the encoding of hand kinematics during the production of an

individual movement. Using MEG, we observed that the encoding of this
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kinematic information occurs prior to the onset of a movement. In other

words, the relative differences in the kinematic structure of a range of dif-

ferent hand movements is encoded in M1 up to 210 ms before the onset of

movement can be detected in the hand.

Information contained in the kinematic model showed temporally distinct

correspondence to information contained in the alpha and beta bands of

the MEG data. From 210 ms to 90 ms before movement is detected, the

representational structure in the M1 beta band corresponds significantly to

the representational similarity of the kinematics of the upcoming movement.

The correspondence between the kinematic model and the information con-

tained in the beta frequency band is consistent with the broad literature

concerning the role of this oscillatory frequency in motor control. Beta os-

cillations are observed at rest; it is well established that beta activity is

suppressed immediately prior to and during movement: movement-related

beta desynchronisation (MRBD), and then rebounds following movement

cessation: post-movement beta rebound (PMBR)22. The magnitude of the

reduction in beta-band power observed prior to movement onset in motor

cortex has been shown previously to relate to the degree of uncertainty in

the upcoming movement23 or action anticipation24. Previous comparisons of

beta desychronisation made across kinematic and kinetic tasks concur: the

strength of MRBD is correlated with the physical kinematic displacement of

a given hand movement rather than the magnitude of muscle contraction25.

Similar patterns of desynchronisation are observed in alpha band activity,

where ERD in M1 corresponds to increased activation in the region22, with

post-motion event related synchronisation in M126. Here we demonstrate

that there is a link between information contained in the alpha and beta

frequencies in M1 before movement onset and the subsequent kinematics of

hand movements (Figures 1 and 4), suggesting that important information

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/613323doi: bioRxiv preprint 

https://doi.org/10.1101/613323
http://creativecommons.org/licenses/by/4.0/


about the upcoming motor command may be encoded within these oscilla-

tions25,27. A significant peak was also observed post-movement beta-band

analysis; it be could be speculated that this peak represents information en-

coding of kinematic information around the time PMBR is known to occur

after movement, or could reflect afferent inputs to M128; these two possibil-

ities cannnot be dissociated by the current experiment.

In contrast to alpha and beta frequencies, we observed no concurrence be-

tween the information contained in the gamma-frequency and the kinematic

model. An increase in the amplitude of gamma oscillations has previously

been reported during motor execution: movement-related gamma synchro-

nisation (MRGS)29,30. In contrast to alpha and beta frequencies, evidence

from studies of gamma oscillations report changes only after movement on-

set, and therefore would not be implicated in the encoding of information

in M1 prior to movement, consistent with the data herein31,32,33.

Hand kinematics have previously been investigated in the context of hu-

man fMRI. Relative differences in target joint position at the end of a hand

movement have been shown previously to mirror the relative differences in

the fMRI signal in a broad region sensorimotor cortex11. Additional work

considering unidigit and multidigit flexion has demonstrated that patterns

of M1 fMRI activity associated with such movements are better explained

by kinematic models of digit co-use than by competing muscle-based mod-

els3. In the present study we have used MEG to fundamentally extend on

these findings, demonstrating a top-down role for kinematic encoding prior

to movement onset. Furthermore by using a kinematic model that compared

the displacement trajectory of each movement rather than a single joint po-

sition, it was possible to contrast the kinematic features of both prehensile

and non-prehensile movements to explore cortical encoding relevant to a full

range of naturalistic hand use. Moreover, by capitalising on the gains in spa-
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tial and temporal resolution afforded by using 7T fMRI and a limited field

of view, we have been able to firmly pinpoint the spatial location at which

kinematic information is encoded to the motor region of the anatomical hand

knob, corresponding principally to Brodmann Area 419. The fMRI spatial

searchlight analysis did not reveal evidence of consistent encoding of kine-

matic information in ipsilateral M1 across participants (Figure 2). Previous

fMRI studies provide evidence for the activation of ipsilateral M1 during

the production of individual uni-digit movements34,35 but not multi-digit

sequences of uni-digit movements36. This study considered a broad array of

naturalistic hand movements, engaging a wide variety of hand kinematics,

involving simultaneous and/or sequential movement of different digits. It is

possible that unlike sequences of uni-digit movement, these more complex

movements do not drive the circuits of ipsilateral M1 as uni-digit movements

do34,35.

Previous studies have made direct comparisons between muscle-based mod-

els and kinematic models, arguing for the latter as an organising principle

in the encoding of hand movements3,11. Here, a model constructed from an

independently acquired set of high-density EMG recordings did not reveal

any evidence for the spatial or temporal encoding of information on the ba-

sis of differences in muscle activity across the range of 26 hand movements

under study. In addition, the kinematic model showed a superior represen-

tational similarity to the fMRI dataset than the muscle model in primary

motor cortex (Figure 3). As with previous studies, these findings do not

rule out the existence of muscle representations in M1, but rather support

the existence of highly organised muscle representations structured around

movement kinematics rather than anatomy. The assertion perhaps explains

the fractures and repetitions observed in muscle representations during the

search for an M1 body map2.
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The ethological action model also reported less consistent patterns of fMRI

encoding, centred on the postcentral gyrus, consistent with activation in S1

(Figure 1). The ethological action model also did not reveal any significant

peak in the temporal representational analysis. It is possible that while

at a coarse level, ethological maps exist in the primate cortex, the concept

of ethological organisation does not extend down to the fine-grain level of

individual encoding of human hand movements; in other words, the broad

motor reportoire of the human hand may not be encoded on the basis of

the functional role of each movement. However, in the case of the primate,

the coarser division of movements based on the functional role of the entire

upper limb, including the hand (e.g. feeding, reaching), may play a role in

the way the cortex is organised37. The observed patterns of post-central

activity may alternatively result from selective disinhibition of S1 by M1

during motor activity, though such direct cortico-cortical signalling remains

speculative in the human brain21,38,39.

Analysis of the action observation period of the MEG data preceding each

movement block also provided some support for the kinematic encoding of

information in M1 (Figure S5). Previous MEG data acquired during action

observation have demonstrated characteristic changes in M1 activity com-

parable to action execution40. Analyses of event related desynchronisation

(ERD) in M1 during action observation suggest a peak change in the mu

frequency as the observed movement evolves41. These observations are po-

tentially consistent with the pattern of kinematic model fit observed in the

beta band MEG data early during action observation (315 - 380 ms after

stimulus onset), when the trajectory of movement has become clear (Fig-

ure S5). Additional work considering the encoding of kinematic information

in oscillatory alpha band activity in M1 suggests that the observation of

stimuli consistent with biological motion is sufficient to induce ERD in this
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frequency band42, potentially consistent with the notion that during obser-

vation of biological motion, M1 may encode kinematic information.

The data presented in this study rely on complementary information ac-

quired from BOLD fMRI and MEG, though the remit of this work does

not extend to fusion of the two modalities. BOLD fMRI provides only an

indirect measure of neuronal activity based on haemodynamic changes as-

sociated with the execution of a given task43, which can be resolved with

a relatively high degree of spatial specificity with 7T imaging. In contrast,

MEG reflects a more direct, temporally-rich, measure of neuronal activity.

While the origins of the measured signals differ, compelling recent evidence

provides non-coincidental data to support the notion of shared information

across MEG and fMRI measures of brain activity across a wide range of

frequency bands44; similar correspondences have been reported from inva-

sive electrocorticography data45. However, the spatial component of MEG

data must be inferred from mathematical modelling. Despite advances in

the context of MEG source localisation, this feature of MEG analysis limits

the spatial specificity of the measured signals, which integrate information

across relatively large tissue volumes in comparison with fMRI46. We have

harnessed the spatial and temporal strengths of fMRI and MEG, which in

combination provide greater insight regarding the encoding of movements

in M1 than the sum of their individual parts.

Here we apply a rich multi-modal design with multivariate analysis to demon-

strate that the encoding of kinematic information in human M1 occurs prior

to the onset of a wide range of naturalistic hand movements, in contrast to

competing muscle and ethological action models. Mounting evidence for

the encoding of complex kinematic information in M1 from this and other

work continues to blur the boundary between primary somatosensory and

primary motor cortex: even M1 neurons have been shown to rapidly con-
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solidate sensory torque information across multiple joints15. The notion of

kinematic representation in M1 is compatible with recent evidence of the

tight integration of information across the central sulcus47, whereby S1 en-

codes the current body state, while M1 encodes the kinematics necessary

to achieve the intended body state. Such a system of motor control would

see kinematic information encoded prior to movement onset as a prediction

for the future sensory inputs expected by S1 when a movement has been

achieved48.
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2. Materials and Methods

2.1. Participants and Experimental Design

All data were acquired according to the local university research ethics com-

mittee approval in line with the Declaration of Helsinki (Cardiff University

School of Psychology Research Ethics Committee: EC.17.03.14.4874 and

EC.17.04.11.4885) All participants provided written informed consent and

met local MRI and MEG safety criteria.

Ten right-handed participants were recruited in the main study (Age range:

22-30; Mean age: 24.0; Age SD: 2.8; 5 Female). Participants were not

currently taking any psychoactive medications, and were right-handed ac-

cording to the Edinburgh Handedness Inventory49. No participants had a

history of any disorder affecting tactile sensory or motor function or any

history of neurological illness. Each participant undertook five experimen-

tal sessions: two MRI scan sessions, two MEG recording sessions, and one

behavioural testing session. All participants undertook the behavioural test-

ing session first; the subsequent order of the fMRI and MEG sessions was

counterbalanced, leaving a minimum of two weeks between any one MRI

and MEG session to minimise the effects of magnetic noise on the MEG

signal50. The datasets generated and analysed during the current study are

available from the corresponding author on reasonable request.

2.2. Motor task and kinematic data acquisition

During all sessions participants were engaged in a motor task involving the

production of a range of 26 hand movements (Table 1) with the right hand

while wearing a fibre-optic kinematic data glove (Data Glove 14 Ultra; Fifth

Dimension Technologies: 5DT, Orlando, FL, USA). Kinematic data were

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/613323doi: bioRxiv preprint 

https://doi.org/10.1101/613323
http://creativecommons.org/licenses/by/4.0/


acquired across 14 independent fibre optic channels (one proximal and one

distal sensor per digit, plus one sensor between each digit pair) at 60 Hz.

The behavioural task was implemented in PsychoPy (Version 1.84.20)51,52

using the Python Computer Graphics Kit (CGkit: cgkit.sourceforge.net)

SDK wrapper for the 5DT data glove.

Each recording session was divided into task runs; each task run was com-

posed of blocks of a specific movement; each block comprised individual

movement trials; details of the number runs, blocks, and trials are speci-

fied for MEG and fMRI sessions respectively below. Instructions were pre-

sented on a screen in the testing environment. Each task run contained one

block of each of the 26 movement types, ordered using a random-without-

replacement selection method. Progressive determination effects were min-

imised by maximising the range of different conditions in each run; present-

ing all 26 movements once per run53. At the beginning of each movement

block, participants were shown a 3 second video of the movement to be

produced (Video S1). Participants were cued to produce the movement in

question in each subsequent movement trial of the block by an expanding

and contracting horizontal bar. In each movement trial the bar began at

a fully contracted width, coloured red, indicating that the hand should be

static and in a resting flat position. The bar subsequently turned green and

began to expand symmetrically at its left and right flanks. Once it reached

its maximal width, the bar began to contract back to its original width.

Once the bar reached its original contracted width, it turned red, signifying

the end of the movement trial. Participants were instructed to pace their

movements to coincide with the period of expansion and contraction of the

green bar, such that their hand assumed a flat position at the beginning

and end of each trial, corresponding to the time that the static red bar was

presented. The motor task was conducted in a behavioural testing lab, in
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the MRI scanner, and in the MEG scanner, as detailed below.

None of the grasping tasks in this study engaged participants with real

objects; previous work has differentiated motor activity with or without

real objects in anterior intraparietal sulcus, but not primary motor cortex:

as such an object-free study design seemed appropriate for a study focusing

on M154.

2.3. Kinematic recording session

During the behavioural testing session participants performed five runs of

the motor task. Participants were seated at a desk with their right forearm

supported on a memory foam mount, while wearing the data glove. Partici-

pants viewed instructions presented on a 14 inch laptop display. Each move-

ment block comprised a 3 second video of the movement to be produced, a 1

second preparation period and 8 subsequent movement trials; each compris-

ing 1.6 seconds of movement (green expanding/contracting bar), followed

by a 0.8 second rest period (red static bar). The transition of the bar from

red to green was defined as the go signal. A break period of up to 15 sec-

onds was permitted between each movement block; participants advanced

the task with a key-press using their left hand. Excluding break periods

each task run was 10 minutes and 3.2 seconds in duration. The four task

runs yielded 33 minutes and 16.8 seconds of kinematic data recording per

participant.

2.4. Kinematic movement model

For each participant kinematic data from the behavioural, MRI, and MEG

sessions were each processed in parallel. This yielded a separate kinematic

model from each session type for each participant. These models were used
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in subsequent multivariate fMRI and MEG analysis; they captured the kine-

matic similarities and differences of the 26 distinct movements under study.

Initially the kinematic data from each session and each movement block

were epoched into individual movement trials using the time of onset of the

green bars and averaged. The resulting 14 channels of data represented the

average pattern of displacement of the hand during a movement trial for

a given movement, termed the kinematics of the movement: the motion of

the hand without reference to the forces that produce this motion. In order

to compare this signature of kinematic activity for each possible pairing of

the 26 movements the activity pattern of each of the 14 recording channels

was correlated using Pearson’s correlation coefficient, subject to the Fisher

Z -transformation, and averaged to yield a single measure of the similarity of

kinematics across each movement pair. The resulting value was transformed

back into a Pearson’s r-value and used to construct a 1-r dissimilarity matrix

for each movement pair.

The kinematic dissimilarity matrices were averaged across task runs within-

participant to yield an fMRI, MEG, and behavioural kinematic model for

each participant. The split-half consistency and inter-session consistency

of these models is outlined in Figure S1. A grand average across partic-

ipant and session kinematic model (Figures 1 and S2) was computed and

subject to hierarchical clustering; this resulting clustering was applied to all

visualisations of the kinematic model.

2.5. Muscle model

An independent EMG dataset was acquired in order to construct a model

of hand movement dissimilarity on the basis of muscle activity in the hand.

An independent cohort of ten participants (Age range: 20-30; mean age:
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25.1; age SD: 3.57; 5 female) undertook a more detailed EMG recording

than was feasible during the MEG session, while performing the same 26

hand movement. EMG data were acquired using a Biosemi Active 2 system

with a 32 channel headbox (Biosemi B.V. Amsterdam). Muscle activity

was recorded using touchproof flat active electrodes. Electrodes 1-15 were

placed as labelled in Figure S16, electrode 16 was used to rereference the

EMG data in subsequent analysis and was placed on the bony protrusion

of the elbow. There were also CMS and DRL electrodes, which served as a

ground/reference during recording in the Biosemi software; they were placed

on the palmar side of the wrist. The EMG data were recorded at 2048Hz.

The EMG recording sessions mirrored the design and setup of the kine-

matic recording session outlined above and were informed by previous fMRI

MVPA studies of digit flexion3. Five runs were recorded in total, each con-

taining 26 trials (one for each of the movements). The EMG data were

processed using Fieldtrip55. EMG data were rereferenced to electrode 16,

rectified and low-pass filtered (fourth order Butterworth filter: 40 Hz), and

epoched relative to earliest measured muscle onset in any EMG channel us-

ing an adaptive threshold (activity duration threshold: 200ms) (Hooman

Sedghamiz: Matlab File Exchange: Automatic Activity Detection in Noisy

Signals using Hilbert Transform.) This results in individual trials of 2.0s in

duration. These trials were baselined using the fixation cross window at the

start of each trial. EMG trial data were then subject to multivariate noise

normalisation by weighting channels in trial by the error covariance across

the different channels in order to more accurate quantify the true differences

between the muscle activity across different movements. The normalised tri-

als were averaged into 5 folds. A Mahalanobis distance comparing each of

the muscle activity of each of 26 different movement types was calculated

using a cross-validated leave-one-out approach. In each iteration, the muscle
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activity patterns from one fold were assigned to fold A and the muscle ac-

tivity data from the remaining four folds were assigned to fold B; distances

were calculated between all possible pairs of the 26 movement muscle ac-

tivity recordings across these two folds (Equation (3)). Distance measures

were calculated across all possible pairs of cross-validation folds. An average

muscle model across all ten participants’ data was generated and used to

probe the spatial and temporal encoding of muscle based dissimilarities in

the brain using fMRI and MEG (Figures 1 and S2).

2.6. Ethological action movement model

An alternative ethological action based model was constructed based on

more recent evidence of ethological maps in primate M113, and therefore

categorises movements on the basis of their specific action, namely pre-

hensile movements, sub-categorised into precision grip and power grip, and

non-prehensile movements17 (Figure 1). The ethological action model was

subject to hierarchical clustering for visualisation.

2.7. MRI data acquisition

MR data were acquired using a Siemens 7T Magnetom system (Siemens

Healthcare, Erlangen, Germany) with a 32-channel head coil. Blood oxy-

genation level dependent (BOLD) fMRI was acquired with a T2*-weighted

multi-slice gradient echo planar imaging (EPI). True axial slices were po-

sitioned for optimal coverage of the left and right anatomical hand knob19

(TR/TE: 1500/25 ms, resolution: 1.2 mm isotropic, 22 axial slices, flip an-

gle:90; GRAPPA factor: 2; anterior-posterior phase-encoding direction; 391

measurements). Magnetization prepared rapid gradient echo (MPRAGE)

structural MRI data were acquired to facilitate BOLD EPI slice placement
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and for cortical surface reconstruction (TR/TE: 2200/2.82 ms, isotropic res-

olution: 1.0 mm, GRAPPA factor = 2). An additional gradient echo BOLD

EPI acquisition of 4 volumes was acquired using posterior-anterior phase-

encoding direction for distortion correction.

2.8. fMRI behavioural task

During the fMRI acquisitions participants performed a total of ten runs of

the motor task (5 runs per MRI session). Participants were led supine with

their right forearm supported against their right hip and their elbow sup-

ported by a foam pad, while wearing the data glove. Participants viewed

instructions via a mirror mounted on the transmit coil and a projector screen

mounted at the end of the bore. Each movement block comprised of a 3 sec-

ond instruction screen (“Prepare to Move”), a 3 second video of the move-

ment to be produced, and a 1 second further instruction screen (“Move”),

followed by 5 movement trials, each comprising 1.6 seconds of movement

(green expanding/contracting bar), followed by a 0.4 second rest period

(red static bar). Each movement block was 17 seconds. In addition to the

movement blocks, 8 rest blocks were included in each task run; rest blocks

were of equivalent duration to movement blocks and comprised of a 3 second

instruction screen (“Rest”), a 3 second video of a static resting hand, and a

1 second further instruction screen (“Rest”), followed by the same period of

expanding and contracting bar visual stimuli as the fMRI movement blocks.

Rest blocks were positioned randomly in each run, excluding self-adjacency.

2.9. Structural MRI data preprocessing

MPRAGE data were subject to reorientation, bias-field correction and brain

extraction using the FMRIB Software Library (FSL) fsl anat tool56,57,58

prior to cortical surface reconstruction using FreeSurfer Version 5.3.059,60.
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2.10. fMRI data analysis

2.10.1. fMRI preprocessing and general linear modelling

fMRI data were subject to standard preprocessing, including motion cor-

rection with MCFLIRT61, brain extraction using BET57, and high pass

temporal filtering (100 second threshold). fMRI data were not subject to

spatial smoothing. All fMRI data were subject to manual independent com-

ponents analysis denoising62. Distortion correction was undertaken using

FSL Topup to estimate a fieldmap image for use in FSL FUGUE63. Undis-

torted BOLD EPI data were co-registered with structural MPRAGE data

using Boundary-Based-Registration from FMRIB’s Linear Registration Tool

(FLIRT) implemented in epi reg64,61,65. Example fMRI timeseries from a

single voxel located in the anatomical hand knob is presented for four par-

ticipants on a single session in Figure S15.

For each participant and each fMRI run, fMRI data were analysed using

a first-level general linear modelling (GLM) approach implemented in FSL

FEAT58 using FMRIBs Improved Linear Model (FILM) to estimate time

series autocorrelation and pre-whiten each voxel. Each of the 26 movements

was modelled with a separate boxcar regressor with gamma-HRF convolu-

tion and its temporal derivative, giving a total of 52 regressors. Parameter

estimates were calculated, contrasting each movement type against the rest

condition; these voxel-wise maps and an estimate of the residuals from the

GLM were resampled into the respective participants’ structural space and

used in subsequent representational similarity analysis (RSA).

2.10.2. fMRI multivariate noise normalisation

In order to account for the spatial structure of the noise inherent to fMRI

data, spatial prewhitening of the parameter estimates from each participant
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and each fMRI task run was conducted. The residuals (R) from the first-level

GLM analysis provided an estimate of data not fit by the model regressors

across voxels (V) and time (T), from which a V x V covariance matrix (Σ̂)

can estimate the noise structure across voxels (Equation (1))66.

Σ̂ =
1

T
RTR (1)

The noise covariance structure was combined with the voxel-wise parameter

estimates (P) for a given movement type (k) to generate a spatially pre-

whitened parameter estimate (P ∗
k : Equation (2)):

P ∗
k = PkΣ̂

− 1
2 (2)

2.10.3. fMRI surface-based searchlight representational similarity analysis

A surface-based representational similarity analysis searchlight approach

was used to identify regions in which the multivariate pattern of BOLD

activity mirrored the kinematic and categorical models. This surface-based

analysis constrained the voxels under consideration in each searchlight to the

grey matter and prevented the issue of sampling of voxels that span a sul-

cus in a single searchlight, which is inherent to volumetric approaches67. A

searchlight was constructed at the centre of each vertex within the individual

participants’ anatomical cortical surface region corresponding to the field of

view of their task fMRI data (Figure S8). Each searchlight had a diameter

of 10mm. The region of interest of each searchlight was projected from 2D

surface to 3D volumetric space using the Connectome Workbench Tool63,

masked by a FMRIB Automatic Segmentation Tool grey matter map56 and a

mask excluding voxels spanning across sulci in the FreeSurfer reconstruction
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to improve spatial specificity. Spatially pre-whitened parameter estimates

were extracted from the resulting volumetric region corresponding to each

searchlight.

2.10.4. fMRI cross-validated distance measures

Within each searchlight the similarity between each of the spatially pre-

whitened voxel-wise parameter estimates corresponding to each of the 26

different movement types was calculated using a cross-validated leave-one-

out approach to avoid the possibility of over-fitting the data68,69. In each

iteration, the parameter estimate maps from one fMRI task run was as-

signed to fold A and the parameter estimate maps from the remaining nine

task fMRI runs were assigned to fold B; squared Euclidean distances were

calculated between all possible pairs of the 26 movement parameter esti-

mate maps across these two folds (Equation (3)). Distance measures were

calculated across all possible pairs of cross-validation folds and averaged66.

The use of spatially pre-whitened parameter estimate combined with the

cross-validation approach yielded cross-validated Mahalanobis distance rep-

resentational dissimilarity matrices (RDMs) comparing each of the activa-

tion patterns across all possible pairings of the 26 movements. For example,

calculation of the distance between movement k and movement l in one

iteration:

d2
CrossvalidatedMahalanobis (P ∗

k , P
∗
l ) = (P ∗

k − P ∗
l )A (P ∗

k − P ∗
l )TB (3)

The correspondence between the fMRI-derived RDM in each searchlight

and the candidate kinematic and theoretical models was assessed using a

Spearman’s rank correlation, with the resulting ρ (rho) value was plotted

in each searchlight’s central vertex on the cortical surface. For statistical
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inference a fixed effects randomisation test18 was applied on the individual

participant level: correlations using 10,000 condition-label randomisations

were undertaken in each searchlight. From each of the permutations, the

spatial peak ρ value (rho) was extracted from across the cortical surface,

forming a maximum accuracy distribution from which an omnibus threshold

(α = 0.01) was extracted. The resulting thresholded ρ-value surface maps

for each participant were resampled onto the Human Connectome Project

32k surface (S1200.L.pial.MSMAll.32k fs LR.surf.gii), binarised and used to

form a heatmap corresponding to the spatial distribution of the each model

fit across participants. In light of the interest in contrasting the kinematic

and muscle models, a comparison of the corresponding unthresholded Spear-

man’s ρ cortical surface maps was undertaken using a Wilcoxon signed-rank

test (one-sided), subject to FDR correction (α = 0.05).

2.11. fMRI motion considerations

Variability in the magnitude of fMRI motion across different movement con-

ditions has the potential to influence the observed pattern of results. The

potential for noise induced by participant motion has been mitigated in a

number of ways. First, all data has been subject to ICA denoising to remove

any characteristic motion artefacts62. Second, the multivariate analysis of

fMRI data emoloyed herein used spatial prewhitening of the parameter esti-

mates to account for voxel-wise variability in noise to not downweight voxels

with high error variance and to account for noise covariance between vox-

els66. Finally DVAR values were calculated for each fMRI timeseries (D:

temporal derivative of time courses, VARS: root mean squares variance over

voxels). These values quantify for each frame of an fMRI acquisition the

magnitude of signal intensity change in comparison in volume N compared

with volume N-1, as per the following formula:
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DV ARS(∆I)i =

√〈
[Ii (−→x )− Ii−1

−→x ]2
〉

(4)

Where Ii is image intensity at locus −→x on frame i; angle brackets denote

the spatial average over the whole brain70. DVARs are able to quantify

corruption of fMRI acqusition due to head motion. DVAR values were ex-

tracted for volumes corresponding to each of the 26 hand movements for

all participants; the resulting distribution of DVAR values is presented in

Figure S13. The profiles of very limited motion across participants during

each session of around 10 minutes in duration also demonstrate high quality

data acquisition (Figure S14).

2.12. MEG data acquisition

MEG signals were measured continuously at 1200Hz during the motor task

using a whole-head 275-channel axial gradiometer CTF MEG system (CTF,

Vancouver, Canada) located inside a magnetically shielded room. An ad-

ditional 29 reference channels were recorded for noise cancellation purposes

and the primary sensors were analysed as synthetic third-order gradiome-

ters71. Three electromagnetic coils were placed on three fiduciary locations

(nasion, left and right pre-auricular) and their position relative to the MEG

sensors were recorded continuously during each experimental block. The

head surface and fiducial locations were digitized using an ANT Xensor

digitizer (ANT Neuro, Enschede, Netherlands) prior to the MEG recording.

2.13. MEG behavioural task

During the MEG data acquisitions participants performed a total of ten runs

of the motor task (5 runs per MEG session). Participants were sitting up-

right with their right forearm and elbow supported on a foam armrest, while
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wearing the data glove. Participants viewed instruction on a back-projected

screen in front of them from a projector mounted outside the shielded room.

Each movement block comprised of a 2 second period with a central fixation

cross, a 3 second video of the movement to be produced, and a 1 second in-

struction screen (“Prepare to Move”) followed by five movement trials, each

comprising 1.6 seconds of movement (green expanding/contracting bar), fol-

lowed by a 0.8 second rest period (red static bar). Each movement block

was 18 seconds. The order of movement blocks was randomised within each

task run; each movement was presented once per task run.

2.14. Data glove movement onset detection: MEG sessions

The 14 channels of data glove recordings collected during the MEG sessions

were aligned with the MEG acquisitions using the onset of the green bar and

were epoched alongside the MEG data. Epoched data glove recordings were

subject to onset segmentation using an adaptive threshold (activity duration

threshold: 200ms) (Hooman Sedghamiz: Matlab File Exchange: Automatic

Activity Detection in Noisy Signals using Hilbert Transform.). A conserva-

tive estimate of movement onset was derived by taking the earliest signal

onset detected across the fourteen data glove channels for each movement

trial. The resulting movement onset time was used to epoch MEG data in

further analysis.

2.15. MEG data analysis

2.15.1. MEG preprocessing

Each participant’s head shape was digitized using Xensor digitizer soft-

ware (ANT software BV, Enschede, The Netherlands). All MEG anal-

ysis was conducted using the Fieldtrip toolbox for EEG/MEG-analysis55
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(Donders Institute for Brain, Cognition and Behaviour, Radboud University

Nijmegen, the Netherlands. See http://www.ru.nl/neuroimaging/fieldtrip).

Co-registration was performed in a two stage process: first the fiducial lo-

cations were marked on the T1 structural for that participant; the head

digitization data was then used to align the data with the MRI, subject

to manual adjustment. Alignment was undertaken independently for data

from the two MEG sessions.

Data from each movement type were epoched from the 10 task runs and

concatenated into a new dataset containing 10 blocks, each containing 5

movement trials. The fixation cross and movement trials were epoched from

the overall block. The movement trials were defined relative to the data

glove defined movement onset time (movement trial time: 2 s; pre-onset

time: 0.5s, post-onset time: 1.5s). The fixation cross period was used as

a baseline for the 5 movement trials within each movement block. A high

pass filter of 1 Hz and a low pass filter of 100 Hz were applied. MEG

analyses were conducted across three frequency bands: alpha (7-14 Hz),

beta (15-30 Hz) and gamma (30-100 Hz). All of the movements trials for

a given movement type were concatenated across the 10 task runs, creating

a dataset comprising 50 repeats of a movement. At this point the data

was visually inspected and those trials containing artefacts were removed

from further analysis up to a maximum of 10 trials, such that the minimum

number of movements trials per movement included in further analysis was

40.

2.15.2. MEG source reconstruction

In order to reconstruct oscillatory activity at brain locations directly com-

parable across participants, the individual anatomical MRI was non-linearly

warped to the MNI MRI template. The MNI template was divided into a
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10 mm isotropic grid and the inverse of the previously calculated non-linear

warp was used to warp the template grid into the anatomical space of each

participant. Sensor leadfields were calculated using a semi-realistic volume

conduction model based on the individual anatomy72. The temporal evolu-

tion of source activation at each location in the brain was estimated using

a linearly constrained minimum variance (LCMV) beamformer algorithm73

with the optimal dipole orientation at each voxel estimated using singular

value decomposition (SVD). Virtual sensors were then reconstructed from

all 3294 voxels by multiplying the sensor level data by the corresponding set

of optimised weights. At this stage data were subject to multivariate noise

normalization74,75: we calculated the error covariance matrix at sensor level

and then used this combined with the filters from the LCMV to create the

virtual sensor data. This means that sensors with more noise would be

down-weighted compared to those with less noise. At this stage the data

was also down-sampled to 600 Hz to reduce computational cost.

2.15.3. MEG temporal representational similarity analysis

The MEG data were split to produce 10 partitions and then averaged within

each partition to perform a cross-validated representational similarity anal-

ysis to avoid the possibility of over-fitting the data68,69. RSA was performed

across time using a sliding time window with a width of 20 ms and a time

step of 5 ms creating 396 time windows across 2 seconds of the movement

trial (0.5s rest; 1.5s movement). After selecting virtual sensors within the left

hemisphere motor region of the AAL atlas76 (Precentral L, 31 sources; Fig-

ure S9), the frequency-filtered MEG signal measured during each movement

type was compared using a cross-validated leave-one-out approach within

each time width. In each iteration, the signals from one MEG data par-

tition were assigned to fold A, and the signals from the remaining nine
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partitions were assigned to fold B; squared Euclidean distances were calcu-

lated between all possible pairs of the 26 signals across the two folds and

averaged66. The use of multivariate noise normalisation to account for spa-

tial autocorrelation in the MEG signal yielded subject-wise cross-validated

Mahalanobis distance RDMs comparing the alpha, beta, or gamma-band

signal in the motor ROI across all possible pairings of the 26 movements74.

Participant-level motor ROI RDMs were averaged in order to perform a

fixed-effects analysis. The correspondence between the MEG-derived RDMs

and the candidate kinematic and theoretical models across time was assessed

using a Spearman’s rank correlation, with the resulting ρ (rho) values plotted

for each time window. In light of the interest in contrasting the kinematic

and muscle models, these were each assessed in a partial correlation to dis-

count the contribution of the other. Randomization testing was used for

statistical inference77, whereby candidate model RDMs were shuffled 1000

times and time-resolved correlation coefficients were recomputed in order

to estimate an empirical null distribution. P-values were calculated using

a cluster thresholding approach across time. To correct for multiple com-

parisons, the cluster-forming threshold was set to P < 0.01 and clusters

in the correlation time-courses corresponding to each candidate model were

thresholded against the maximal cluster distribution (α = 0.001).

To assess the maximal correlation possible with our data, each participant’s

RDM was correlated with the average cross-subject RDM; the correlations

were then averaged to obtain an upper bound of the noise ceiling18.

2.15.4. MEG: action observation analysis

MEG from the period of action observation during the instruction video

preceding each movement block were epoched using the same approach as
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the MEG data recorded during movement. The fixation cross and action ob-

servation trials were epoched from the overall block. The action observation

trial was defined relative to the video stimulus onset time (pre-onset time:

0.5s, post-onset time: 3.0s). The fixation cross period was used as a base-

line for the action observation period. Temporal representational similarity

analyses were conducted using the same apporoach as the MEG movement

data, as described above.

2.15.5. MEG motion considerations

MEG analysis included multivariate noise normalisation to account par-

tially for the effects of motion, where each channels are normalised by an

estimate of error covariance across different sensors; this process has been

demonstrated to substantially improve multivariate analyses of MEG data74.

Motion parameters for all MEG acquisitions were extracted and analysed

to rule out the possibility of excessive head motion as a potential driving

force behind any observed patterns of brain activity. Rotational and trans-

lational displacement for each participant and each experimental session are

presented in Figure S11. In addition, the motion parameters during each

movement block were extracted and the resulting distribution is presented

across the 26 different movement types (Figure S12). The profiles of motion

across participants demonstrate a high quality data acquisition.

2.16. Electromyography with MEG

Electromyography (EMG) data were acquired simultaneously with MEG

data. Three surface EMG electrodes were attached to the right hand un-

derneath the data glove, positioned on abductor pollicis brevis (APB), first
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dorsal interosseus (FDI) and abductor digiti minimi (ADM). The area un-

der the electrodes was exfoliated and cleaned with alcohol prior to data

acquisition. EMG signals were recorded at 1200Hz.

EMG data were initially subject to a bandpass filter (20-500Hz) and a notch

filter (50 Hz). EMG data were epoched and baselined alongside the MEG

data. Epoched EMG data were subject to manual artefact rejection. Sig-

nals from the three electrodes during each epoch were independently subject

to a Hilbert transform and smoothing (5 ms window) prior to activity on-

set segmentation using an adaptive threshold (activity duration threshold:

200ms) (Hooman Sedghamiz: Matlab File Exchange: Automatic Activity

Detection in Noisy Signals using Hilbert Transform.). A conservative esti-

mate of muscle activity onset was derived by taking the earliest signal onset

detected across the three EMG channels for each movement trial. Due to

constraints of electrode placement alongside the kinematic data glove, mea-

sures of activity onset were not robustly measured in all participants. EMG

onset data are presented in order to validate the data glove measures of

movement onset, which have been used to epoch the MEG data (Figures 1

and S10).

Video S1: Compilation of instructional videos used at the begin-

ning of movement blocks in all testing sessions. Movement labels

are provided for reference only; labels were not included during the task

(VideoS1.mov).

Video S2: Visualisation of multidimensional scaling of grand aver-

age kinematic model constructed across participants and sessions.

(VideoS2.mov).
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Average St. Dev.

Kinematic model: fMRI 0.6318 (0.6010-0.6627) 0.1027 (0.0850 - 0.1297)
Kinematic model: behavioural 0.5812 (0.5506-0.6119) 0.1021 (0.0845 - 0.1289)
Kinematic model: MEG 0.6577 (0.6328 -0.6826) 0.0828 (0.0686 - 0.1046)
Muscle model 0.5286 (0.4822-0.5749) 0.1542 (0.1276-0.1948)

Table S1: Inter-subject consistency of kinematic and muscle models. Spearman’s ρ
(rho) vales. Figures in brackets represent confidence intervals.

.

Figure S1: Data-driven kinematic models constructed for each participant and each
session type exhibit strong split-half and inter-session consistency. Muscle model
reproducibility data also presented.
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Figure S2: The average kinematic model across participants for each session type, the
muscle model derived from an independent cohort of participants, and the categorical
ethological action model.
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Figure S3: The average kinematic model constructed from the data glove measures
acquired during the (A) behavioural session, (B) fMRI sessions, and (C) MEG ses-
sions; presented alongside the individual subject models for each participant and
session.
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Figure S4: fMRI searchlight analysis conducted using the kinematic model con-
structed from data glove recordings made during the behavioural testing session.
Evidence of the encoding of kinematic data in contralateral primary motor cortex persists using
independent data glove recordings while participants were sitting upright in a more naturalistic po-
sition. Comparison with data presented in Figures 1 and 2. Supra-threshold range of Spearman’s
ρ for each participant presented in Table S2.
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Figure S5: MEG searchlight analysis during action observation Evidence of a significant
peak in the correspondence between the kinematic model and beta band MEG data in the period of
action observation (315 ms - 380 ms). The green line indicates the onset of the stimulus video; the
blue regions indicate significant peaks in representational similarity between MEG data and the
motor model; the dashed line indicates noise ceiling. Comparison with MEG temporal searchlight
results presented in Figures 1 and 4.
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Figure S6: Individual participant cortical searchlight results using an muscle model
of movement encoding. Cortical heatmaps of the left (A) and right (B) hemisphere, show
limited but consistent encoding of an action model in the left post-central gyrus, contralateral
to movement. Heatmaps were constructed from individually thresholded cortical searchlights
for each participant using a single categorical action model (C) (Omnibus threshold, α = 0.01,
maximum accuracy distribution calculated from peak correlation value across 10,000 searchlight
permutations with label-switching.) Supra-threshold range of Spearman’s ρ for each participant
presented in Table S2.
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Figure S7: Individual participant cortical searchlight results using an ethological
action model of movement encoding. Cortical heatmaps of the left (A) and right (B) hemi-
sphere, show limited but consistent encoding of an action model in the left post-central gyrus,
contralateral to movement. Heatmaps were constructed from individually thresholded cortical
searchlights for each participant using a single categorical action model (C) (Omnibus threshold,
α = 0.01, maximum accuracy distribution calculated from peak correlation value across 10,000
searchlight permutations with label-switching.) Supra-threshold range of Spearman’s ρ for each
participant presented in Table S2.
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Figure S8: Heatmap surface visualisation of fMRI data coverage across participants
on inflated (A) and midthickness (B) surfaces.

54

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/613323doi: bioRxiv preprint 

https://doi.org/10.1101/613323
http://creativecommons.org/licenses/by/4.0/


Figure S9: Surface visualisation of the left hemisphere motor region of the AAL atlas
used in MEG temporal searchlight analysis: precentral L.
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Figure S11: MEG motion timeseries across participants and sessions. Blue: X-axis,
orange: Y-axis, yellow: Z-axis
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Figure S12: MEG motion comparison across movement conditions.
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Figure S13: fMRI motion comparison across movement conditions using DVARS
presented in arbitrary units70,78,79.
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Figure S14: fMRI motion displacement plots. Plots of absolute (blue) and relative (orange)
motion calculated using FSL MCFLIRT for each participant and each fMRI task run; motion
correction was undertaken prior to ICA denoising.
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Figure S16: EMG recordings from an independent cohort used to generate a muscle
model of hand movement. A) Schematic demonstrating electrode placement for EMG record-
ings on both the palmar and dorsal surface of the hand and forearm covering these muscles: 1
first dorsal interosseus (FDI), 2-3 dorsal interosseus muscles, 4 abductor digiti minimi, 5 ab-
ductor pollicis brevis (APB), 6 adductor pollicis, 7-9 lumbrical muscles, 10 flexor carpi ulnaris,
11 flexor carpi radialis, 12-14 flexor digitorum superficialis and flexor digitorum profundus, 15
flexor pollicis longus. B) Example EMG trace from one participant for three different movements
(squeeze, grip sphere and finger abduct) showing electrodes 1-15 across the 2s movement time
window.
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Figure S17: Noise ceiling calculation for spatial searchlight using fMRI data. To assess
the spatial consistency in RDMs calculated from fMRI data at each vertex, each participant’s RDM
was correlated with the average cross-subject RDM; the correlations were then averaged to obtain
a vertex-wise upper bound of the noise ceiling.
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