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ABSTRACT

Variational Autoencoder (VAE) is a generative model from the computer vision community; it
learns a latent representation of the images and generates new images in an unsupervised way.
Recently, Vanilla VAE has been applied to analyse single-cell datasets, in the hope of harnessing
the representation power of latent space to evade the “curse of dimensionality” of the original
dataset. However, some research points out that Vanilla VAE is suffering from the issue of the less
informative latent space, which raises a question concerning the reliability of Vanilla VAE latent
space in representing the high-dimensional single-cell datasets. Therefore a study is set up to examine
this issue from the perspective of bioinformatics.
This paper confirms the issue of Vanilla VAE by comparing it to MMD-VAE, a variant of VAE which
has overcome this issue, across a series of mass cytometry and single-cell RNAseq datasets. The
result shows MMD-VAE is superior to Vanilla VAE in retaining the information not only in the
latent space but also the reconstruction space, which suggests that MMD-VAE be a better option for
single-cell data analysis.

Keywords variational autoencoder · single-cell RNA seq · mass cytometry · deep learning · artificial intelligence ·
bioinformatics

1 Introduction

In recent years, deep learning has achieved much success in computer vision, speech recognition, natural language
processing, audio recognition and so on. With this influence, deep learning has begun to percolate into many computa-
tional areas in computer science like probabilistic graphical models. Variational autoencoder (VAE)[1] is such a product
of deep learning and probabilistic graphical models. Variational autoencoder has a deep neuron structure similar to
autoencoder (see Figure 3) on the one hand and is a probability model in terms of original space (data x) and latent
space (latent variables z) on the other hand[2].

For example, VAE can learn a latent space Z from the existing images X and generate new images x′ that make sense
to humans by sampling the latent space Z.

In recent years, the rapid development of biology experiment techniques like flow cytometry[3] and single-cell
RNAseq[4] has led to a massive amount of high-throughput molecular data on a single cell level. Manual gating has
been extensively used to determine new cell types from cytometry dataset, but the high dimensions make this operation
less practical, especially when to discover new rare cell types[5]. Single-cell RNAseq has been able to capture the
RNA expressions on a single cell level, which provides new possibilities in understanding the biological activities.
Currently, the analysis of single-cell RNAseq data still revolves around the classifying and subsetting cell population in
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order to depict the cell heterogeneity[6] or constitution[7]. The analysis of multiple-cell high-dimensional datasets has
challenged the capacity of the classical unsupervised learning methods, and therefore requires the development of new
computational methods to deal with the complexity.

As an unsupervised learning method, the usage of VAE can be viewed from another perspective; that is, VAE learns a
latent space Z that can represent the original space X . Especially, if x is high-dimensional and z is a low-dimensional,
VAE seems to do something like dimension reduction and feature extraction, the traditional unsupervised learning
strategy. This potential of VAE concurs with the interests of the bioinformatics community in reducing the dimensions
of the multi-sample high-dimensional datasets for analysis. As a consequence, there have been a few explorative
attempts[8][9][10][11] at applying VAE to single-cell datasets, hoping to harness of the representation power of the
latent space to evade the “curve of dimension” of high-throughput data. All of the research above used VAE as a
dimension reduction method in this regard.

Vanilla VAE is usually considered as the first choice when applying it to other domains like bioinformatics because
it has been studied more thoroughly than its variants. However, previous computer vision research in VAE method
has suggested that Vanilla VAE suffers from the issue of less informative latent features[12][13][14], which means the
latent space might not be so meaningfully representative of the original space, potentially undermining the reliability of
using VAE as a dimension reduction method. Meanwhile, MMD-VAE, using Maximum Mean Discrepancy (MMD)
instead of Kullback–Leibler divergence as part of the training target, has overcome this issue[12], looking promising as
an alternative to Vanilla VAE in bioinformatics and computational biology research.

In this paper, I have carried out an experimental study to examine the issue of the less informative latent space issue
based on biological datasets as opposed to image datasets, hoping to bridge the gap between the instinct on the image
datasets and that on the biological datasets. Briefly, the study compares Vanilla VAE and MMD-VAE based on the
performance on the single-cell datasets of mass cytometry and RNAseq, confirms the issue on Vanilla VAE and further
demonstrates the superior representativeness of latent space of MMD-VAE over Vanilla VAE.

Results

Classifier performance

The neural network classifier was applied to the four original datasets, AML, PAN and RBN have achieved a very high
accuracy (Supplementary Table S1), while SN has achieved a moderate accuracy, which could be due to the different
unsupervised methods used by the experts in the original papers to classify the datasets; the moderate accuracy here
may reflect the disagreement between the classifier and the unsupervised method.

With regards to the classifier accuracy over the latent space of VAE, MMD-VAE outperforms Vanilla VAE across all the
single-cell datasets, as Table 1 shows; incidentally, with regards to the classifier accuracy over the reconstruction space
of VAE, MMD-VAE still outperforms Vanilla VAE across all the single-cell datasets (Table 2).

Dataset Metrics vanilla VAE MMD-VAE

AML F2 0.869+/-0.026 0.896+/-0.021
MCC 0.891+/-0.030 0.917+/-0.009

PAN F2 0.846+/-0.033 0.925+/-0.005
MCC 0.870+/-0.029 0.933+/-0.005

SN F2 0.364+/-0.064 0.576+/-0.041
MCC 0.415+/-0.045 0.658+/-0.027

RBN F2 0.901+/-0.032 0.964+/-0.007
MCC 0.924+/-0.020 0.968+/-0.006

Table 1: The accuracy of neural network classifier over the latent space of VAE (the average accuracy+/-standard
deviation).

Performance of VAE

The running time of MMD-VAE is a little longer than Vanilla VAE (Figure 1), due to the relatively expensive calculation
of MMD, if not the problem of code efficiency. In practice, across all the four datasets, the difference of the running
time between two VAE architectures lies between 10 and 30 seconds. The reconstruction loss of MMD-VAE is generally
smaller than that of Vanilla VAE in the experiment (Figure 2), which may correspond to the distinct classifier accuracies
over the reconstruction space.
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Dataset Metrics vanilla VAE MMD-VAE

AML F2 0.873+/-0.040 0.905+/-0.015
MCC 0.893+/-0.035 0.922+/-0.008

PAN F2 0.857+/-0.038 0.926+/-0.007
MCC 0.875+/-0.032 0.933+/-0.006

SN F2 0.454+/-0.050 0.752+/-0.024
MCC 0.460+/-0.047 0.743+/-0.024

RBN F2 0.928+/-0.027 0.974+/-0.003
MCC 0.941+/-0.019 0.977+/-0.003

Table 2: The accuracy of neural network classifier over the reconstruction space of VAE (the average accuracy+/-standard
deviation).

Besides, in the current experiment, MMD-VAE has less unlucky runs (1 unlucky run out of 23 runs across four
datasets), those runs with worse performance (in terms of the accuracy of neural network classifier), than Vanilla VAE
(6 unlucky runs out of 28 runs across four datasets). This observation may indicate that MMD-VAE is less subject to
the stochastic property of architecture than Vanilla VAE; that is, MMD-VAE is more stable in getting a meaningful
latent representation of the data.

Discussion

Compared to the classifier accuracy achieved in the original datasets, in the reconstruction space and latent space
of (Vanilla/MMD) VAE, the accuracy is lowered a little bit. This difference may be attributed to the nature of VAE
architecture, which is pursuing an approximation, not exactness. This difference may also respond to the observation
when VAE is applied to image data and that the newly generated image is still blurred. For those numbers in the
biological datasets, the meaning usually does not come from the exactness of numbers, but the comparison between
numbers; therefore the lowered accuracy may not hurt a thing.

In this study, one problem is to measure how much information can be retained in the latent space of VAE, which is
most relevant to the bioinformatics research. Considering the widespread practice of the current biological research,
I assume that the information equates the labels created by human experts (computational biologists) in the given
datasets. Here I assume this information should be kept. Therefore it is reasonable to expect that the latent space and
reconstruction space of VAE should be able to retain this information. To measure how much information is retained, I
use a neural network classifier since it only works on the true data, not permuted data as the permutation test shows.

The comparison of two VAE architectures concerning how much information is retained is tricky because many
subjective factors need to be considered. The parameters of VAE architectures and the neural network classifiers need
to be optimized; the stochastic nature of neural networks and the complexity of datasets. In this study, I had held
the expectation that MMD-VAE should be no worse than Vanilla VAE, so I optimized only the parameters of Vanilla
VAE and its corresponding neural network classifier for each dataset, the result only reflects the efforts I had made to
optimize, not the best possible result, which I couldn’t guarantee to achieve. I reused these parameters for MMD-VAE
and its corresponding neural network classifier accordingly; then I obtained the result. As long as the expectation that
MMD-VAE outperforms Vanilla VAE holds, this experiment strategy should work; if not, this would only mean that
MMD-VAE is no better than Vanilla VAE under this framework.

The result indicates the advantage of MMD-VAE over Vanilla VAE in retaining information of interest; MMD-VAE
tends to run a little slower than Vanilla, due to the calculation of MMD. In practice, this may not be a big issue compared
to the advantage of MMD-VAE over Vanilla VAE. For the reconstruction space, which is less of a focus in this paper,
MMD-VAE also outperforms Vanilla VAE, well corresponding to the computer vision research where the generated
image from MMD-VAE seems to be sharper than Vanilla VAE[15]. It may also correspond to the lower reconstruction
loss of MMD-VAE (Figure 2). The reconstruction space seems to be worth further exploration, though the usage
scenario is not explicit at first sight.

Admittedly, this research only covers the usage scenario that VAE is directly applied to datasets without further
customization and change in its architecture (which would require extra explorations) in order to keep a comprehensive
comparison still plausible, but I hope this comparison between MMD-VAE and Vanilla VAE can still give some intuition
to people who intend to apply VAE to biological datasets in a more sophisticated way.
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 Learning Speed Comparion: Vanilla VAE vs. MMD-VAE
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Figure 1: The training speed comparison between Vanilla VAE and MMD-VAE across four single-cell datasets. Each of
the colourful lines represents a VAE run. The only difference between these two VAE architectures is the divergence.
the calculation of MMD is more expensive, but thanks to the kernel embedding trick, the time it takes in practice is only
a little longer than KL divergence. In the experiment, across all the four datasets, the difference of the running time
between two VAE architectures lies between 10 and 30 seconds.

In summary, the issue of less informative latent space concerning Vanilla VAE probably limits the exploitation of its
latent space to interpret the high-dimensional single-cell datasets; meanwhile, MMD-VAE does not have this issue.
From these comparisons, I may draw the following conclusion: MMD-VAE could be a preferred option over Vanilla
VAE when it comes to exploring the latent space for the biological data analysis.

Methods

VAE: a general overview

Variational Autoencoder (VAE) is a deep generative model with a flavour of both neural networks and probabilistic
graphical models[2]. It learns the latent representation (z) of the original space (data x). At first glance, we could regard
the VAE model as a simple graphical model (Supplementary Figure S1). In the inference period, the latent variables (z)
are sampled from a normal distribution, with fixed parameters (θ), new data X is generated; in the learning period, z
and X are sampled N times and a neural network with a target (loss function) is trained to get the parameters θ, that
is, the parameters of the neural networks. When we use VAE as an unsupervised learning method, only the learning
period fits the purpose, unless we want to generate new data. After the training (the learning period), we get the latent
representation of dataset (original space).
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Figure 2: The reconstruction loss comparison between Vanilla VAE and MMD-VAE across four single-cell datasets.
Each of the colourful lines represents a VAE run. MMD-VAE in general has a lower reconstruction loss than Vanilla,
which may correspond to the distinct classifier accuracies over the reconstruction space.

To further understand how VAE works without being distracted by the technical details, we can view VAE in this way
(Figure 3). P (X) is the distribution of the original space, that is, the dataset; qφ(z|x) is the encoding distribution, via
which we get qφ(z), the distribution of latent space; ideally, we sample z from a simple distribution p(z), for example,
a normal distribution, then via a decoding distribution pθ(x|z), we get P (X ′) (we call it the reconstruction space
hereafter). qφ(z|x) and pθ(x|z) are coded by neural networks (φ and θ are the parameters of the encoder and decoder.).
The training target includes two parts; the first part is “qφ(z) should be as similar as possible to p(z), the simple
distribution, say, a normal distribution”((A) in Figure 3); the second is “the original space P (X) and reconstruction
space P (X ′) should be the same”((B) in Figure 3). The training target can be represented in equation (1), where D is
any strict divergence, meaning that D(q||p) ≥ 0 and D(q||p) = 0 if and only if q = p, λ > 0 is a scaling coefficient.

L = −λD (qφ(z)||p(z))) + Ep(x)Eqφ(z|x) [log pθ(x|z)] (1)

In the Vanilla VAE model, D is Kullback–Leibler divergence, and λ = 1 in the current study. so the first part of the
formula 1 can be rewritten as Ep(x) [−KL(qφ(z|x)||p(z))]
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(A) and (B) are the training targets of variational autoencoder

Figure 3: An intuitive representation of variational autoencoder. (A) and (B) comprises the training target: (A), qφ(z)
should be as similar as possible to p(z), the simple distribution, say, a normal distribution; (B), the original space P (X)
and reconstruction space P (X ′) should be the same.

MMD-VAE

Maximum Mean Discrepancy (MMD) [16][17] is defined to measure the discrepancy between two distributions; it
works based on the presumption that two distributions are identical if and only if all moments are identical[18].

In practice, a biased empirical estimate of the MMD is used by calculating empirical expectations computed on the
samples X and Y , by equation (2), where F is a class of functions f : X → R and X is the space where xi and yi are
defined.

MMDb[F,X, Y ] := sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
(2)

When it comes to the implementation, MMD can be calculated efficiently via the kernel embedding trick[18], as
equation (3)

MMD(p(z)‖q(z)) = Ep(z),p(z′)[k(z, z′)] + Eq(z),q(z′)[k(z, z′)]− 2Ep(z),q(z′)[k(z, z′)] (3)

where k(z, z′) is any universal kernel, such as Gaussian k(z, z′) = e−
‖z−z′‖2

2σ2 .

The difference of MMD-VAE from the stand VAE model is the divergence in the training target. In MMD-VAE, MMD
is used instead of KL divergence.
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Intuitively speaking, in terms of the implementation of MMD-VAE, for the two distributions p(z) and q(z), as
mentioned in equation (1) and (3), MMD(p(z), q(z)) is a value calculated representing this discrepancy. The smaller
MMD(p(z), q(z)) is, the more similar p(z) and q(z) are.

All VAE architectures were implemented by TensorFlow [19] and TensorFlow Probability [20], visualised in Tensor-
Board, and run in Google Colaboratory (Colab) with GPU (Tesla K80) enabled.

Datasets and data preprocessing

Single cell data usually mean mass cytometry (cyTOF) data and single-cell RNA-seq data. In this experiment, four
published datasets were used; two are mass cytometry data; two, single-cell RNAseq data. These datasets are briefly
summarized in Table 3. All of these datasets have been classified by the experts authoring the original papers using the
computational methods described in these papers.

Dataset Type Cell No. Class No. Dimension Supplement

AML Mass Cytometry 104184 14 32 AML benchmark dataset
PAN Mass Cytometry 102877 24 48 Panorama benchmark dataset

SN scRNA-Seq 622 11 25334 Sensory Neurons, 55 principal
components were used

RBN scRNA-Seq 26830 18 13166 Retinal Bipolar Neurons, 37
principal components were used

Table 3: An overview of the datasets used in the study. Four datasets were used: two mass cytometry data and two
single cell RNAseq data.

Mass cytometry datasets

Dataset AML is a mass cytometry dataset of cryopreserved bone marrow aspirates from pediatric patients diagnosed
with acute myeloid leukaemia. The data have been classified by the approach PhenoGraph from the original paper [21].
The data in use contain 104184 cells, 14 classes and have 32 dimensions.

Dataset PAN is a mass cytometry dataset from mice. The data have been classified (gated) by the algorithm “X-shift”
from the original paper [22] already. The data in use contain 514386 cells, 24 classes and have 48 dimensions.

Both datasets have gone through the same preprocess where the data are rescaled by equation (4) where Noriginal is the
orignal count of the dataset.

Nnew = log(1 + |Noriginal|) (4)

Single-cell RNAseq datasets

Dataset SN is the single-cell transcriptome dataset of mouse neurons classified in the original paper [7] by sampling,
unsupervised grouping and comprehensive transcriptome analysis; the data in use contain 622 cells, 11 classes and have
55 dimensions (principal components extracted from 25334 dimensions (genes))

Dataset RBN is the single-cell transcriptome dataset of mouse retinal bipolar cells classified in the original paper
[23] using unsupervised clustering; the data in use contain 26830 cells, 18 classes and have 37 dimensions (principal
components extracted from 13166 dimensions (genes)).

Both sing-cell RNAseq datasets have gone through Principal Component Analysis PCA (implemented in Python
package: Scikit-learn[24]) first to reduce dimensions.

A permutation test [23] was reused to retain those principal components that capture statistically significantly correlated
variation among the genes, which cannot be attributed to random “noise.” PCA was performed on N (N = 50 in current
experiment) randomized versions of the data, in each version of which, all the columns of the original expression data
frame (genes) were randomly and independently permuted; then a threshold eigenvalue is calculated (the average of the
maximum eigenvalues in each version of the randomized data); in the original data, any principal component whose
eigenvalue is greater than the threshold is kept.
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Neural network classifier

To measure how much information has been retained in the latent space and reconstruction space of VAE, a neural
network classifier is implemented in Keras to detect how many of the cells can still be correctly classified in the latent
space and reconstruction space. Two metrics are used to measure the accuracy of the classifier: F2 score (F-measure in
equation (5)) and Matthews correlation coefficient (equation (6)).

Fβ = (1 + β2) · Precision ·Recall
β2 · Precision+Recall

(5)

where β = 2 and Precision = TP
TP+FP , Recall =

TP
TP+FN .

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6)

TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative

A permutation test is also conducted to show that a neural network classifier only works over the original data, not
the permuted data. For each permuted version of the dataset, the classification accuracy in terms of the two metrics
mentioned above is on the random level. So the classifier can be confidently used.

The code is implemented by Keras 2.2.4[25] with Tensorflow[19] as the backend and run in Google Colab with GPU
(Tesla K80) enabled.

Experiment strategy

The parameter optimization can add much uncertainty to experiment to compare the two VAE architectures, therefore a
proper strategy is needed to exercise the control over the uncertainty. In this study, VAE and neural network classifier
go hand in hand in our mental model. Parameters has to be optimized dataset by dataset. For each dataset, parameters
need to be trained only on the side of Vanilla VAE (including Vanilla VAE and its corresponding neural classifier);
afterwards, the parameters are applied to MMD-VAE and its corresponding neural network classifier over the same
dataset. The training was done manually. A complete list of the optimized parameters can be found in Supplementary
Table S2 (VAE) and S3 (Classifier).

After the parameter optimization, Each VAE + neural network classifier is run five times over each dataset; due to the
stochastic nature of VAE, it occasionally delivers bad results which can be detected intuitively by humans; this unlucky
run is excluded from the final result.

The neural network classifier is trained on 22.5% of the dataset; 2.5% is used as the validation dataset; and 75% as the
test dataset.

Data availability

Data and code that contribute to the reproducibility of the results in this manuscript, as well as other technical details,
are available at: https://research-project.gitlab.io/mmd-vae
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