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Abstract
Focal segmental glomerulosclerosis is a major cause of end stage renal disease. Many 

patients prove unresponsive to available therapies. An improved understanding of the 

molecular basis of the disease process could provide insights leading to novel therapeutic 

approaches. In this study we carried out an RNA-seq analysis of the altered gene expression 

patterns of podocytes, mesangial cells and glomerular endothelial cells of the bigenic 

Cd2ap+/-, Fyn-/- mutant mouse model of FSGS. In the podocytes we observed upregulation 

of many genes related to the Tgf family/pathway, including Gdnf, Tgf1, Tgf2, Snai2, Vegfb, 

Bmp4, and Tnc. The mutant podocytes also showed upregulation of Acta2, a marker of 

smooth muscle and associated with myofibroblasts, which are implicated in driving fibrosis. 

GO analysis of the podocyte upregulated genes identified elevated protein kinase activity, 

increased expression of growth factors, and negative regulation of cell adhesion, perhaps 

related to the observed podocyte loss. Both podocytes and mesangial cells showed strong 

upregulation of aldehyde dehydrogenase genes involved in the synthesis of retinoic acid. 

Similarly, the Cd2ap+/-, Fyn-/- mesangial cells, as well as podocytes in other genetic models, 

and the glomeruli of human FSGS patients, all show upregulation of the serine protease 

Prss23, with the common thread suggesting important functionality. Another gene with strong 

upregulation in the Cd2ap+/-, Fyn-/- mutant mesangial cells as well as multiple other mutant 

mouse models of FSGS was thrombospondin, which activates the secreted inactive form of 

Tgf. The Cd2ap+/-, Fyn-/- mutant endothelial cells showed elevated expression of genes 

involved in cell proliferation, angioblast migration, angiogenesis, and neovasculature, all 

consistent with the formation of new blood vessels in the diseased glomerulus. The resulting 

global definition of the perturbed molecular pathways in the three major cell types of the 

mutant glomerulus provide deeper understanding of the molecular pathogenic pathways. 
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Introduction

Focal segmental glomerulosclerosis (FSGS) is a histologic pattern that is the most 

common glomerular cause of end stage renal disease (ESRD) in the United States (1). 

It is characterized by sclerosis of parts (segmental) of some (focal) glomeruli. There is 

typically evidence of collapse of capillary loops and increased mesangial matrix 

deposition in segments of a portion of glomeruli. FSGS histologic lesion is found in 

about 35% of all cases, and 50% of African Americans, with nephrotic syndrome (2). 

There is a trend of increasing incidence of FSGS caused ESRD in the United States (3) 

and world (4).

The Columbia morphological classification defines the collapsing variant, tip variant, 

perihilar variant, cellular variant and classical or NOS (not otherwise specified) FSGS 

(5, 6). It is also possible to cluster FSGS into six clinical types based on etiology (7), 

which includes the less common medication or infection associated FSGS. Adaptive 

FSGS results from glomerular hyperfiltration, which can be associated with low birth 

weight, morbid obesity or sickle cell anemia. Another type is idiopathic, or primary 

FSGS, with no known cause. In addition, one can define two types of FSGS with a clear 

genetic basis. First, there are high penetrance genetic causes, with over 38 genes now 

identified, where homozygous mutation of a single gene results in FSGS (7). These are 

more likely seen in childhood nephrotic syndrome (~60%) than in older children or 

adolescents (~5%), with still lower rates in adults (8, 9). Causative genes include Actn4, 

Inf2, Trpc6, and Nphs2, to name a few (7). 
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A second genetic cause category involves multiple mutant allele combinations that 

contribute to FSGS with lower penetrance. For example, genetic variants of Apol1 are a 

major contributing factor to FSGS in individuals of sub-Saharan descent, being 

associated with 72% of cases (10). The effect is mostly recessive, with two risk alleles 

required, but penetrance is low, as most individuals with two risk alleles will not develop 

FSGS. Presumably additional environmental and/or genetic contributions are required. 

Indeed, it is generally thought that monogenic disease is relatively rare compared to 

multifactorial (multiple mutant genes combined with environmental causes) and 

polygenic (mutations in multiple genes) disease. The cumulative effects of several 

mutations in different genes can combine to cause FSGS or modulate its severity. For 

example, homozygous MYO1E mutation is associated with childhood FSGS (11), while 

coinheritance of mutations in both COl4A5 and MYO1E can dramatically accentuate 

disease severity (12). 

It has also been shown in mouse models that there can be combined polygenic 

contributions to FSGS. Cd2ap is a scaffold protein located in the slit diaphragms of 

podoctyes where it interacts with nephrin and podocin (13, 14). Homozygous mutation 

of Cd2ap has been shown to cause high penetrance FSGS in humans (15, 16). Mice 

with homozygous mutation of Cd2ap also develop FSGS like disease, with severe 

nephrotic syndrome, extracellular matrix deposition, glomerulosclerosis, extensive 

podocyte foot process effacement, and death within weeks of birth (13). The phenotype 

of heterozygous mice with only one Cd2ap mutation, however, is “relatively 

unremarkable” (17), with some glomerular changes noted at 9 months of age (18). Fyn 
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encodes a tyrosine kinase, related to Src, that phosphorylates the slit diaphragm 

component Nephrin (19). Heterozygous mutation of Fyn gives rise to very rare 

proteinuria, while homozygous Fyn mutation results in proteinuria in only 31% of mice at 

an average onset of 8 months (17). Of interest, however, combined Cd2ap+/-, Fyn-/- 

mice develop proteinuria in 100% of mice at average onset of only 5 months (17). This 

synergy of phenotype represents a combined susceptibility allele model. A fraction of 

human FSGS cases also likely result from multiple mutant alleles, in various mixes of 

susceptibility genes, together increasing the chances of FSGS. In this report we further 

study the Cd2ap+/-, Fyn-/- bigenic murine model of FSGS, examining gene expression 

changes that take place in the glomerular podocyte, mesangial and endothelial cells. 

Podocyte injury plays a key role in the initiation and progression of glomerular disease, 

including FSGS (20). The first detectable morphological characteristics of FSGS are 

found in podocytes (21), which undergo hypertrophy, detachment from the glomerular 

basement membrane (GBM), effacement of foot processes and depletion in number. 

The other two main glomerular cell types, however, the mesangial and endothelial cells, 

also undergo dramatic changes during FSGS. There is, for example, mesangial 

expansion with increased extracellular matrix, and endothelial cells can show increased 

leukocyte recruitment (22) as well as de novo angiogenesis, which can result in leaky 

vessels (23). A comprehensive analysis of FSGS, therefore, requires examination of 

mesangial cells and endothelial cells as well as podocytes. 
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The current Kidney Disease: Improving Global Outcome (KDIGO) practice guidelines 

link therapy to pathology. Initial treatments include inhibitors of the renin-angiotensin 

system and corticosteroids. Steroid resistant patients can be treated with cyclosporine, 

mycophenolate mofetil, or tacrolimus, with responses varying for different types of 

FSGS. Nevertheless, a high percentage of patients prove unresponsive to all available 

therapies, emphasizing the need for a deeper understanding of FSGS to guide the 

development of improved treatment options. In this report we define the activated 

pathogenic and protective molecular pathways in each major cell type of the glomerulus 

in the bigenic Cd2ap+/-, Fyn-/- mouse model of FSGS, thereby providing a global view 

the disease process that might aid in the identification of novel therapeutic targets. 

Materials and Methods 

Mouse Strains

The Cd2ap mutant (B6.129X1-Cd2aptm1Shaw/J), Tie2-GFP (Tg[TIE2GFP]287Sato/J) and 

Fyn (B6.129-Fyntm1Sor/J) mice were obtained from the Jackson Laboratory. MafB-GFP, 

Tg (MafB-EGFP) FT79Gsat and Meis1-GFP Tg (Meis1-EGFP) FO156Gsat, were from 

GENSAT/MMRC (http://www.gensat.org). 

Animal Ethics

All animal experiments were carried out according to protocols approved by the 

Cincinnati Children's Medical Center Institutional Animal Care and Use Committee 

(protocol title "mouse models of focal segmental glomerulosclerosis", number 2016-

0020). 
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Single Cell Prep for FACS Sorting

Mice were euthanized via cervical dislocation after sedation with isoflurane; kidneys 

were isolated and placed into ice-cold PBS. Glomeruli were isolated as previously 

described (24). 

For isolating mesangial and endothelial cells, the glomeruli were pelleted, rinsed with 

ice-cold PBS, and then re-suspended in 200 µL TrypLE Select 10x, incubated at 37˚ C 

for 10-15 minutes, and triturated vigorously every 3 minutes. Cell digestion was 

monitored by taking a small aliquot and visualizing with a microscope. After digestion 

ice-cold 10% FBS/PBS was added and the cells were triturated vigorously. The cells 

were then pelleted, washed with ice-cold 1% FBS/PBS and filtered using a 35-µM filter 

mesh (Falcon, cat. # 352235) before FACS sorting. GFP positive cells were collected 

into lysis buffer containing 0.1% SDS (in H20). After collection, the lysate was vortexed 

and placed on dry ice.

For isolating podocytes, a single cell suspension was derived from the glomeruli as 

previously described (24). Briefly, the glomeruli were incubated for 40 minutes in 2 mL 

enzymatic digest buffer (Containing Type 2 collagenase 300 U/mL, 1 mg/mL pronase E, 

50 U/mL DNAse 1) at 37˚ C while shaking at 1400 RPM/min in a thermomixer. Every 10 

minutes the digestion mix was passaged two times with a 27-gauge needle (25). After 

digestion, equal volume ice-cold 10% FBS/PBS was added and the cells were triturated. 

The cells were filtered using a 40 µM filter to remove clumps, pelleted by centrifugation, 
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rinsed with ice-cold 1% FBS/PBS, re-suspended in 400 µL 1% FBS/PBS and filtered 

using a 35-µM filter mesh prior to FACS sorting. GFP-positive cells were collected in 

Buffer RL. After collection, the lysate was vortexed and placed on dry ice. 

Target Cell Isolation

The Meis1-GFP, MafB-GFP, and Tie2-GFP transgene reporters enabled FACS-sorting 

purification of mesangial cells, podocytes and endothelial cells, respectively, from 

single-cell suspensions derived from the glomeruli of control (wild type or one-allele 

mice), and Cd2ap+/- Fyn-/- (3-allele) mice. Although 3-allele Cd2ap+/- Fyn-/- mice 

developed albuminuria at 5 months of age, both the 3-allele and control mice were 

sacrificed at an average age of approximately 10-14 months, which coincided with 3-

allele mice having significantly elevated BUN and increased pathological evidence of 

FSGS compared to control mice. From 5-9 months of age, the average BUN of 3-allele 

mice was 29.13 ± 1.2 compared to 26.46 ± 0.97 for control mice. From 10-14 months of 

age, the average BUN of 3-allele mice was 35.98 ± 2.9 compared to 27.22 ± 1.4 for 

control mice. The mice sacrificed were all adult (>= 5 months). The first two mice, aged 

5 months, (Mesangial cells: 3-allele and control) that we sacrificed did not show 

substantial differences in the RNA-Seq gene profiles, so subsequently we used older 

mice ranging in age from 8 months to 1.5 years that showed significant proteinuria as 

measured by a protein gel. The average age for 3-allele and control mice was as follows 

in Table 1. 

Cell Type Control (Age, months) 3-allele (Age, months)

Podocyte 12 12
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Mesangial 10 11

Endothelial 14 13

Table 1. Average ages of mice used for analysis.

RNA Purification, Amplification and Sequencing

For mesangial and endothelial samples, we purified the RNA using Zymo ZR MicroPrep 

Kit (cat. # R1061) with in-solution DNAse treatment. Due to a lower yield of cells for 3-

allele MafB-GFP selected podocytes (due to podocyte cell loss), we used the Norgen 

Single Cell RNA Purification Kit (cat. # 51800) with on-column DNAse treatment for both 

the podocyte control and 3-allele samples.  

The initial amplification step for all samples was done with the NuGEN Ovation RNA-

Seq System v2. The assay was used to amplify RNA samples to create double stranded 

cDNA. The concentrations were measured using the Qubit dsDNA BR assay. Libraries 

were then created for all samples. Specifically, the Illumina protocol, the Nextera XT 

DNA Sample Preparation Kit, was used to create DNA library templates from the double 

stranded cDNA. The concentrations were measured using the Qubit dsDNA HS assay. 

The size of the libraries for each sample was measured using the Agilent HS DNA chip. 

The samples were placed in a pool. The concentration of the pool is optimized to 

acquire at least 15-20 million reads per sample. Sequencing was performed on the 

Illumina HiSeq2500, single-end 75 base pair. Sequencing data is available in the Gene 

Expression Omnibus (GEO), accession number GSE123179.
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RT-qPCR Validations

Glomeruli were isolated from 3-allele and control mice using the sieving method 

described previously (24). Glomeruli were then lysed by addition of Buffer RLT, 

vortexing and then placing the tubes on dry ice. RNA was purified using the Qiagen 

RNEasy Micro Kit (cat. # 74004). RNA was quantified using a NanoDrop 

spectrophotometer (NanoDrop Technologies, DE, USA). The quality of the RNA was 

analyzed using an Agilent Bioanalyzer (nano-chip). RNA Integrity Numbers (RIN) were 

> 8.0. Reverse transcription reactions were set up using the RT-VILO SuperScript cDNA 

synthesis kit from Invitrogen (cat. # 11754-050). The cDNA was then precipitated by 

adding 2 µL of 3 M sodium acetate, 1 µL glycogen and 57.5 µL 100% ETOH for a total 

volume of 80.5 µL. Following overnight incubation at -20 ˚C, the cDNA was pelleted at 

14,000 RPM for 20 minutes at 4˚ C. The pellet was rinsed with 70% ETOH, decanted 

and left to air dry. The cDNA was re-suspended in 51 µL H20 and then quantified using 

a NanoDrop spectrophotometer set to measure single-stranded DNA. RT-qPCR was 

performed using the PowerUp SYBR Green Master Mix (Applied Biosystems, cat. # 

A25742) and the StepOnePlus using the relative standard curve method. Samples were 

normalized to beta-actin (mesangial and endothelial genes) or nephrin (podocyte 

genes).  

RT-qPCR Primer Design

Genes were selected based on restricted up-regulation in one sorted glomerular 3-allele 

cell type compared to control cells, or in the case of Serpine1 up-regulation in several 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613679doi: bioRxiv preprint 

https://doi.org/10.1101/613679
http://creativecommons.org/licenses/by/4.0/


cell-types. RT-qPCR primers were designed using Primer-Blast to amplify a product 

size between 75 and 200 bp using the mRNA RefSeq database of Mus musculus. 

Where possible, the primers were designed to span an intron. Primers used are listed 

below in Table 2.

Gene Forward Primer Reverse Primer

Actb TTTGCAGCTCCTTCGTTGCC ACCCATTCCCACCATCACAC

Aldh1a2 TCCCTAAATGGCGGTAAGCC CCACGGGATGATCTGTCCAC

Cpe AGGCGGTCCTAACAATCACC GTACCGCTCCGTGTCTCATC

Cpne7 GGACCCATTGACCAAGTCCG TCTGCACCCCCTCGAAGTAG

Endou CAGGGAGGTCATGAAGACGG TCGAGTACAGCCCAAACCAC

FrzB GTGGAAGGATCGGCTTGGTA CTGGCCGGGGATTAGAGTTC

Nphs1 TAATGTGTCTGCAGCCCAGG TCCACTCCAGTCCTACCGAG

Parm1 TTGGAGGTGCAGCATACCTG GACCCGTAGTCATGGTCGTC

Rspo1 TCTGAGCTGGACACACATCG GCAGAATGAAGAGCTTGGGC

Serpine1 ACAGGCACTGCAAAAGGTCA TCAAGGCTCCATCACTTGGC

Spon2 ACCGACAGTGGTTTCACCTT CGAAGGTCACTTTGGCGATG

Thbs1 CCAGAGCATCTTCACCAGGG ACCACGTTGTTGTCAAGGGT

Tnc CCACATCTCAGGGCTTCCAC GAAACCGTCTGGAGTGGCAT

Table 2. Primer sequences used for RT-qPCR validations.

RNA-seq Data analysis 

RNA-seq data was analyzed using Strand NGS 3.2. The reads were aligned to mm9. 

Reads were quantified using DeSeq with normalization threshold of 1. The baseline was 

set to the median of all samples.
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Filtering gene lists (all samples):

Reads were filtered based on genic region; spliced, partial genic, exonic, exon intron 

junction and genic reads were retained; intergenic and intronic reads were removed. 

Reads were further filtered on read quality metrics with the following parameters: 

Quality threshold >= 20, N's allowed in read <=0, number of multiple matches allowed 

<= 1, and reads were removed that are failing vendor's QC. Duplicate reads were 

removed, with a threshold of 4.

Generating gene lists comparing podocytes, mesangial cells, endothelial cells 

and controls:

At least 5.0 NRPKM in 3 out of 6 samples was required. A moderated t-test was then 

used to compare 3-allele and control samples with a corrected p-value cut-off of 0.05. 

The p-value computation was asymptotic and no multiple testing correction was used. 

This list was then used to perform a fold-change analysis between 3-allele and control 

samples, with a fold-change cut-off of >= 1.5. Y-linked genes, associated with sex 

differences between the samples, were removed from the final gene list. 

Filtering endothelial genes from MafB-GFP podocyte samples 

For the podocytes, in order to remove the effects of a small percentage of 

contaminating endothelial cells, the WT glomerular endothelial cells were compared 

with WT podocytes. At least 80 NRPKM was required in 2 out of 6 samples (podocyte or 

endothelial); the cell types were compared with Audic Claverie test with no multiple-
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testing correction and a p-value cut off of 0.05. A fold change>=4 in endothelial cells 

compared to podocytes was used to generate a list of genes with high specific 

expression in endothelial cells. This list of genes was compared using a Venn diagram 

with differentially expressed podocyte (MAFB) genes. Genes were excluded from the 

list of differentially expressed MAFB genes which were found in both the MAFB list and 

the list of genes up-regulated in endothelial cells. 

Heat map parameters:

The heat map was generated within Strand NGS software using a hierarchical 

clustering algorithm and clustered by normalized intensity values. The heat map was 

clustered on entities and conditions. The similarity measure is Pearson Centered. The 

linkage rule is Ward’s. There was no clustering within conditions.

Results and Discussion

In this study we used RNA-seq to define the altered gene expression patterns of each 

major cell type of the glomerulus in the Cd2ap+/-, Fyn-/- bigenic mouse model of FSGS. 

To isolate the podocytes, mesangial cells and endothelial cells from the control and 

mutant FSGS kidneys we used three different transgenic reporter mouse lines. MafB-

GFP, Meis1-GFP and Tie2-GFP which drive cell type restricted GFP expression in the 

podocytes, mesangial cells and endothelial cells of the glomerulus, respectively (24). 

We first isolated glomeruli, using a sieving protocol, and then used further enzymatic 

dissociation to produce single cell suspensions. By combining the three mutant alleles 

(Cd2ap+/-, Fyn-/-) with the appropriate GFP transgene reporter it was possible to purify 
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the podocytes, mesangial cells and endothelial cells by fluorescent activated cell sorting 

(FACS). We then examined the FSGS altered gene expression patterns of all three 

major glomerular cell types using RNA-seq to begin to better understand the underlying 

pathogenic molecular pathways. 

Cd2ap+/-, Fyn-/- Phenotype

In agreement with previous studies, we observed the onset of proteinuria at around 5 

months of age in the Cd2ap+/-, Fyn-/- mice, with near 100% penetrance (17). H&E and 

Jones Silver Stain were used to characterize the FSGS like pathology observed in the 

Cd2ap+/-, Fyn-/- glomeruli (Fig. 1). There were localized regions of scarring in some 

glomeruli, as well as capillary lumen loss and increased mesangial matrix. Scanning EM 

of the Cd2ap+/-, Fyn-/- glomeruli showed podocyte depletion, fusion of foot processes 

and general disorganization of remaining podocytes (Fig. 2). Transmission EM further 

showed the altered podocyte foot process structures and, of interest, regions of 

expanded GBM (Fig. 3). At the time of sacrifice, around 11 months, the Cd2ap+/-, Fyn-/- 

mice showed normal serum creatinine, elevated serum BUN (33.6 mg/dL versus 26.2 

mg/dL for control, P = 0.0001), and decreased serum albumin (2.58 g/dL versus 2.89 

g/dL for control, P = 0.03).

Fig. 1. Histology of wild type (WT) and Cd2ap+/-, Fyn-/- three allele mutant (3A) 

glomeruli. H&E staining, top panels, show partial blockage of mutant capillaries and 

regions of scarring, particularly pronounced on the left extreme. Bottom panels show 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613679doi: bioRxiv preprint 

https://doi.org/10.1101/613679
http://creativecommons.org/licenses/by/4.0/


Jone’s Silver stain, with increased staining of glomerular basement membranes in 3A 

glomerulus. 

Fig. 2. Scanning electron microscopy of wild type (WT) and three allele mutant 

(3A) glomeruli. Note uniform capillary coverage by wild type podocytes, with evenly 

spaced foot processes and slit diaphragms. In contrast the mutant podocytes are 

disorganized, partially detached, with foot processes sometimes fused (arrowhead), 

blocking slit diaphragms. In addition, the mutant glomerulus showed abundant fibrils 

(arrow).

Fig. 3. Transmission electron microscopy of glomeruli of wild type (WT), left 

panels, and mutant (3A), middle and right panels. Upper panels are lower 

magnification and lower panels are higher magnification (see size bars). Note evenly 

spaced foot processes and slit diaphragms in the WT, with the mutant showing fused 

foot processes (black arrow) and expanded glomerular basement membrane (white 

arrow).

Assaying cell type purity

The isolation of strongly enriched populations of glomerular cell types can be 

challenging. The podocytes, in particular, are tightly wrapped around capillary loops with 

extensively interdigitated foot processes attached to the glomerular basement 

membrane. The mutant podocytes, within partially sclerotic glomeruli, were particularly 

challenging to detach. 
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We used two metrics to assay enrichment levels for the three cell types following FACS. 

The first was enriched expression levels of expected cell type specific marker genes. By 

this measure all FACS cell preparations showed strongly elevated expression of 

predicted markers, indicating robust enrichment of desired cell types. For example, 

Nphs2 expression is an excellent marker for the podocyte, and all six podocyte cell 

preparations, including three Cd2ap+/-, Fyn-/- mutant and three control, showed very 

high expression levels of Nphs2, in the range of 1,400-2,300 RPKM. 

A second and more stringent metric is to look for the expression levels of marker genes 

associated with potential contaminating cell types. By this measure, for example, the 

endothelial and mesangial cell preparations were very free of podocyte contamination, 

with podocyte marker Nphs2 expression levels of only 0, 0, 0, 0, 4 and 1 RPKM in the 

six endothelial cell preparations and 0, 2, 0, 1, 1, and 11 RPKM in the mesangial cell 

preparations. In similar manner the mesangial cells were essentially free of endothelial 

contamination and the endothelial cells also free of mesangial contamination. 

The podocytes, however, showed detectable levels of cross contamination. For 

example, the endothelial expressed gene Kdr, gave an average expression level of 336 

RPKM in endothelial cell preparations and 15 RPKM in podocytes, suggesting a low 

level of contamination. The bioinformatics analysis pipeline was therefore modified for 

podocytes to take this into account, as described in Material and Methods.
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Podocytes

As previously mentioned, to define the gene expression pattern of mutant podocytes we 

made Cd2ap+/-, Fyn-/- mice that also carried the MafB-GFP transgene, which gives 

GFP expression specifically in podocytes in the developing kidney (26). Glomeruli were 

purified, from mutants and controls, dissociated to give single cell suspensions, and 

podocytes isolated by FACS. RNA was purified and used for RNA-seq, and the resulting 

data analyzed with Strand NGS software. 

There were many significant gene expression changes in the Cd2ap+/-, Fyn-/- 

podocytes, compared to controls, with 90 genes up-regulated greater than 2 fold 

change (FC) and 29 genes down-regulated (> 2 FC) (Table S1). A heatmap showing 

gene expression changes in bigenic mutant podocytes compared to controls is shown in 

Fig. 4, with an expandable version including gene names provided (Fig. S1). 

Fig. 4. Heatmap showing gene expression changes in control (ctrl) versus 

Cd2ap+/-, Fyn-/- three allele mutant (3A) podocytes. There were three samples of 

each, with red indicating stronger expression and blue indicating weaker expression. 

Genes with greater than 2 fold change are shown. An expandable version including 

gene names is included in supplementary data (Fig. S1). Lists of genes with fold change 

are included in Table S1. 

Growth factor related genes with elevated expression in mutant podocytes included 

Gdnf (22 FC), Tnc (22 FC), Bmp4 (5 FC), Tgf1 (2.5 FC), Tgf2 (3.5 FC), Cxcl12 (1.7 
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FC), Nrp2 (3.0 FC) Rspo1 (3.0 FC), Ctgf (1.5 FC), and Vegfb (2.0 FC). This group of 

genes includes a very strong Tgf family signature, as detailed below.

Gdnf, glial derived neurotrophic factor, showed 22 FC increased expression in 

podocytes of mutants. During kidney development Gdnf is expressed by cap 

mesenchyme nephron progenitors as well as stromal cells (27), driving branching 

morphogenesis of the ureteric bud, which expresses the Gdnf receptor Ret. Gdnf is a 

member of the Tgf superfamily. Of particular interest, Gdnf has been shown to be a 

survival factor in injured podocytes, acting in an autocrine manner (28).  

The increased expression of Tgf1, Tgf2, Vegfb and Bmp4, additional members of the 

Tgf family, give evidence for a role for podocytes in driving fibrosis, since Tgf has 

been shown to be a major mediator of fibrosis (29, 30). Bmp4 has been shown to play a 

profibrotic role in the liver (31), and to drive expression of the fibrosis related gene 

Acta2 in hepatocyte stellate cells (32). Of note, we did also observe in the mutant 

podocytes strong upregulation (8.2 FC) of Acta2, a classic smooth muscle marker 

associated with myofibroblasts. During fibrosis many cell types can differentiate into 

myofibroblasts (33). 

We also observed the upregulation of Arid5b (1.6 FC) in mutant podocytes. This gene 

encodes a component of a histone demethylase complex, resulting in target gene 

activation. Overexpression of Arid5b in fibroblasts can result in induction of smooth 

muscle genes, including smooth muscle actin, Acta2 (34). 
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Also connected to the Tgf pathway, we observed upregulation of Snai2 (5.8 FC), 

encoding the transcriptional repressor Snail. Tgf has been shown to induce Snail 

expression (35). Further, expression of Snail has been shown to activate Tgf signaling 

in breast cancer cells (36), providing another feed forward loop for this pathogenic 

pathway.

Tenascin-C (Tnc) showed ~22 fold elevated expression in mutant podocytes. Tenascin-

C is a multifunctional extracellular matrix protein that is upregulated during wound 

healing, with persistent expression observed in a variety of chronic pathological 

conditions (37). Importantly, Tnc expression in fibroblasts drives a fibrotic response, 

once again including upregulation of Acta2 expression (38). Further, there is a dramatic 

attenuation of lung fibrosis in bleomycin treated mice carrying homozygous mutation of 

Tnc (38). Tnc expression is upregulated by Tgf in fibroblasts through Alk5 mediated 

Smad2/3 signaling (38). Tnc promotes secretion of Tgf, which in turn promotes 

expression of Tnc, resulting in yet another a feed forward loop (38). 

Tnc transcripts undergo extensive alternative splicing, potentially giving rise to hundreds 

of different isoforms (39). In addition, the Tnc protein undergoes many variable post 

translational modifications, further contributing to its observed considerable functional 

diversity. Tnc can bind multiple ligands including fibronectin, contactin, glypican, and 

integrins (39), and can also activate epidermal grown factor receptor (40) and the Toll 

like receptor TLR-4 (41). Tnc is a poor adhesive substrate and blocks fibronectin 
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mediated adhesion and is therefore anti-adhesive. The dramatic upregulation of Tnc in 

the mutant podocytes and its multiple functions including pro-fibrotic and anti-adhesive 

suggest a significant role in the disease process.

The observed upregulation of Rspo1 (3 FC) is also of interest in relation to 

fibrosis/sclerosis. R-spondins are extracellular Wnt agonists that promote Wnt signaling 

by reducing degradation of Frizzled and LRP co-receptors (42). Further, canonical Wnt 

signaling has been shown to play a central role in multiple fibrosing diseases, including 

pulmonary, renal and liver fibrosis (43-45).

The mutant podocytes also showed strong evidence of elevated retinoic acid (RA) 

related pathways. Expression of Aldh1a1, encoding an enzyme driving the final step of 

RA synthesis (46), was increased 7 fold in Cd2ap+/-, Fyn-/- mutants. RA can induce 

expression of Ripply3 as well as Tbx1 in the pre-placodal ectoderm (47). Retinoic acid 

signaling can also induce Tbx3 during limb development (48). Of interest, we observed 

upregulation of both Ripply3 (7 FC) and Tbx3 (5.2 FC), in mutant podocytes, consistent 

with elevated RA signaling. Ripply3 is a transcriptional repressor that can interact with 

the transcription factor Tbx1, converting it from an activator to a repressor (47). In the 

adriamycin murine model of FSGS reducing RA synthesis resulted in increased 

proteinuria and glomerulosclerosis, while treatment with RA reduced proteinuria and 

reduced podocyte loss (49). The observed elevated RA synthesis in the Cd2ap+/-, 

Fyn-/- mutant podocytes can therefore be viewed as a protective response. 
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Another highly upregulated gene in the mutant podocytes was Spon2 (135 FC), which 

encodes an extracellular matrix protein that is critical for inflammatory cell recruitment 

(50), efficient dendritic cell priming of T-lymphocytes (51) and trafficking of eosinophils 

(52), suggesting an important role in driving the immune response. Fxyd5 (9.6 FC), 

encoding the gamma subunit of the Na,K-ATPase, as well as Atp1b1 (9.4 FC), encoding 

the beta chain of Na,K-ATPase were also increased in expression in mutant podocytes. 

Sost, encoding sclerostin, was also strongly upregulated (10 FC) in mutant podocytes. It 

is a BMP antagonist, perhaps counteracting in some measure the observed 

upregulation of Bmp4. 

GO analysis of the list of genes upregulated in the mutant podocytes identified elevated 

protein kinase activity and increased expression of growth factors as the most 

significant molecular functions. The most strongly impacted biological process was 

negative regulation of cell adhesion (P = 4.26E-9), likely related to FSGS loss of 

podocytes. Other upregulated biological processes were cell motility (P = 7.8E-9) and 

programmed cell death (P = 3.5E-8). The observed apoptosis gene expression 

signature in the mutant podocytes, with for example elevated expression of Casp4 (5.8 

FC), is also consistent with the well-defined podocyte depletion in FSGS (53, 54). Fig. 5 

shows a cytoscape with multiple identified functionalities and associated genes. 

Fig. 5. Cytoscape showing some of the genes upregulated in Cd2ap+/-, Fyn-/- 

mutant podocytes and their associated functionalities. 
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There were fewer genes showing strong down regulation compared to upregulation for 

the mutant podocytes. Among downregulated genes were Robo2 (1.5 FC) and Dpysl2 

(1.6 FC), both involved in axon guidance, and Ncam1 (3.2 FC), encoding neural cell 

adhesion molecule, all perhaps reflecting a reduced neural character of the mutant 

podocytes. Also of interest, GO analysis of the list of down regulated genes gave the 

strongest signature for reduced protein ubiquitination (uncorrected P=3.4E-5), with 

seventeen associated genes. 

The Actn4-/- genetic murine model of FSGS was previously transcriptionally profiled 

using the Translating Ribosome Affinity Purification (TRAP) method, with cell type 

specific expression of transgenic Collagen-11-eGFP-L10a allowing affinity enrichment 

of podocyte expressed RNAs (55). Of interest, the podocytes of Actn4-/- mice also 

showed elevated expression of aldehyde dehydrogenase, similar to the Cd2ap+/-, Fyn-

/- mutant podocytes in this report. Further, the podocytes of Actn4-/- mice showed 

increased expression of Pamr1, which also gave elevated expression in the Cd2ap+/-, 

Fyn-/- mutant podocytes (3.6 FC, Table S1). The Pamr1 gene has been associated with 

muscle regeneration (56), which is of interest given the contractile nature of the 

podocyte (57), perhaps playing a role in counteracting the perfusion pressure of the 

capillaries. Nevertheless, the gene expression signature of the podocyte shows only a 

weak muscle signature (26).

Mesangial cells 
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Mesangial expansion is a hallmark of FSGS, with increased extracellular matrix and 

mesangial cell proliferation. The Cd2ap+/-, Fyn-/- mutant mesangial cells showed 

upregulation of 55 genes (>1.5 FC) compared to control (Table S2). One of the 

upregulated genes (4.3 FC) with strong expression, over 100 RPKM in mutants, was 

Aldh1a2, involved in the synthesis of retinoic acid, similar to Aldh1a1, which was 

upregulated in podocytes. 

Thrombospondin (Thbs1, 3.8 FC) was strongly upregulated in mutant mesangial cells. 

Thbs plays an important role in the activation of Tgf, which is secreted in inactive pro-

cytokine form. The inflammatory phenotype of Thbs1 mutants closely resembles that of 

Tgf mutants (58). Given the key role of Tgf in fibrosis the elevated Thbs1 expression 

in mutant mesangial cells is likely pro-fibrotic. 

Upregulated mesangial cell genes in Cd2ap+/-, Fyn-/- mutants also included ccdc68 

(3.9 FC), encoding a centriole protein, Frzb (4.1 FC) encoding a secreted Wnt binding 

protein involved in the regulation of bone development, Tnnt2 (4.1 FC) involved in 

muscle contraction, Col8a1 (1.9 FC) involved in extracellular matrix, and F2r (1.6 FC), 

encoding a G-protein coupled thrombin receptor involved in the thrombotic response. 

It is interesting to again compare the altered gene expression observed in Cd2ap+/-, 

Fyn-/- mutant mesangial cells in this report with previously observed gene expression 

changes in other mouse genetic models of kidney disease. Mesangial cell upregulated 

genes in Cd2ap+/-, Fyn-/- mice that were also upregulated in the mesangial cells of the 
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db/db diabetic nephropathy mouse model include Cpe, Anxa3, Thbs1, Pmp22, Tspan2 

and Akap12, and closely related gene family members for Ppap2c, Mmp3 and Adam22 

(59). Some of the top genes upregulated in Cd2ap-/- mesangial cells, and also 

upregulated in Cd2ap+/-, Fyn-/- mutant mesangial cells include Col8a1, Ccdc68, Thbs1, 

Tnnt2, Frzb, Pmp22, and Aldh1a2 (24). The Thbs1 gene stands out as strongly 

upregulated in all three genetic models. The robust correlation for Cd2ap-/- and 

Cd2ap+/-, Fyn-/- mutant mesangial cells is perhaps not surprising given the overlapping 

genetics. 

It was interesting to find that in some cases the same pathway was activated in both 

podocytes and mesangial cells. For example, aldehyde dehydrogenase activity, 

reflecting increased RA synthesis, was elevated in both Cd2ap+/-, Fyn-/- podocytes and 

mesangial cells. Further, Prss23 (4.7 FC) was one of the most strongly upregulated 

genes in Cd2ap+/-, Fyn-/- mesangial cells, and also one of the most strongly 

upregulated genes in podocytes of the Cd2ap-/- FSGS model (24), although, 

interestingly, it was not strongly upregulated in Cd2ap+/-, Fyn-/- podocytes. In addition, 

Prss23 is upregulated in the glomeruli of human patients with FSGS (60). This common 

thread of upregulated Prss23 in multiple mouse models, and cell types, as well as in 

human FSGS gives evidence for a significant role. The serine protease encoded by 

Prss23 can activate Par2 (Protease-Activated Receptor 2), which has been implicated 

in TGF1 induced podocyte injury in the Adriamycin model of nephropathy in rats (61). 

It has also been shown that Prss23 can promote TGF signaling during zebrafish 

cardiac valve formation as well as in human aortic endothelial cell assays (62). 
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There were relatively few down regulated genes in Cd2ap+/-, Fyn-/- mutant mesangial 

cells, with only six with greater than 2 FC, and all of these showing low expression 

levels, even in controls (Table S2). 

Endothelial cells.

The endothelial cells are the third major cell type of the glomerulus. They can also play 

a role in the progression of FSGS through the production of growth factors and 

cytokines, leaky angiogenesis, and the recruitment of macrophages and leukocytes. 

The observed gene expression changes in the Cd2ap+/-, Fyn-/- mutant endothelial cells 

were modest in number, with only 45 genes showing greater than 1.5 and 15 genes with 

greater than 2 FC upregulation.  There were even fewer downregulated genes in 

mutants, with 26 showing >1.5 FC and only 5 with >2.0 FC (Table S3). 

Upregulated genes included Apnlr encoding a G-coupled receptor for Apelin that inhibits 

adenylate cyclase and is implicated in angioblast migration and regulation of blood 

vessel formation. Also upregulated was Kctd10, which binds proliferating cell nuclear 

antigen (PCNA) and may be involved in DNA synthesis and cell proliferation and is also 

involved in ubiquitination. 

Another upregulated gene in mutant endothelial cells was Nestin, which encodes an 

intermediate filament protein and is normally associated with neural stem/progenitor 

cells. It is, however, also expressed in endothelial cells in pancreas (63), in ovary and 
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placenta (64), as well as vascular neoplasms (65) and cancers (66), where is a marker 

of neovasculature.  

GO analysis for mutant endothelial cell upregulated genes found biological processes 

including negative regulation of response to oxidative stress, negative regulation of cell 

death and lymphocyte aggregation. 

QPCR Validations

The RNA-seq results were validated using RT-QPCR. Glomeruli from three mutant 

allele Cd2ap+/-, Fyn-/- and control mice were isolated using a sieving procedure (24), 

RNA purified and used for RT-QPCR. Genes were selected based on restricted up-

regulation in mutants in one sorted glomerular cell type compared to control cells. 

Samples were normalized to beta actin (actb) for mesangial and endothelial genes, or 

nephrin (Nphs2) for podocyte genes. RT-QPCR validated upregulation of Endou, 

Parm1, Serpine1, Spon2, and Rspo1 in mutant podocytes, and Cpe, Aldh1a2, Tnc, 

Cpne7, Frzb, and Thbs1 in mutant mesangial cells (Fig. 6).

Conclusions

FSGS is a major cause of ESRD, with a high percentage of patients unresponsive to 

available therapies. Improved understanding of the molecular underpinnings of the 

disease process could provide insights leading to novel therapeutic approaches. In this 

study we carry out an RNA-seq analysis of the altered gene expression patterns of 

podocytes, mesangial cells and glomerular endothelial cells of the bigenic Cd2ap+/-, 
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Fyn-/- mutant mouse model of FSGS. The podocytes showed the most dramatic 

changes, with upregulation of many genes related to the Tgf family/pathway, including 

Gdnf, Tgf1, Tgf2, Snai2, Vegfb, Bmp4, and Tnc. The mutant podocytes also showed 

upregulation of Acta2, a marker of smooth muscle and associated with myofibroblasts, 

which are implicated in driving fibrosis. GO analysis of the podocyte upregulated genes 

identified elevated protein kinase activity, increased expression of growth factors, and 

negative regulation of cell adhesion, perhaps related to the observed podocyte loss in 

FSGS. 

Both podocytes and mesangial cells showed strong upregulation of aldehyde 

dehydrogenase genes involved in the synthesis of RA. Similarly, the Cd2ap+/-, Fyn-/-

mesangial cells, as well as podocytes in other genetic models, and the glomeruli of 

human FSGS patients, all show upregulation of the serine protease Prss23, with the 

common thread suggesting important functionality. Another gene with strong 

upregulation in the Cd2ap+/-, Fyn-/- mutant mesangial cells as well as multiple other 

mutant mouse models of FSGS was thrombospondin, which activates the secreted 

inactive form of Tgf. 

The Cd2ap+/-, Fyn-/- mutant endothelial cells showed elevated expression of genes 

involved in cell proliferation, angioblast migration, angiogenesis, and neovasculature, all 

consistent with the formation of new blood vessels in the diseased glomerulus. In total 

the data herein provide a global definition of the pathogenic and protective molecular 
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pathways that are activated in the three major cell types of the glomerulus in the bigenic 

Cd2ap+/-, Fyn-/- mouse model of FSGS. 
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