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Abstract 20 

Severe insect declines make headlines, but they are rarely based on systematic 21 

monitoring outside of Europe. We estimate the rate of change in total butterfly abundance and 22 

the population trends for 81 species using 21 years of systematic monitoring in Ohio, USA. Total 23 

abundance is declining at 2% per year, resulting in a cumulative 33% reduction in butterfly 24 

abundance. Three times as many species have negative population trends compared to positive 25 

trends. The rate of total decline and the proportion of species in decline mirror those documented 26 

in three comparable long-term European monitoring programs. Multiple environmental changes 27 

such as climate change, habitat degradation, and agricultural practices may contribute to these 28 

declines in Ohio and shift the makeup of the butterfly community by benefiting some species 29 

over others. Our analysis of life-history traits associated with population trends shows an impact 30 

of climate change, as species with northern distributions and fewer annual generations declined 31 

more rapidly. However, even common and invasive species associated with human-dominated 32 

landscapes are declining, suggesting widespread environmental causes for these trends. Declines 33 

in common species, although they may not be close to extinction, will have an outsized impact 34 

on the ecosystem services provided by insects. These results from the most extensive, systematic 35 

insect monitoring program in North America demonstrate an ongoing defaunation in butterflies 36 

that on an annual scale might be imperceptible, but cumulatively has reduced butterfly numbers 37 

by a third over 20 years. 38 

 39 

Introduction 40 

Defaunation, or the drastic loss of animal species and declines in abundance, threatens to 41 

destabilize ecosystem functioning globally (1). In comparison to studies of vertebrate 42 
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populations, monitoring of changes in insect diversity is more difficult and far less prevalent 43 

(2,3). Despite this, a global analysis of long-term population trends across 452 species estimated 44 

that insect abundance had declined 45% over 40 years (1). Recently, more extreme declines in 45 

insect biomass have been observed upon resampling after 2-4 decades (4,5). Losses of total 46 

biomass or total abundance across all species may be more consequential than local declines in 47 

species diversity, as common insect species contribute the most to ecosystem services, such as 48 

pollination (6). However, our knowledge of insect declines is skewed towards European 49 

monitoring programs, including in global analyses (1). In this study, we analyze long-term, 50 

region-wide trends in abundance across a diversity of species for an entire insect group in North 51 

America to examine the scope of insect defaunation. 52 

The best source of data to assess insect defaunation comes from large-scale, systematic 53 

monitoring programs of multiple species (3). Through these efforts, trained volunteers or citizen 54 

scientists have contributed much of the evidence for biotic responses to anthropogenic climate 55 

warming such as changes in insect phenology and range distributions (7,8). Unlike citizen 56 

science reporting of opportunistic observations or species checklists, many insect monitoring 57 

programs use a systematic protocol developed specifically to track butterfly abundances through 58 

time, both within and between seasons, and over large spatial scales (9). Pollard-based 59 

monitoring programs, modeled after the first nationwide Butterfly Monitoring Scheme launched 60 

in the United Kingdom in 1977 (UKBMS), use weekly standardized counts on fixed transects 61 

(10). Their widespread adoption enables regional comparisons of insect responses to 62 

environmental change or defaunation (11,12). We compare our analysis with exemplary long-63 

term monitoring schemes from Europe to test if the rate of insect declines generalizes across 64 

continents. 65 
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The best source of abundance data for assessment of chronic insect decline, and the most 66 

prominent source of data in (1), is within the butterflies. Due to the relative ease and popularity 67 

of monitoring butterflies, environmental assessments use them as an indicator taxa for the 68 

general trajectory of biodiversity, assuming that they experience comparable pressures from 69 

land-use change, climate change, and habitat degradation as other insect taxa (13–15). Intensive 70 

long-term monitoring of individual butterfly species has provided rigorous, quantitative 71 

estimates of declines. Most prominently, the Eastern North American Monarch has declined by 72 

over 85% (16) and the Western North American Monarch by over 95% (17) over the past two 73 

decades. Severe declines have also been observed in some of the rarest butterflies (18,19). These 74 

data from individual species of conservation concern may not represent a broader trend across 75 

butterflies, which is what we aim to document in this study. 76 

Volunteers, organized and trained by The Ohio Lepidopterists, have assembled the most 77 

extensive dataset of systematic butterfly counts that stands alone in North America in terms of 78 

the spatial extent and sampling frequency of Pollard walks (9). Three other monitoring programs 79 

in the United States have documented long-term, multi-species population trends. In 80 

Massachusetts, based on species lists from field trips, climate-driven community shifts explain 81 

how the relative likelihood of species observations change over 18 years (20). Shapiro and 82 

colleagues have made biweekly presence/absence observations and Pollard-based counts on 11 83 

fixed transects along an elevational gradient in California over more than 45 years to document 84 

species richness changes in response to climate and land-use, increasing abundance at a high 85 

elevation site, and impacts of agricultural practices on abundance at low elevation sites (21,22). 86 

Several teams have monitored declines in specialist butterflies restricted to native prairie patches 87 

in the Midwestern states with transect or timed survey methods over 26 years (23,24). The 88 
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growing number of Pollard-based monitoring programs in the United States (9) has the potential 89 

to track how widespread and consistent butterfly trends are across regions. 90 

Here, we used 21 years of weekly butterfly surveys across 104 sites to assess abundance 91 

trends for butterflies in Ohio. We estimate population trends for 81 species and test for their 92 

association with life-history traits and phylogenetic relatedness. We review findings from 93 

European butterfly monitoring schemes for quantitative comparison with the rate of abundance 94 

changes in Ohio. This analysis provides evidence of widespread insect defaunation and species’ 95 

declines from the most extensive, systematic monitoring program in North America. 96 

 97 

Materials and methods 98 

Study sites 99 

We studied butterfly population trends across the state of Ohio in the Midwestern USA. 100 

Over its 116,100 km2 land area, Ohio has a mosaic of habitat types due to its partially glaciated 101 

history and its place at the confluence of Midwestern prairies, the Appalachian Mountains, and 102 

the boreal forest (25). Only remnants of wetland and prairie habitat remain in the state due to 103 

human modification of the landscape. Some rare butterflies have declined due to forest 104 

succession following suppression of disturbances (26). Agriculture and pastures (50%), forest 105 

(30%), and urban development (10%) are the predominant land-use/land cover classes (27). 106 

Monitoring sites have a Northeast to Southwest gradient in their mean annual 107 

temperatures (mean 18.8°C, range from 14.0°C to 23.6°C) from interpolated daily temperatures 108 

from Daymet over 1996-2016 (Thornton et al. 1997). Mean annual temperatures at these sites 109 

grew at a linear trend of 0.3°C per decade and growing season length has increased by 60 degree-110 

days (base 5°C) per decade from 1980-2016. Monitoring sites span the state but are concentrated 111 
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near cities (Fig 1). On average, within a radius of 2 kilometers, monitoring sites have 24% 112 

cropland and pasture, 34% forest, and 30% urban land-use based on the National Land Cover 113 

Dataset (29). Although not considered in this study, impervious surfaces from urban 114 

development influence temperature-dependent butterfly phenology in Ohio through the urban 115 

heat island effect, which may not be fully captured in these gridded temperature interpolations 116 

(30). 117 

 118 

Fig 1: Transect locations monitored by volunteers with the Ohio Lepidopterists. Of the 147 119 

sites, this analysis used the 104 sites monitored for three or more years. 120 

 121 

Monitoring surveys 122 

Trained volunteers contributed 24,405 butterfly surveys from 1996 to 2016 as part of the 123 

Ohio Lepidopterists Long-term Monitoring of Butterflies program. Volunteers surveyed on fixed 124 

paths at approximately weekly intervals during the entire growing season from April through 125 

October (median 23 of 30 weeks surveyed per year per site) and count every species within an 126 

approximate 5-meter buffer around the observer (10). Surveys are constrained to times of good 127 

weather to increase the detectability of butterflies and last a mean 85 minutes in duration. The 128 

annual number of monitored sites ranged from 13 in 1996 to a maximum of 80 in 2012. We 129 

limited our analysis of abundance trends to the 104 sites with three or more years of monitoring 130 

data and 10 or more surveys per year at each site (Fig 1). We included observations of all sites 131 

with at least 5 surveys per year in phenology models that we used to interpolate missing counts 132 

before estimating abundance (31). 133 
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All 102 species with population indices estimated by phenology models contributed to 134 

the total abundance analysis. We limited species-specific analysis to 81 species with sufficient 135 

population indices for estimating trends (present at five or more sites and for 10 or more years). 136 

Species naming conventions in the monitoring program follow those used in Opler and Krizek 137 

(1984) and Iftner et al. (1992) except for combining all observations of Celastrina ladon (Spring 138 

Azure) and Celastrina neglecta (Summer Azure) as an unresolved species complex. 139 

Population indices 140 

We estimated population indices for each site x year x species by adapting methods 141 

established for the UKBMS that account for missing surveys and butterfly phenology over the 142 

season (31,33). We used generalized additive models for each species to estimate variation in 143 

counts in order to interpolate missing surveys with model predictions (31,34). To account for 144 

seasonal, spatial, and interannual variation in species phenology, we extended the regional 145 

generalized additive model approach (12, Supplement 1) by including spatially-explicit site 146 

locations and converting calendar dates of observations to degree-days (35), which can improve 147 

butterfly phenology predictions (36). We calculated the population index by integrating over the 148 

weekly counts and missing survey interpolations using the trapezoid method (31).  149 

Controlling for confounding factors 150 

We accounted for differences in sampling across sites and years so that our modeled 151 

trends would capture changes in abundance rather than changes in detection probability (37). 152 

True abundance is confounded with detection probability when using counts from Pollard walks 153 

(38). Butterfly monitoring protocols that account for detection probability like distance sampling 154 

are commonly used for single-species studies (39), but untenable for scaling up to a regional 155 

program. Most analyses of Pollard walks assume no systematic change in detectability (but see 156 
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(40)) because counts correlate closely with true abundance estimates from distance sampling 157 

(41,42). We used two covariates to account for variation in sampling and its influence on 158 

population indices for each site x year (20,37,43). We tracked the mean number of species 159 

reported in each survey, or list-length, which is a synthetic measure of factors influencing 160 

detectability such as weather conditions, site quality, and observer effort (20,44,45). We treated 161 

the total duration of surveys in minutes as an offset in the models of population trends. Because 162 

we interpolated missing surveys for the population indices, we projected what the total duration 163 

would be if all 30 weeks had been surveyed at the mean duration reported for that site x year.  164 

Sampling across the state is nonrandom because participants choose transect locations, a 165 

common practice in volunteer-based monitoring programs. Since sites generally cluster near 166 

human population centers with a greater proportion of developed land-use and a lesser 167 

proportion of agriculture, we assumed that population trends at the 104 sites across the state 168 

sufficiently capture the broader statewide trends (37). Comparisons between the UKBMS 169 

volunteer-placed transects and a broader survey with stratified, random sampling show 170 

congruence between species trends estimated from each monitoring strategy (46).  171 

Population Trends 172 

We used generalized linear mixed models to estimate temporal trends in relative 173 

abundance for 81 species from their population indices (47). We modeled population indices at 174 

each site and year as an over-dispersed Poisson random variable with covariates on the log-link 175 

scale.  176 

log�����	
�������� � �� �  �� � ��
� � �� � 	���	���� � log����
���� � ������

� ��
��� �  ������
��� 
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We included the numeric year and mean list length for each population index as 177 

covariates, which were centered to aid in model fitting and interpretation (48). We used the 178 

coefficient for year (β2) as the annual trend in population indices as our main result. We 179 

controlled for changes in sampling by using the total duration of surveys as a model offset, 180 

converting the dependent variable to a rate of butterflies counted per minute. Random effects of 181 

individual sites and years account for spatial and temporal variation in population counts 182 

deviating from the statewide trend. We accounted for over-dispersion in the Poisson-distributed 183 

counts with the random effect siteyearID for each unique observation (49). We modeled trends 184 

in total abundance using the same modeling approach, but summed across 102 species’ 185 

population indices for each site x year observation. We interpreted trends as an annual rate by 186 

taking the geometric mean rate of change between the predicted abundance between two points 187 

in time after setting the list-length covariate to its mean and excluding the random effects (47). 188 

For comparisons with other monitoring programs, we used a p-value threshold of 0.05 to classify 189 

trends as positive, negative, or stable. 190 

Our approach is similar to that used by the UKBMS and other European monitoring 191 

programs which use generalized linear models in TRIM software (50). One key difference is that 192 

our site and annual fluctuations from the temporal trend were derived from random effects rather 193 

than fixed effects, which reduces spurious detection of trends (43). Another key difference is that 194 

TRIM does not allow for continuous covariates, which we used to account for sampling variation 195 

instead of assuming no confounding pattern in sampling effort. To validate that our modeling 196 

choices did not unreasonably influence the results, we used three alternative approaches: (1) a 197 

Poisson-based generalized linear model (equation 1 without the random effect siteyearID); (2) a 198 

nonlinear generalized additive mixed model with a smoothing spline replacing the linear 199 
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temporal trend (43); and (3) a TRIM model with over-dispersion and serial temporal correlation 200 

but no sampling covariates or offsets (50). We compared similarity in the total abundance trends, 201 

the correlation of species’ trends between model alternatives, and the classification of species’ 202 

trends as positive, stable, or negative. 203 

Comparison with other studies 204 

We compare our findings to three European long-term, regional butterfly monitoring 205 

programs with systematic Pollard walks that publish regular updates on total abundance and 206 

species’ trends (40,51,52). Although all programs analyzed counts with Poisson regression, we 207 

had to standardize them differently depending on the data available and their modeling 208 

approaches. The UKBMS reports total abundance indicators as the geometric mean of species 209 

trends from two groups: specialist and countryside species (51). We used the reported smoothed 210 

annual index values for these indicators because the first year of monitoring is an outlier that 211 

exaggerates declines (UK Biodiversity Indicators 2018, http://jncc.defra.gov.uk/page-4236). We 212 

used the Dutch Butterfly Monitoring Scheme’s reported cumulative annual trend in total 213 

butterflies counted across all transects after correction for missing surveys (52). For the Catalan 214 

Butterfly Monitoring Scheme, we extracted annual population indices from the 2015-2016 215 

annual report (53) with WebPlotDigitizer 4.1 (54) and performed a Poisson regression over time 216 

with annual random effects to obtain a comparable abundance trend. We converted total 217 

abundance trends into annual percent rates for comparison. We tallied the increases and 218 

decreases in species’ trends for each region reported by the monitoring program, without 219 

accounting for differences in their statistical approaches. 220 

Species’ traits 221 
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To explore potential mechanisms that might explain species-level variation in abundance 222 

trends, we modeled the estimates of species’ temporal trends (��) as a response to life history 223 

traits (20,30). Of the 81 species, we classified 14 as migratory species and 67 as year-round 224 

residents of Ohio. We analyzed traits models both across all species and after excluding 225 

migratory species, which would have population trends driven by factors outside of Ohio. We 226 

collected traits that relate to insect responses to climate change and habitat change, as these are 227 

two primary drivers of butterfly community changes (7,20,21).  228 

We tested if butterflies with traits making them more adaptive to a warming climate have 229 

more positive population trends. We compared species with different range distributions, 230 

assuming that species distributed in warmer, Southern regions would be more likely to increase 231 

in Ohio as the climate warms. We assigned species’ ranges as Southern, core, or Northern by 232 

range maps and county records (25,32). Voltinism, or the number of generations per year, 233 

increases in warmer years and warmer regions within many species in Ohio (55), compared with 234 

obligate univoltine species that do not adjust their lifecycle based on changing growing season 235 

length. We assigned voltinism observed in Ohio as univoltine, bivoltine, or multivoltine (3+ 236 

generations per year) based on visualization of phenology models and (25). The life stage in 237 

which species overwinter, obtained from (25), contributes to its ability to respond to warming 238 

with shifts in phenology (20,56). 239 

We would expect more generalist species, in host plant requirements and habitat 240 

preferences, to have more positive population trends in a landscape heavily modified by human 241 

use (21,51). For host plant requirements, we gathered two traits from the literature that describe 242 

host plant category (forb, graminoid, or woody) and whether the butterfly’s host plant 243 

requirements span multiple plant families or are limited to one plant family or genus (25). Mean 244 
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wing size from (32) was used as a surrogate of dispersal ability between habitats, which is 245 

expected to increase ability to access resources in a fragmented landscape. Three of the authors 246 

assigned species as wetland-dependent or human-disturbance tolerant species, which we 247 

aggregated into two binary variables to test if these specialist or generalist habitat preferences 248 

correlate with abundance trends. 249 

We used univariate linear models for each life history trait both for all 81 species and 250 

with the 14 migratory species excluded. To account for the phylogenetic relatedness and the non-251 

independence across species, we also used phylogenetic generalized least squares models that 252 

estimated branch length transformations with Pagel’s lambda by maximum likelihood (57). The 253 

phylogenetic models excluded three species without gene sequences available. 254 

Phylogenetic tree 255 

We obtained coding sequences for the most widely used DNA barcoding locus, the 256 

mitochondrial cytochrome c oxidase subunit I gene COI-5P, from GenBank (58). For species not 257 

found in GenBank, we obtained coding sequences from The Barcode of Life Data System (59). 258 

When possible, we obtained sequences from multiple sampling locations in North America.  259 

Owing to the relatively small size of our multiple-species alignment—i.e. a single 260 

mtDNA locus, 651 base pairs in length—we decided to take both a constrained and 261 

unconstrained maximum likelihood approach to estimate the genealogical relationships of our 262 

samples. Some of the species from our analysis, though not all, were recently used in a more 263 

comprehensive phylogenetic analysis of butterflies (60), thus prompting us to constrain the 264 

phylogenetic backbone of our tree using family-level relationships. We report details of our 265 

workflow in Supplement 1. 266 

Statistical analysis 267 
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We used R 3.5.2 for analysis (61) and share the data and our code on Dryad. We fit 268 

generalized additive models with the mgcv package (34), generalized linear mixed models with 269 

the lme4 package (Bates et al. 2015), generalized additive mixed models with the poptrend 270 

package (43), and phylogenetic generalized least squares models with the ape and caper 271 

packages (63,64). Confidence intervals for the temporal trends were estimated with bootstrapped 272 

model fits with the merTools and poptrend packages (43,65). For models of population trends, 273 

we estimated the goodness of fit with R2 developed for generalized linear mixed models that give 274 

marginal and conditional R2 values for the fixed effects and the fixed + random effects, 275 

respectively (66,67). For trait models, we reported the adjusted R2 values from the univariate 276 

models. 277 

 278 

Results 279 

The statewide relative abundance summed across all species declined at an annual rate of 280 

2.0% (�� = -0.020, std. err. 0.005, p < 0.001), accumulating a 33% decline over 1996-2016 281 

(Table 1, Fig 2). Among population trends, more than three times as many species are declining 282 

than increasing in abundance at our threshold of p < 0.05 (32 versus 9, respectively) (Table 2, 283 

Fig 3 for migratory species and Fig 4 for resident species). Positive and negative species trends 284 

are distributed across the phylogenetic tree (Fig A in S1 Appendix). 285 

 286 

Table 1: Generalized linear mixed model of total abundance across all species. The natural 287 

logarithm of the total survey duration across the monitoring season was an offset in the model. 288 

The model’s marginal R2 was 0.20 for its fixed effects and its conditional R2 was 0.61 when 289 

including variation in sites, years, and over-dispersion with random effects parameters.  290 
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Fixed effects B std.error z statistic p.value 

Intercept 1.33 0.0506 26.4 <0.001 
Year (numeric) -0.0203 0.00496 -4.11 <0.001 
List-length 0.104 0.00587 17.7 <0.001 
 
Random effects std. dev. # groups 

Site x year ID 0.278 1005 
Site ID 0.417 104 
Year ID (factor) 0.121 21 

 291 
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Table 2: Species’ abundance trends over time. Trends are the coefficient of year in our generalized linear mixed models with the 292 

accompanying standard error and p-value for the coefficient (equation 1). We show the data available for each species’ model: total 293 

number of butterflies recorded for all years, number of sites, number of years, and the number of population indices calculated for 294 

each species for use in abundance model (Site x year). Bold font indicates trends that were classified as increasing or decreasing (p < 295 

0.05). 296 

Species  Sample size  GLMM temporal trend 
Common Latin  Total # Sites Years Site/   Trend Std. P 

   counted   year  coef. error  
Aphrodite Fritillary Speyeria aphrodite  477 9 16 131  -0.233 0.060 <0.001 
Baltimore Euphydryas phaeton  818 7 17 83  -0.224 0.071 0.002 
American Copper Lycaena phlaeas  10,255 31 21 359  -0.193 0.024 <0.001 
Hoary Edge Skipper Achalarus lyciades  291 7 19 88  -0.178 0.061 0.003 
Milbert's Tortoise Shell Nymphalis milberti  140 8 16 101  -0.174 0.065 0.008 
European Skipper Thymelicus lineola  46,549 57 21 609  -0.173 0.021 <0.001 
Southern Cloudywing Thorybes bathyllus  667 15 20 194  -0.129 0.037 <0.001 
Falcate Orangetip Anthocharis midea  756 8 18 103  -0.123 0.040 0.002 
Dreamy Duskywing Erynnis icelus  879 18 21 260  -0.120 0.024 <0.001 
Swarthy Skipper Nastra lherminier  448 7 17 78  -0.114 0.041 0.006 
Tawny Emperor Asterocampa clyton  937 27 19 308  -0.114 0.036 0.002 
Leonard's Skipper Hesperia leonardus  1,348 11 20 144  -0.110 0.025 <0.001 
White M Hairstreak Parrhasius m-album  95 7 15 110  -0.105 0.081 0.195 
Northern Cloudywing Thorybes pylades  547 16 20 210  -0.095 0.033 0.004 
Coral Hairstreak Satyrium titus  607 15 21 217  -0.094 0.025 <0.001 
Juvenal's Duskywing Erynnis juvenalis  3,838 38 21 487  -0.083 0.020 <0.001 
Common Wood Nymph Cercyonis pegala  21,603 77 21 788  -0.073 0.013 <0.001 
Common Sooty Wing Pholisora catullus  1,142 34 20 398  -0.072 0.015 <0.001 
Sleepy Duskywing Erynnis brizo  811 13 18 156  -0.071 0.032 0.027 
Monarch Danaus plexippus  46,070 104 21 1,005  -0.070 0.023 0.002 
Red-spotted Purple Limenitis arthemis  6,226 87 21 913  -0.064 0.019 <0.001 
Bronze Copper Lycaena hyllus  656 23 21 254  -0.063 0.039 0.103 
Northern Broken-Dash Wallengrenia egeremet  5,959 49 21 528  -0.062 0.018 <0.001 
Tawny-edged Skipper Polites themistocles  2,322 48 21 541  -0.058 0.016 <0.001 
West Virginia White Pieris virginiensis  214 5 16 63  -0.058 0.059 0.329 
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Fiery Skipper Hylephila phyleus  3,917 57 19 646  -0.057 0.061 0.351 
Meadow Fritillary Boloria bellona  5,447 55 21 598  -0.056 0.027 0.040 
Orange Sulphur Colias eurytheme  62,160 101 21 996  -0.055 0.021 0.008 
Long Dash Polites mystic  1,317 21 21 219  -0.047 0.020 0.022 
American Lady Vanessa virginiensis  2,029 54 21 637  -0.045 0.033 0.179 
Black Swallowtail Papilio polyxenes  12,410 92 21 941  -0.044 0.015 0.004 
Gray Hairstreak Strymon melinus  2,418 49 19 587  -0.044 0.026 0.089 
Painted Lady Vanessa cardui  5,564 80 21 873  -0.042 0.054 0.440 
Great Spangled Fritillary Speyeria cybele  33,573 90 21 904  -0.041 0.020 0.047 
Hobomok Skipper Poanes hobomok  6,863 51 21 576  -0.040 0.014 0.005 
Viceroy Limenitis archippus  16,079 85 21 896  -0.039 0.016 0.014 
Cabbage White Pieris rapae  304,105 104 21 1,005  -0.038 0.010 <0.001 
Hackberry Emperor Asterocampa celtis  9,992 42 20 467  -0.037 0.017 0.033 
Striped Hairstreak Satyrium liparops  155 14 18 211  -0.028 0.067 0.682 
Variegated Fritillary Euptoieta claudia  956 17 19 204  -0.027 0.052 0.603 
Little Wood Satyr Megisto cymela  76,612 87 21 878  -0.026 0.009 0.005 
American Snout Butterfly Libytheana carinenta  1,007 36 18 418  -0.025 0.050 0.612 
Hickory Hairstreak Satyrium caryaevorum  196 12 20 170  -0.023 0.053 0.656 
Mourning Cloak Nymphalis antiopa  3,214 85 21 905  -0.021 0.018 0.256 
Clouded Sulphur Colias philodice  49,267 102 21 998  -0.014 0.014 0.286 
Spicebush Swallowtail Papilio troilus  25,322 82 21 858  -0.014 0.014 0.324 
Dun Skipper Euphyes vestris  1,684 49 21 585  -0.014 0.012 0.224 
Question Mark Polygonia interrogationis  6,564 88 21 915  -0.012 0.025 0.640 
Delaware Skipper Atrytone logan  1,086 30 21 313  -0.011 0.029 0.697 
Horace's Duskywing Erynnis horatius  2,885 31 21 376  -0.011 0.023 0.633 
Eastern Tiger Swallowtail Papilio glaucus  29,299 101 21 996  -0.010 0.015 0.483 
Pearl Crescent Phyciodes tharos  180,631 104 21 1,005  -0.010 0.014 0.461 
Little Yellow Eurema lisa  1,681 24 18 287  -0.008 0.073 0.917 
Eastern Comma Polygonia comma  6,222 92 21 944  -0.007 0.011 0.561 
Giant Swallowtail Papilio cresphontes  1,109 28 21 322  0.002 0.019 0.912 
Banded Hairstreak Satyrium calanus  1,107 36 21 468  0.004 0.031 0.896 
Silver-spotted Skipper Epargyreus clarus  54,462 102 21 996  0.005 0.012 0.672 
Red Admiral Vanessa atalanta  28,637 97 21 969  0.008 0.044 0.865 
Red-banded Hairstreak Calycopis cecrops  795 7 17 91  0.009 0.057 0.879 
Crossline Skipper Polites origenes  1,087 27 21 347  0.009 0.020 0.636 
Sachem Atalopedes campestris  1,445 19 18 231  0.013 0.058 0.823 
Peck's Skipper Polites peckius  23,702 90 21 905  0.014 0.014 0.306 
Northern Eyed Brown Satyrodes eurydice  1,342 13 21 174  0.016 0.035 0.651 
Eastern Tailed Blue Everes comyntas  56,137 99 21 974  0.016 0.010 0.113 
Henry's Elfin Callophrys henrici  330 7 17 76  0.017 0.055 0.752 
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Little Glassy Wing Pompeius verna  8,658 56 21 632  0.019 0.019 0.307 
Silvery Checkerspot Chlosyne nycteis  2,049 20 19 224  0.039 0.022 0.074 
Spring/Summer Azure Celastrina ladon/neglecta  63,947 103 21 1,002  0.047 0.021 0.022 
Common Buckeye Junonia coenia  15,771 73 19 834  0.050 0.067 0.459 
Pipevine Swallowtail Battus philenor  703 23 18 279  0.053 0.033 0.110 
Least Skipper Ancyloxypha numitor  27,506 84 21 844  0.053 0.015 <0.001 
Appalachian Eyed Brown Satyrodes appalachia  2,118 12 18 118  0.060 0.045 0.181 
Zabulon Skipper Poanes zabulon  10,960 71 21 747  0.061 0.022 0.004 
Northern Pearly-Eye Enodia anthedon  2,785 37 21 434  0.071 0.020 <0.001 
Zebra Swallowtail Eurytides marcellus  1,349 18 18 224  0.075 0.030 0.011 
Cloudless Sulphur Phoebis sennae  1,840 27 19 355  0.088 0.057 0.121 
Common Checkered-Skipper Pyrgus communis  3,089 33 18 357  0.092 0.046 0.046 
Wild Indigo Duskywing Erynnis baptisiae  15,209 51 19 570  0.106 0.020 <0.001 
Harvester Feniseca tarquinius  341 11 20 143  0.122 0.061 0.046 
Sleepy Orange Eurema nicippe  2,028 6 17 63  0.146 0.134 0.276 
Gemmed Satyr Cyllopsis gemma  1,059 6 16 81  0.228 0.052 <0.001 
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Fig 2: The statewide relative abundance of butterflies (all species aggregated) in Ohio 297 

declined by 33% over 1996-2016. Plotted are model predictions for each year based on the 298 

fixed effects of year (solid line) and annual random effects (dots) to show annual variation about 299 

the trend line. Shading shows the 95% confidence interval based on bootstrapped model fits for 300 

the temporal trend. 301 

 302 

Fig 3: Statewide trends of 14 migratory species with annual variation. Plotted are model 303 

predictions for each year based on the fixed effects of year (solid line) and annual random effects 304 

(dots) to show annual variation about the trend line. Shading shows 95% confidence intervals 305 

based on bootstrapped model fits in the poptrend package (43) for the temporal trend and for the 306 

annual random effects. The first year’s estimate is set to a value of 1 as a baseline for relative 307 

population changes. 308 

 309 

Fig 4: Statewide trends of 67 resident species with annual variation. Plotted are model 310 

predictions for each year based on the fixed effects of year (solid line) and annual random effects 311 

(dots) to show annual variation about the trend line. Shading shows 95% confidence intervals 312 

based on bootstrapped model fits in the poptrend package (43) for the temporal trend and for the 313 

annual random effects. The first year’s estimate is set to a value of 1 as a baseline for relative 314 

population changes. 315 

 316 

 317 

Both in the total trend in abundance and in the proportion of species with declines, these 318 

results are similar to three European butterfly monitoring schemes (Table 3). Although the 319 
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longer-running programs show larger cumulative declines, the annual rate of change in total 320 

abundance ranges from -2.0% to -2.6% for Ohio, Catalonia, and the Netherlands. The United 321 

Kingdom total abundance trends are split between generalist species (-0.8%) and specialist 322 

species (-2.4%). Across monitoring programs, declining species outnumber increasing species by 323 

a factor of two to three (Table 3). 324 

  325 
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Table 3: Comparison of this study’s results to European monitoring programs for rates of change in total abundance and 326 

classification of species trends as positive or negative. Number of sites represents those reported to contribute to the analysis, but 327 

may no longer be active. Number of butterflies counted per year is an approximation based on the most recent years of monitoring 328 

described in the references. 329 

 
 

  
 

 
Species' trends 

 
Region (km2) Years Sites 

Counted/year 
(x 1000) 

Annualized trend in total 
abundance (cumulative) Positive Negative 

Stable/ 
not signif. Reference 

United Kingdom 
(242,500) 41 (1976-2017) 3,164 1,700 

-0.8% (-28%) countryside  
-2.4% (-63%) specialist 11 22 24 (51) 

Netherlands 
(42,508) 25 (1992-2017) 600 250 -2.0% (-40%) 11 23 13 (52) 
Catalonia, Spain 
(32,108) 22 (1994-2016) 116 122 -2.6% (-44%) 15 46 5  (40,53) 
Ohio, USA 
(116,100) 20 (1996-2016) 104 80 -2.0% (-33%) 9 32 40 this study 
  330 
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In general, traits associated with species’ responses to climate were more important, 331 

based on the predictive ability (adjusted R2) of univariate models, than traits associated with 332 

habitat and host plant restrictions (Fig 5, Tables A and B in S1 Appendix). Phylogenetic signal 333 

was included for most traits’ models, so we focus on the phylogenetic generalized least squares 334 

results. The Monarch (Danaus plexippus) was the only migratory species in decline, although the 335 

others had erratic annual fluctuations that make trend estimation difficult (Fig 3). Species with 336 

more northern geographic ranges were associated with more negative population trends. 337 

Univoltine species had more negative population trends than bivoltine or multivoltine species. 338 

Overwintering stage did not have a strong effect on trend. Species eating forb host plants had 339 

negative trends on average, but there was no effect of host plant specialization on population 340 

trends. Wing length, wetland habitat preference, or human-disturbed habitat preference were not 341 

associated with trends. 342 

 343 

Fig 5: Species’ traits are associated with variation in the statewide trends in abundance. We 344 

plot each species’ trend compared to the six most important traits for the 78 species included in 345 

the phylogenetic GLS models with full results in Table A in S1 Appendix. Squares represent the 346 

regression coefficients with 95% confidence intervals shown in lines. Dots show trend estimates 347 

for each species from Table 1 uncorrected for phylogeny, jittered for visualization. 348 

 349 

Our choice of modeling approach did not change the overall evidence of defaunation. 350 

Generalized linear mixed models with Poisson-distributed errors and generalized additive mixed 351 

models estimated declines in total abundance similar in magnitude at -1.83% and -2.13% annual 352 

rates, respectively. The annual trend estimate from TRIM, without sampling covariates, was half 353 
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the magnitude at -0.96%. Species’ trends had high correlations between pairwise comparisons, 354 

but TRIM models estimated notably more positive trends compared to the other three approaches 355 

(Table C in S1 Appendix). 356 

 357 

Discussion 358 

We show that the total butterfly abundance has declined by 33% over 20 years in Ohio. 359 

This rate is faster than the global abundance trend estimated for Lepidoptera (35% over 40 years) 360 

and corresponds more closely to the steeper declines (45% over 40 years) estimated for all 361 

insects (1). The Ohio butterfly monitoring program, judged by the weekly frequency, 20-year 362 

time period, and statewide spatial extent of its surveys, is the most extensive systematic insect 363 

survey in North America and comparable to three exemplary European butterfly monitoring 364 

schemes. The annualized 2% rate of decline in this study aligns closely with trends from 365 

European butterfly monitoring, confirming the decline of the most closely monitored group of 366 

insects in both Europe and North America (Table 3). With less known about other insect taxa, 367 

butterflies provide a necessary, if imperfect, surrogate to understand the trajectory and potential 368 

mechanisms behind broader insect trends (13). Extensive in both time and space, the decline in 369 

butterfly abundance reported here is the best estimate for the current rate of insect defaunation in 370 

North America. 371 

The proportion of butterfly species with population declines compared to population 372 

increases is similar between Ohio (negative trends three times more numerous) and European 373 

studies (negative trends 2-3 times more numerous) (Table 3). In other taxa, moths in the United 374 

Kingdom show a similar proportion of species declines (68). Long-term monitoring in protected 375 

areas, although less extensive in space, shows more positive species trends for moths in Finland 376 
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(at 67.7° latitude) and across pollinators in Spain (at 850-1750 m. elevations) (69,70). These 377 

counterexamples show how insect communities may shift at high-latitude or high-elevation sites 378 

with anthropogenic climate warming (21) or may persist in more remote areas. However, 379 

butterfly monitoring in populated areas show a consistency in observed declines (Table 3) that 380 

we argue would generalize to other landscapes dominated by human use.  381 

We demonstrate abundance declines in species that are generalist, widespread, and not 382 

considered vulnerable to extinction (25,71). Although few may share concern for the most 383 

widespread, invasive butterfly in the world’s agricultural and urban settings (72), declines in 384 

Pieris rapae could be indicative of persistent environmental stressors that would affect other 385 

species as well. Generalist species that exploit human-disturbed habitat with annual rates of 386 

decline of more than 5% include Lycaena phlaeas, Thymelicus lineola (non-native), Cercyonis 387 

pegala, and Colias eurytheme (Table 2, Fig 4). We would expect negative environmental 388 

changes to disproportionately affect rare species prone to the demographic dangers of small 389 

populations or specialist species that rely on a narrow range of resources or habitat (UKBMS in 390 

Table 3, (24)). This pattern of species declines would lead to biotic homogenization as rarer 391 

species are lost and common, disturbance-tolerant species remain (73,74). However, our study 392 

adds another example of declines in common butterfly species thought to be well-suited to 393 

human-modified habitat (11,21,75).  394 

The Eastern North American migratory Monarch (Danaus plexippus) abundance in Ohio 395 

is declining by 7% per year. The Monarch is the only declining migratory species out of 14 in 396 

our analysis. Despite disagreements about whether summer abundance trends have tracked 397 

winter colony declines (76,77), our study shows that the long-term trends correspond. However, 398 

our study’s first two years have very high Monarch population indices which could be outliers 399 
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(Fig 3) following the two largest recorded winter population counts (16,78). With these two 400 

years removed, the statewide Monarch trend is a 4% decline per year, showing that the 401 

magnitude of summer abundance trends are sensitive to the years of data included. Our results 402 

align with a study using Illinois systematic monitoring data that shows a summer abundance 403 

decline for monarchs over two decades, but only during the period from 1994-2003, not from 404 

2004-2013(79). A more recent study showed no decline during the summer during 2004-2016 405 

using a population index from NABA counts (78). The trend we document comes from the sum 406 

of multiple summer breeding generations and fall migratory butterflies returning to Mexico; 407 

estimates of abundance for these separate generations may be required to model how different 408 

stages of the lifecycle contribute to the long-term decline in the winter colonies (78).  409 

Our statewide analysis has potential limitations when used to evaluate individual species 410 

for potential conservation interventions or forecasts of population trajectories. Even with 411 

systematic monitoring, accurate estimates of insect abundance are missing from many species—a 412 

fifth of regularly observed species in Ohio did not meet our minimum data requirements to for us 413 

to estimate trends. None of these species are considered to be of conservation concern, but this 414 

also means that we would be limited in our ability to determine if their populations have reached 415 

threatened status. Targeted surveys of selected species, non-adult life stages, or rarely-sampled 416 

habitats can expand the monitoring to data-deficient species commonly excluded by protocols 417 

designed to monitor many species efficiently (51) and can be used to estimate demographic 418 

responses to environmental drivers not apparent from adult butterfly counts (80). Additional 419 

targeted species assessments could inform how worried we should be about the extreme 420 

population declines estimated for species observed at fewer than 10 monitoring sites (Table 2). 421 

However, more data and more complex population models may not always lead to accurate 422 
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predictions for insect population trajectories (81). Rather than recommending other systematic 423 

monitoring programs accumulate decades of data before assessing insect declines, we would 424 

advocate sharing data across regional programs to increase statistical power, as in (11), and 425 

integrating systematic monitoring with historical records and opportunistic observations to assess 426 

insect vulnerability more rapidly by using all potential sources of data (82,83). 427 

Insect declines have multifaceted causes, and the relative impact of these causes is still 428 

unknown (84). Although analysis of the causes of site differences in abundance or species trends 429 

is beyond the scope of this study, we discuss three environmental drivers commonly associated 430 

with global insect declines: habitat loss and fragmentation, climate change, and agricultural 431 

intensification (84,85). If species’ traits are associated with population trends, then their 432 

relationships may suggest which environmental changes affect population responses in species 433 

sharing these traits (47,84,86). In this study, life-history traits were weakly predictive of 434 

population trends, but their associations provide hypotheses that could be tested further (47). 435 

Habitat loss and fragmentation  436 

In Ohio, habitat loss and fragmentation plateaued well before butterfly monitoring 437 

started, with human population growth slowing by 1970. In common with other Midwestern 438 

states, Ohio had already lost tallgrass prairie species, such as the Regal Fritillary (Speyeria 439 

idalia), due to  habitat conversion to agriculture (25,26). Land-use has changed slowly over the 440 

course of the monitoring program; fewer than 10% of monitoring sites have had more than 2.5% 441 

change in the surrounding (2-km radius) developed, agriculture, or forest land cover from 2001-442 

2011 (29). The persistence of butterfly populations in a landscape of habitat fragments are 443 

mediated by species’ traits that permit them to either move between more isolated resources or 444 

persist in smaller, localized populations (85,87). Wing size is one life history trait associated 445 
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with dispersal ability, but it had no association with species’ population trends (Tables A and B 446 

in S1 Appendix). However, defining habitat patches by land-use classes overlooks how mobile 447 

insect populations are bound by resources, varying across the lifecycle, rather than area (88,89). 448 

Although there has been little wholesale habitat conversion around our study transects, 449 

degradation of the remaining habitat could be a cause of the general decline in butterfly 450 

abundance. 451 

Climate change 452 

Species trends are associated with two life-history traits, voltinism and range distribution, 453 

which suggest that the butterfly community is changing with the warming climate. Species that 454 

only complete one annual generation, or univoltine species, had more negative abundance trends. 455 

This aligns with obligate univoltine species becoming less common in Massachusetts (20), but is 456 

the opposite of the findings in Spain where multivoltine species are in steeper declines with 457 

exposure to increasingly dry summers (40). Multivoltine species may be more adaptive to annual 458 

and spatial variation in growing season length as many have plasticity in the voltinism observed 459 

within Ohio (25). For many species with flexible voltinism in Ohio, adding an extra generation 460 

in warmer summers increases their annual population growth rates (55). Northern-distributed 461 

species have more negative population trends compared to widely distributed or southern 462 

species. This corresponds with findings from Massachusetts and Europe that warm-adapted 463 

species are replacing cool-adapted species as range distributions shift (20,90). Even though these 464 

two traits should increase abundance for some species as the climate warms, it has not been 465 

enough to prevent the overall decline in butterfly abundance. 466 

Agricultural intensification 467 
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Cropland and pasture make up half of Ohio’s land area, so we would expect agricultural 468 

practices to affect statewide insect abundance. One assessment of pollinator habitat suitability 469 

based on land-use, conservation reserve program acreage, and crop type estimated an increase in 470 

resources in Ohio from 1982 through 2002, followed by a stable trend (91). However, 471 

agricultural practices can decrease insect abundance with systemic insecticides, herbicide use on 472 

host plants or nectar resources, and nitrogen fertilization that alters the composition of 473 

surrounding plant communities.  474 

In Ohio, the use of neonicotinoids rapidly increased after 2004 when they became widely 475 

used on corn and soybeans (92,93). The mechanistic link between neonicotinoid insecticides and 476 

insect declines is established and observational studies have shown widespread impacts of their 477 

use (94–96). Even though seed-coatings with neonicotinoids reduce broadcast spraying, the 478 

mechanical planting of these seeds exposes widespread areas around farms to contaminated dust 479 

that exposes non-target plants and insects to biologically-relevant concentrations (97,98). In the 480 

United Kingdom and California, neonicotinoids are associated with butterfly declines (22,99) 481 

and hinder butterfly larval development on host plants (100). We did not design this study to test 482 

whether neonicotinoids affect butterfly abundance in Ohio. However, the observed declines 483 

across common and generalist species, which we otherwise would expect to exploit an 484 

agricultural or human-altered landscape, would be consistent with widespread exposure to 485 

insecticides. 486 

Species that eat forbs as larvae have negative population trends (Fig 5). Both herbicide 487 

use and nitrogen deposition may alter plant communities to favor grasses over forbs (101). In 488 

Ohio, glyphosate use has increased linearly, and is now applied at 6 times the rate it was in 1996 489 

(92,93). Milkweed losses, attributed to increased glyphosate use in the Midwest, contribute to 490 
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declines in Monarch butterfly abundance (79,80). Nitrogen increases, which may come from 491 

fertilization or atmospheric deposition, have been linked to declines in grassland butterfly 492 

species adapted to low-nitrogen environments (102–104) and to higher mortality during larval 493 

development on enriched host plants (105). 494 

 495 

Conclusions 496 

Systematic, long-term surveys of butterflies provide the most rigorous estimate for the 497 

rate of insect declines. This study demonstrates that defaunation is happening in North America 498 

similarly to Europe. In landscapes comprising natural areas amid heavy human land-use, 499 

butterfly total abundance is declining at 2% per year and 2-3 times more species have population 500 

trends declining rather than increasing. Additional Pollard-based monitoring programs in North 501 

America, listed in (9), will enable tracking insect trends over larger spatial extents as will efforts 502 

to integrate data across European monitoring schemes (11). The rates for other insect groups may 503 

deviate from this baseline and were previously estimated to be declining more rapidly than 504 

Lepidoptera (1). Expanded monitoring and support for taxonomists are imperative for other taxa 505 

and under sampled regions, like the Tropics where most insect diversity resides. Besides the 506 

evaluation if butterfly trends generalize to other insects, the most urgent research needs are 507 

understanding the causes of decline and testing mitigation strategies. As butterflies are the best-508 

monitored insect taxa, they are the best indicator of the baseline threat to the 5.5 million insect 509 

species, the most diverse group of animals on earth. 510 
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