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Abstract

Natural microbial communities contain hundreds to thousands of interacting species. For this

reason, computational simulations are playing an increasingly important role in microbial ecol-

ogy. In this manuscript, we present a new open-source, freely available Python package called

Community Simulator for simulating microbial population dynamics in a reproducible, transpar-

ent and scalable way. The package includes five major elements: tools for preparing the initial

states and environmental conditions for a set of samples, automatic generation of dynamical equa-

tions based on a dictionary of modeling assumptions, random parameter sampling with tunable

levels of metabolic and taxonomic structure, parallel integration of the dynamical equations, and

support for metacommunity dynamics with migration between samples. To significantly speed

up simulations using Community Simulator, our Python package implements a new Expectation-

Maximization (EM) algorithm for finding equilibrium states of community dynamics that exploits

a recently discovered duality between ecological dynamics and convex optimization. We present

data showing that this EM algorithm improves performance by between one two orders compared

to direct numerical integration of the corresponding ordinary differential equations. We conclude

by discussing possible applications and extensions of the Community Simulator package.
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BACKGROUND

The last decade has seen a renewed interest in the study of microbial communities. Dif-

ferent environments can harbor diverse communities ranging from hundreds to thousands of

distinct microbes [3, 4]. A central goal of community ecology is to understand the ecological

processes that shape these diverse ecosystems. The diversity and function of ecosystems

are affected by a wide variety of factors including energy and resource availability [20, 21],

ecological processes such as competition between species[22–25] and stochastic colonization

[26–29].

Microbial ecosystems also present several new challenges specific to microbes that are

not usually addressed in the theoretical ecology literature. Classical models of community

ecology (especially niche-based theories) have traditionally considered ecosystems with a few

species and resources [30, 31]. However, microbial ecosystems often have thousands of species

and hundreds of small molecules that can be consumed. It is unclear how the intuitions and

results from these low-dimensional settings scale to microbiomes. It is known that diverse

ecosystems can exhibit distinct emergent features and phase transitions not found in low-

dimensional systems [32–35]. Furthermore, classical ecological models usually assume a

strict trophic layer separation, ignoring cross-feeding and syntrophy – the consumption of

metabolic byproducts of one species by another species. It is now becoming clear that

cross-feeding is a central component of microbial ecosystems [5, 8, 36, 37] and any ecological

models must account for this phenomenon.

For these reasons, there is a need for new ways of understanding microbial ecosystems.

One powerful approach for understanding complex systems is through simulations. How-

ever, simulating diverse microbial ecosystems presents some unique challenges. First, most

ecosystems are mathematically represented by complicated coupled, non-linear ordinary dif-

ferential equations. Simulating these systems in ecosystems with hundreds to thousands

of species and metabolites becomes computationally difficult and time-consuming. Second,

these dynamical models have thousands of parameters. One needs a principled and bi-

ologically realistic way of choosing such parameters. Third, explaining real data requires

incorporating ecological processes such as stochastic colonization that play an important role

in shaping community structure and dynamics. Finally, we need to be able to incorporate

spatial and population level structures in an experimentally realistic way.
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Recently, we presented a powerful minimal model of microbial ecosystems that addresses

these concerns [5, 8]. Furthermore, we have found a mathematical mapping between eco-

logical dynamics and constrained optimization that can be used to accelerate simulations

of many large ecosystems [38, 39]. In this paper, we present a new open-source Python

package for microbial ecology called Community Simulator that implements these theoret-

ical advances, making it easy to simulate complex microbial communities in a variety of

experimentally relevant settings.

IMPLEMENTATION

The architecture of Community Simulator is inspired by the parallel experiments com-

monly performed with 96-well plates, as illustrated in Fig 1. The central object of the

package is a Community class, whose instances are initialized by specifying the initial pop-

ulation sizes and resource concentrations for each parallel “well,” along with the functions

and parameters that define the population dynamics. The initial state, dynamical equations

and parameters can all be generated automatically from a dictionary of modeling assump-

tions, or custom-built by the user. Each instance of this class represents an n-well plate,

containing n well-mixed, non-interacting communities. Once initialized, the state of the

plate can be updated in one of two ways. Propagate(T) propagates the system for a time

T by integrating the supplied dynamical equations, and Passage(f) builds a replacement

plate by adding a fraction fµν of the contents of each old well ν to each new well µ. In the

final section below, we will discuss a third method SteadyState(), which can find the fixed

point of the dynamics in some models without numerical integration.

The package also includes some functions for analysis of the simulation results, including a

variety of measures of alpha diversity, as well as extraction of energy flux networks, effective

interaction coefficients, and sensitivities to parameter perturbations.

In the following sections, we describe the functionality of each element of the package

in turn. We particularly focus on the tools for generating the dynamical equations and

the parameter sets, explaining how increasing levels of biological realism can be progres-

sively incorporated. Each section has a corresponding segment in the Jupyter notebook

Tutorial.ipynb included with the Community Simulator package. This notebook contains

all the code and parameters for generating the figures found in the paper.
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Plate1 = Community(init_state,dynamics,params)

System State
96-Well Plate

Dynamical Law

Parameters

Populations Ni

Environment R
α

{
{

Plate1.N

Plate1.R

Plate1.dNdt

Plate1.dRdt

Plate1.params

Plate1.Propagate(T)
Plate1.Passage(f)

FIG. 1. The five elements of the Community Simulator. The core object of the Community

Simulator is a virtual n-well plate, holding n independent well-mixed microbial communities. This

plate has three properties: its current state, a dynamical law for the population dynamics, and a

set of parameters. Once a plate is initialized, two actions can be performed on it: propagation in

time using the given dynamical law, and passaging of given fractions of the contents of each well

to fresh wells on a replacement plate. For some models, the equilibrium state of the population

dynamics can also be found directly using a new algorithm summarized in Fig 6 below.

Constructing the initial state

The state of a Community instance is contained in a pair of Pandas data frames, one of

size Stot × n for the microbial population sizes Ni (i = 1, 2, . . . Stot) and one of size M × n
for the resource abundances Rα (α = 1, 2, . . .M). Each row of the data frame corresponds

to a different species or resource type, while each column corresponds to a different well.

The function MakeInitialState automatically creates data frames N0,R0 of initial popu-

lation sizes and resource abundances corresponding to some common experimental scenarios,

specified in a dictionary of assumptions. The initial colonization species abundances are sup-

plied by a stochastic process that is agnostic to species identity. This roughly captures the

various dispersal mechanisms including mechanical disturbances and turbulent flow that

convey microbial cells to new environments. Specifically, random subsets of S species from

the regional pool of size Stot are supplied to the n wells of the plate. The population sizes

of these species are set to 1 by default, and can be rescaled afterwards if desired.
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Initial resource abundances are generated by MakeInitialState based on a Biolog plate

scenario, where each well is supplied with a single carbon source. The assumptions dictionary

specifies the identity and quantity of the carbon source for each well. Arbitrarily chosen

resource abundances can of course be directly supplied to the Community instance instead,

to simulate more general conditions.

To capture coarse-grained metabolic structure, the M resources can be assigned to T

classes (e.g. sugars, amino acids, etc.), each with MA resources where A = 1, . . . T and∑
AMA = M . Likewise the Stot species can be assigned to F families, with F ≤ T , and each

family preferentially consuming resources from a different resource class. A generalist family

can also be included, with Sgen species and no preferred resource class, so that Sgen+
∑

A SA =

Stot. These class labels become functionally relevant by biasing the sampling of consumption

preferences and byproduct stoichiometry, as will be described below.

Generating the dynamical equations

Instances of the Community class can be initialized with any set of differential equations,

which are specified as functions of the system state that return the time derivatives dNi/dt

and dRα/dt. The package includes tools for constructing these functions automatically

based on a dictionary of assumptions. These built-in dynamics are based on the recently

introduced Microbial Consumer Resource Model (MicroCRM) [5, 8] illustrated in Fig 2,

which generalizes the classic consumer resource model of MacArthur and Levins [23] to the

microbial context by allowing organisms to release metabolic byproducts.

Energy fluxes and growth rates

We begin by defining an energy flux into a cell J in, an energy flux that is used for growth

Jgrowth, and an outgoing energy flux due to byproduct secretion Jout. Energy conservation

requires

J in = Jgrowth + Jout (1)

for any reasonable metabolic model. It is useful to divide the input and output energy

fluxes that are consumed/secreted in metabolite β by J in
β and Jout

β respectively. We can
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FIG. 2. Constructing the dynamical law. The MicroCRM models the growth and metabolism

of S microbial species in terms of energy fluxes J in
iα, J

out
iβ , Jgrow

i , mediated by import, export and

chemical transformation of M substitutable resources. Specification of the resource dynamics and

of the dependence of import rates on the resource concentrations requires three additional modeling

choices, represented by the three arrows. First, the intrinsic dynamics of the resources can either

be a linear model of a fixed external input flux and dilution rate, or a logistic model of self-renewing

resources, which was employed in MacArthur’s original CRM. Second, the import rates from the

different resource types can be independent, or globally regulated in such a way as to preferentially

consume the resource that is currently most abundant. Third, the dependence of import rates on

resource concentration can take a linear (Type-I), Monod (Type-II) or Hill (Type-III) form.

define corresponding mass fluxes by

νout
β ≡ Jout

β /wβ (2)

and

ν in
β ≡ J in

β /wβ (3)

In general, all these fluxes depend on the consumer species under consideration, and will

carry an extra Roman index i indicating the species.

We assume that a fixed quantity mi of power per cell is required for maintenance of
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species i, and that the per-capita growth rate is proportional to the remaining energy flux

(Jgrowth−mi), with proportionality constant gi. Under these assumptions, the time-evolution

of the population size Ni of species i can be modeled using the equation

dNi

dt
= giNi(J

growth
i −mi). (4)

We can model the resource dynamics by functions of the form

dRα

dt
= hα(Rα)−

∑
j

Njν
in
jα +

∑
j

Njν
out
jα , (5)

where the function hα describes the resource dynamics in the absence of consumers. The

Community Simulator has two kinds of default resource dynamics: externally supplied and

self-renewing. For externally supplied resources, we take a linearized form of the dynamics:

hexternal
α (Rα) = τ−1

α (R0
α −Rα) (6)

while for self-renewing we take a logistic form

hself−renewing
α (Rα) = rαRα(R0

α −Rα). (7)

Finally, the intrinsic resource dynamics can also be turned off, with hoff
α = 0, to simulate

resource depletion in a closed community with no resupply.

Input fluxes and output partitioning

We now specify the form of the input fluxes ν in
β , and of the relationships among input,

output and growth that define the metabolism. We limit ourselves to considering strictly

substitutable resources. We start by assuming that all resource utilization pathways are

independent, resulting in input fluxes of the form

ν in
iα = σ(ciαRα) (8)

where σ is a single-valued function encoding the relationship between resource availability

and uptake rates. The community simulator implements three kinds of response functions:

Type-I, linear response functions where

σI(x) = x, (9)
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a Type-II saturating Monod function,

σII(x) =
x

1 + x
σmax

(10)

and a Type-III Hill or sigmoid-like function

σIII(x) =
xn

1 +
(

x
σmax

)n , (11)

where n > 1.

To obtain the output fluxes, we define a leakage fraction l such that

Jout = lJ in. (12)

We allow different resources to have different leakage fractions lα. A direct consequence of

energy conservation (Eq (1)) is that

Jgrowth
i =

∑
α

(1− lα)J in
iα =

∑
α

(1− lα)wασ(ciαRα) (13)

Finally, we denote by Dβα the fraction of the output energy that is contained in metabolite

β when a cell consumes α. Note that by definition
∑

βDβα = 1. These Dβα and lα uniquely

specify the metabolic model for independent resources and we can write all fluxes in terms

of these quantities.

The total energy output in metabolite β is thus

Jout
iβ =

∑
α

DβαlαJ
in
iα =

∑
α

Dβαlαwασ(ciαRα). (14)

This also yields

νout
iβ =

∑
α

Dβαlα
wα
wβ

σ(ciαRα) (15)

We are now in position to write down the full dynamics in terms of these quantities:

dNi

dt
= giNi

[∑
α

(1− lα)wασ(ciαRα)−mi

]
dRα

dt
= hα(Rα)−

∑
j

Njσ(cjαRα) +
∑
jβ

Njσ(cjβRβ)

[
Dαβ

wβ
wα

lβ

]
(16)

Notice that when σ is Type-I (linear) and lα = 0 for all α (no leakage or byproducts), this

reduces to MacArthur’s original model [23].
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Metabolic regulation

The package can also generate dynamics for active metabolic regulation, which allocates

a higher fraction of import capacity to nutrients with higher available energy flux. This

regulation is implemented through a series of weight functions for resource α that reflect

how much of the utilizable energy in the environment is resource α

uin−w
iα =

(wαciαRα)nreg∑
β(wβciαRα)nreg

, (17)

with n an Hill coefficient that tunes steepness. Another option is to regulate based on the

fraction of biomass contained in resource α,

uin−ν
iα =

(ciαRα)nreg∑
β(ciαRα)nreg

(18)

For the metabolically regulated model, we define the input fluxes by

ν in
β = uin

iβσ(ciβRβ) (19)

Then, we can follow the exact same procedure as above. This yields the equations

dNi

dt
= giNi

[∑
α

(1− lα)wαu
in
iασ(ciαRα)−mi

]
dRα

dt
= hα(Rα)−

∑
j

Nju
in
jασ(cjαRα) +

∑
jβ

Nju
in
jβσ(cjβRβ)

[
lβDαβ

wβ
wα

]
(20)

These equations are generated by the functions MakeConsumerDynamics and MakeResourceDyanamics,

based on the user’s specification of the resource replenishment mode h, the response function

σ, and the regulation mode u.

Sampling the parameters

The MicroCRM contains a large number of parameters: the Stot-dimensional vectors gi

and mi, the M -dimensional vectors R0
α, lα, wα and τα or rα, the Stot×M consumer preference

matrix ciα and the M ×M metabolic matrix Dαβ. Some modeling choices require a small

number of additional parameters: the maximal uptake rate σmax for Type-II and Type-

III growth, and the exponents n for Type-III growth and nreg for metabolic regulation. A

dictionary containing all these parameters must be supplied to the Community instance upon
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(a)

(b) (c)

Gaussian Gamma Binary

Sugars Lipids

Carboxylic
Acids

FIG. 3. Sampling parameters and adding metabolic structure. (a) Sampling the consumer

preference matrix ciα. Each row corresponds to a different microbial species, and the value of each

entry in the row specifies the preference level of that species for a given resource. An example

of each of the three sampling choices is shown, with white pixels representing ciα = 0 and darker

pixes representing larger values. The examples have F = 3 consumer families with specialism level

q = 0.9, each with SA = 25 species, plus a generalist family with Sgen = 25 species. (b) Sampling

the metabolic matrix Dαβ. Each column represents the allocation of output fluxes resulting from

metabolism of a given input resource. This example has T = 3 resource classes, and an effective

sparsity d0 = 0.05. (c) Diagram of three-tiered metabolic structure. A fraction fs of the output flux

is allocated to resources from the same resource class as the input, while a fraction fw is allocated to

the “waste” class (e.g., carboxylic acids). In the example of the previous panel, allocation fractions

were fs = fw = 0.49.

initialization. A list of dictionaries may be supplied instead, to allow different wells to have

different parameters.

The package contains a function MakeMatrices for generating the two matrices, which

contain most of the ecological structure, based on a dictionary of modeling assumptions.

The output of this function is illustrated in Fig 3 and described in detail below.
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Consumer preferences ciα

We choose consumer preferences ciα as follows. As stated earlier, we assume that each spe-

cialist family has a preference for one resource class A (where A = 1 . . . F ) with 0 ≤ F ≤ T ,

and we denote the consumer coefficients for this family by cAiα. We also consider generalists

that have no preferences, with consumer coefficients cgen
iα . The cAiα can be drawn from one

of three probability distributions : (i) a Normal/Gaussian distribution, (ii) a Gamma dis-

tribution (which ensure positivity of the coefficients), and (iii) a Bernoulli distribution with

binary preference levels. Fig 3 shows examples of all three models.

The Gaussian model is parameterized in terms of the mean µc = 〈∑α ciα〉 and variance

σ2
c = var (

∑
α ciα) of the total consumption capacity, and a parameter q that controls how

specialized each family is for its preferred resource class. In the generalist family, the mean

and variance of ciα are the same for all resources, and are given by

〈cgen
iα 〉 =

µc
M

(21)

〈(δcgen
iα )2〉 =

σ2
c

M
. (22)

where δcgen
iα = cgen

iα − 〈cgen
iα 〉 is the deviation from the mean value. The specialist families

sample from a distribution with a larger mean for resources in their preferred class:

〈cAiα〉 =


µc
M

[
1 + M−MA

MA
q
]
, if α ∈ A

µc
M

(1− q), otherwise,
(23)

where MA is the number of resources in class A and A is the set of resource indices in class

A. The variances are likewise larger for the preferred class:

〈(δcAiα)2〉 =


σ2
c

M

[
1 + M−MA

MA
q
]
, if α ∈ A

σ2
c

M
(1− q), otherwise.

(24)

This makes it possible to construct pure specialist families with no off-target consumption

by setting q = 1. Note that this is different from the original version of this model in [8],

where all the variances were chosen to be identical.

We also consider the case where consumer preferences are drawn from Gamma distribu-

tions, which guarantee that all coefficients are positive. Since the Gamma distribution only

has two parameters, it is fully determined once the mean and variance are specified. We
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parameterize the mean and variance for this model in the same way as for the Gaussian

model.

In the binary model, there are only two possible values for each ciα: a low level c0
M

and a

high level c0
M

+ c1. The elements of cAiα are given by

cAiα =
c0

M
+ c1Xiα, (25)

where Xiα is a binary random variable that equals 1 with probability

pAiα =


µc
Mc1

[
1 + M−MA

MA
q
]
, if α ∈ A

µc
Mc1

(1− q), otherwise
(26)

for the specialist families, and

pgen
iα =

µc
Mc1

(27)

for the generalists. Note that the variance in each family is 〈(δcAiα)2〉 = c2
1p
A
iα(1−pAiα) ∼ c2

1p
A
iα

for large M , which depends on q in the same way as the variances in the Gaussian case.

Metabolic matrix Dαβ

We choose the metabolic matrix Dαβ according to a three-tiered secretion model illus-

trated in Fig 3. The first tier is a preferred class of ‘waste’ products, such as carboyxlic

acids for fermentative and respiro-fermentative bacteria, with Mw members. The second

tier contains byproducts of the same class as the input resource (when the input resource is

not in the preferred byproduct class). For example, this could be attributed to the partial

oxidation of sugars into sugar alcohols, or the antiporter behavior of various amino acid

transporters. The third tier includes everything else. We encode this structure in Dαβ by

sampling each column of the matrix from a Dirichlet distribution with concentration param-

eters dαβ that depend on the byproduct tier, so that on average a fraction fw of the secreted

flux goes to the first tier, while a fraction fs goes to the second tier, and the rest goes to the
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third:

dαβ =



d0
fw
Mw

, ifA(α) = w and A(β) 6= w

d0
fs

MA(β)
, ifA(α) = A(β) and A(β) 6= w

d0
1−fs−fw

M−MA(β)−Mw
, ifA(α) 6= A(β) and A(α), A(β) 6= w

d0
fw+fs
Mw

, ifA(α) = w and A(β) = w

d0
1−fw−fs
M−Mw

, ifA(α) 6= w and A(β) = w.

(28)

The final two lines handle the case when the ‘waste’ type is being consumed, and the first

and second tiers thus contain the same set of resources. The parameter d0 controls the

sparsity of the reaction network, ranging from a dense network with all-to-all connection

when d0 → 0, to maximal sparsity with each input resource having just one randomly

chosen output resource as d0 → 1.

Propagation in time

Once an instance of the Community class is initialized, its state can be propagated forward

in time using the Propagate method, as illustrated in Fig 1. Since the dynamical equations

and parameters were supplied at initialization, the only required argument for this method

is the time T . When the method is invoked, the state and parameters for each well are

sent to different CPU’s (as many as are available) using the Pool.map function from the

multiprocessing module in the Python standard library. Then the dynamical equations

are integrated using the odeint function from SciPy, which calls the LSODA solver from

the FORTRAN library ODEPACK [40, 41].

If the initial population size of a species equals zero, but its per-capita growth rate

is positive under current environmental conditions, the limited precision of any numerical

solver will enable that species to spontaneously invade the community. To prevent this from

happening, the Propagate method comes with an option compress_species, which reduces

the dimensionality of the state and parameters before invoking the solver by removing all

references to extinct species. This option is set to True by default, but must be turned off for

user-defined dynamics that use new parameter arrays not present in the MicroCRM. This is

because the compression step requires deciding whether each dimension of each parameter

array corresponds to species or resources. This information is built in to the package for
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FIG. 4. Propagating and passaging. (a) System state after successive applications of the

Propagate method to a plate with n = 100 wells. Each column of a panel represents a different

well, and the height of each colored patch represents the abundance of a different consumer species

or resource type. Each panel is normalized so that the sample with the largest total biomass

or total resource concentration spans the entire panel. (b) Modeling spatial structure with a

stepping stone model. At each time step, each cell in a given well can migrate to a neighboring

well with probability m. Reproduced from [42]. (c) Implementation of stepping stone model in a

96-well plate. Every day, the communities are passaged to fresh wells, with a fraction f0(1 −m)

transferred to the corresponding position in the new set of wells, and f0m divided equally between

the two nearest neighbors, where f0 is an overall dilution factor. Reproduced from [42]. (d)

Transfer matrix f implementing the stepping stone protocol. (e) Simulated range expansion using

successive applications of the Propagate and Passage methods, with the transfer matrix from

the previous panel. See the Jupyter notebook Tutorial.ipynb included with the package for all

simulation details.

the MicroCRM, so c, D,w, g, m, l, R0, tau and r are all automatically handled correctly

according to their definitions in that context.
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Passaging to fresh plates

The second method that can be invoked on a Community instance is Passage, which

simulates pipetting of cultures to fresh wells in a typical 96-well plate experiment. The only

required argument for Passage is a two-dimensional array f, whose elements fµν specify

the fraction of the contents of well ν from the old plate that should be transfered to well

µ on the new plate. The method also contains an option refresh_resource, set to True

by default, that supplies the new plate with the same initial resource concentrations as the

original one. This is the most direct way of simulating actual 96-well plate experiments,

where the resources are resupplied in discrete intervals at each passaging step.

This method facilitates simulation of various kinds of mixing or coalescence experiments,

as well as metacommunity dynamics of weakly coupled local communities. Fig 4 illustrates

how this feature can capture coarse-grained spatial structure, following an experimental

protocol developed for mimicking range expansions in 96-well plates [42].

In addition, passaging helps to stabilize long simulations, and simulate demographic noise,

by setting all cell counts to integer values. The species abundances Ni are converted to

absolute cell counts through a conversion factor scale, which is by default set to 106. Then

the new integer cell counts are generated by multinomial sampling based on the average

number of cells
∑

ν fµν(Ni)ν of species i transferred to well µ. One source of numerical

instability in ecological models is the exponentially small values reached by population sizes

headed for extinction. The multinomial sampling ensures that these population sizes are

fixed at zero when they become significantly smaller than 1 in absolute units. Thus a simple

way of avoiding instability in a continuously resupplied chemostat model is to periodically

call Passage with f set to the identity matrix and refresh_resource set to False.

Since the most common experiments involve many iterations of identical Passage and

Propagate steps, the package also includes a method RunExperiment(f,T,np), which ap-

plies a given transfer matrix f and propagation time T for np iterations, saving a snapshot

of the plate after each propagation step.
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Finding equilibrium points with convex optimization and expectation maximization

In many experimental contexts, one is interested in the stable community structure

reached after a long period of constant environmental conditions. Numerical integration

of the dynamical equations is an inefficient way to identify these equilibrium points. When

the species diversity and number of resource types are high, the equations typically contain

complex transient dynamics spanning a large range of time scales. This transient behavior

is often irrelevant to the identification of the final equilibrium point, and wastes significant

computation time. For a typical implementation of the MicroCRM with Type-I response

and a 1, 280× 1, 280 binary consumer matrix, integrating to the steady state takes about 37

hours on standard hardware. The computation time appears to scale asymptotically as M4

when the number of species S and the number of resources M are changed simultaneously,

as shown in Fig. 6.

To address this problem, we have developed an algorithm for identifying equilibrium

points directly, without integration through the transient. This algorithm is implemented

in Community Simulator as the method SteadyState. Under the same test conditions,

this algorithm converges between one and two orders of magnitude faster than numerical

integration, facilitating rapid hypothesis evaluation and iteration in large ecosystems. See

Fig. 6 for validation of the accuracy of the algorithm under typical modeling assumptions.

The algorithm exploits a recently discovered duality between consumer resource models

and constrained optimization over resource space, summarized in Fig. 5 [38, 39]. The surfaces

of vanishing growth rate dNi/dt = 0 in this space define an allowed region for non-invadable

equilibrium points, where all growth rates are either zero or negative. The equilibrium point

R∗ minimizes a measure d(R0,R) of the dissimilarity between the current environmental

state R and the equilibrium point R0 of the intrinsic supply dynamics hα(Rα). For externally

supplied resources, d is a weighted KL divergence, while for self-renewing resources, it is a

weighted Euclidean distance. For models with Type-I response, the non-invadable region is

convex, allowing for efficient solution of the optimization problem using the Python package

CVXOPT [43].

The duality relies on a symmetry between the effect of the environment on the consumer

and of the consumer on the environment, which the MicroCRM violates by allowing the gen-

eration of metabolic byproducts. It was shown, however, that the duality can be recovered
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t −R∗
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{Minimize environmental perturbation}
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FIG. 5. An expectation-maximization algorithm for finding noninvadable stationary

states. (a) Noninvadable states by definition can only exist in the region Ω of resource space

where the growth rate dNi/dt of each species i is zero or negative. Within this region, a recently

discovered duality implies that the stationary state R∗ locally minimizes the dissimilarity d(R0,R)

with respect to the fixed point R0 of the intrinsic environmental dynamics [38, 39]. (b) Metabolic

byproducts move the relevant unperturbed state from R0 (gray ‘x’) to R̃0(R) (black ‘x’), which

is itself a function of the current environmental conditions. Contour lines represent d(R̃0(R∗),R),

and dotted lines are two trajectories of the population dynamics starting from the unperturbed

environmental state with two different sets of initial consumer population sizes. See main text

and Appendix for model details and parameters. (c) Pseudocode for self-consistently computing

R∗ and R̃0(R∗), which is identical to standard expectation-maximization algorithms employed for

problems with latent variables in machine learning.

if the supply point R0 is replaced by an effective supply point R̃(R∗), which accounts for

the extra resources produced by the consumer species when the system is at its equilibrium

state R∗ [39].

To find R∗, one must now self-consistently solve the following equation:

R∗ = argmin
R

d(R̃0(R∗),R). (29)

The structure of this problem is mathematically equivalent to a standard task in machine

learning, where one attempts to infer model parameters from partial data [44]. These pa-

rameters θ specify a multivariate probability distribution p(y|θ) for a set of measurements

y. A standard way of estimating the parameters is to compute the values θ̂ that maximize

the likelihood of the data: θ̂ = argmax
θ

p(y|θ). But if one actually has access to only a

subset x of the measurement results, then the values z of the remaining quantities must also
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(a) (b)

FIG. 6. Performance of EM algorithm versus ODE integration. The steady state of the

MicroCRM was computed by direct ODE integration and with our new EM algorithm for a range of

values of the number of resource types M . The initial number of species S was set equal to M , and

a single resource type was externally supplied with intrinsic fixed point R0
1 = 10M (R0

i = 0 for all

i > 1). The absolute error tolerance of the integrator was set to 10−4, and the convergence tolerance

for the EM algorithm was set to δ = 10−7. See ‘scripts’ folder in the ‘EM-algorithm’ branch of

the GitHub repository for the rest of the parameters, which were held fixed for all simulations.

( a) Total computation time for 10 realizations. (b) Final root-mean-square per-capita deviation

of the growth rate from zero (‘Error’) over all surviving species in all 10 samples.

be estimated in order to perform this optimization. Ideally, one would use the statistical

model with the optimal parameters θ̂ for this task. In the simplest case, where the value of

z can be inferred with certainty given θ and x, this results in the following self-consistency

equation:

θ̂ = argmax
θ

p(x, z(θ̂)|θ). (30)

This is identical in form to Eq. 29, where the parameters θ become the resource concentra-

tions R and the estimated latent variables z become the effective unperturbed state R̃0. The

observed data x become the model parameters, which are implicitly used in the calculation

of d and R̃. We can think of the environmental perturbation d as a statistical potential or

“free energy” − ln p, which is minimized when p is maximized.

Eq. 30 can be solved by a standard iterative approach called Expectation Maximization

[44]. At each iteration t, the latent variable zt is computed from the previous estimate θ̂t−1

of θ̂, and then the new parameter estimate θ̂t is found by maximizing p(x, zt|θ). Fig. 5(c)
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contains pseudocode for this algorithm as applied to our ecological problem, which was also

reported previously in [39].

This algorithm fails to converge at low resource supply levels, because both arguments

must be positive when d is a weighted KL divergence, but R̃0
t can temporarily become

negative under these conditions. To solve this issue, we replaced update step for R̃0
t

by

R̃0
t ← αR̃0(R∗t ) + (1− α)R̃0

t−1

where α is a constant rate. This is equivalent to adding a “momentum” term to the update

equation [44].

Default values of the tolerance δ and learning rate α are set to 10−7 and 0.5, respectively,

which give robust convergence for typical simulation scenarios. They can be adjusted as

optional arguments of the SteadyState method.

Note that this algorithm is only implemented for Type-I response with externally supplied

resources and no metabolic regulation. Self-renewing resources are unphysical in a metabolic

crossfeeding model, while metabolic regulation and saturating responses can give rise to non-

convex non-invadable regions, where CVXPY cannot be employed. For these more complex

models, the package directly numerically integrates the corresponding ordinary differential

equations using standard ODE solvers discussed above.

DISCUSSION

We hope that the Community Simulator will become a valuable resource for the microbial

ecology community. It has already played an important role in our own work. The package

initially facilitated the systematic evaluation of the robustness of results to different modeling

assumptions in a study of the effects of total energy influx on community structure, diversity

and function [39]. More recently, the convex optimization approach has made it possible

to perform more than 100,000 independent simulations in a reinterpretation and extension

of Robert May’s classic work on diversity and stability [45, 46]. We have also employed

the package to reproduce large-scale patterns in microbial biodiversity from the Human

Microbiome Project, Earth Microbiome Project, and similar surveys. Finally, the random

matrix approach implemented in this package is amenable to analytic calculation in the

limit of large numbers of species and resources, using cavity methods from the physics
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of disordered systems [47]. It is our belief that the Community Simulator will facilitate

the further development of these mathematical techniques through efficient testing of new

conjectures.

One interesting future direction to explore is integrating the Community Simulator with

methods for directly analyzing Microbiome sequencing data. For example, there has been

a renewed interest in statistical techniques such as Approximate Bayesian Computation

(ABC) for understanding ecology and evolution [48]. In ABC, the need to exactly calculate

complicated likelihood functions – often a prerequisite for many statistical techniques – is

replaced with the calculation of summary statistics and numerical simulations. For this

reason, the Community Simulator Python package is ideally suited to form the backbone

of new inference techniques for trying to related ecological processes to observed abundance

patterns in microbial ecosystems.
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