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Abstract

The advent of medical imaging and automatic image analysis will bring the full quantitative assessment of lesions
and tumor burden at every clinical examination within reach. This opens avenues for the development and testing of
functional disease models, as well as their use in the clinical practice for personalized medicine. In this paper, we
introduce a Bayesian statistical framework, based on mixed-effects models, to quantitatively test and learn functional
disease models at different scales, on population longitudinal data. We also derive an effective mathematical model
for the crossover between initially detected lesions and tumor dissemination. We finally propose to leverage this
descriptive disease progression model into model-aware biomarkers for personalized risk-assessment, taking all
available examinations and relevant covariates into account. As a use case, we study Multiple Myeloma, a disseminated
plasma cell cancer, in which proper diagnostics is essential, to differentiate frequent precursor state without end-organ
damage from the rapidly developing disease requiring therapy. After learning the best biological models for local lesion
growth and global tumor burden evolution on clinical data, and computing corresponding population priors, we use
individual model parameters as biomarkers, and can study them systematically for correlation with external covariates,
such as sex or location of the lesion. On our cohort of 63 patients with smoldering Multiple Myeloma, we show that
they perform substantially better than other radiological criteria, to predict progression into symptomatic Multiple
Myeloma. Our study paves the way for modeling disease progression patterns for Multiple Myeloma, but also for other
metastatic and disseminated tumor growth processes, and for analyzing large longitudinal image data sets acquired
in oncological imaging. Our study deserves being validated on larger cohorts to establish its role in clinical decision
making.

1. Introduction

Medical imaging of tumorous lesions is a means of
choice for staging and monitoring patients with cancer.
It enables early detection through population screening,

∗Corresponding author, marie.piraud@tum.de

permits to evaluate the growth of precursor lesions and
assess qualitative and quantitative changes after clinical
intervention (Fass, 2008). Although most imaging modali-
ties allow for a volumetric quantification of lesions, current
guidelines, like the Response Evaluation Criteria in Solid
Tumors (RECIST) (Eisenhauer et al., 2009), are based on
the manual assessment of the diametric size of a few le-
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sions, for the sake of time, even if a large field of view
image scan would have the potential to offer more and
better information. To alleviate this problem, many tools
for the automatic detection and segmentation of lesions
are now becoming available for example in Positron Emis-
sion Tomography (Xu et al., 2017; Bieth et al., 2018) but
also in Magnetic Resonance Imaging (MRI) (Kamnitsas
et al., 2016) and Computer Tomography (CT) (Christ et al.,
2016), due in particular to the advent of deep learning tech-
niques in the medical imaging realm. They will bring the
full quantitive assessment of individual tumorous lesions
and whole tumor burden, at each medical examination,
within reach. This raises the question of how to properly
analyze these data, both focusing on static and dynamical
properties.

Numerous theoretical models of cancer evolution have
been developed, grasping some of the complexity of the
biological processes at stake, both for general aspects or
more specific to a particular pathology. Descriptive models
have in particular been derived for single lesions (Simeoni
et al., 2004; Ayati et al., 2010; Herman et al., 2011; Ger-
lee, 2013; Benzekry et al., 2014; Murphy et al., 2016) as
well as for the distribution of disseminated tumors (Iwata
et al., 2000; Baratchart et al., 2015). But those are in gen-
eral not well tested, due to the lack of observations at the
right scale, or to the rarity of fully quantitative popula-
tion datasets. Furthermore, the models describe different
modes of disease propagation, and the crossover between
different scales and regimes has been very little studied. In
this paper, we establish a novel scale-transient approach,
fusing local and global tumor growth models, at the onset
of disease dissemination. We show how one can deal with
different local growth patterns of lesions and analyze their
dissemination in order to model the tumor load. We embed
those descriptive models into a probabilistic framework,
to deal with inference from observed data, and use that
framework to compare different model options and there-
fore learn the local and global tumor growth models. We
will finally show that this functional-statistical modeling
approach can be used to extract model-based biomarkers,
e.g. for patient stratification, that could ultimately serve as
an objective tool for clinical evaluation.

We consider Multiple Myeloma (MM) as a case study,
see box ‘Driving clinical problem’. MM displays a rapid
development once the disease is manifest, but in the pre-
cursor phases of the disease, without myeloma related

organ or tissue impairment, tumorous lesions and the tu-
mor load are monitored via whole-body imaging over long
time spans (Dimopoulos et al., 2015), alongside with sero-
logical and histological factors. It is therefore a typical
example where proper image-based diagnosis and risk-
assessment in the precursor states are crucial for making
treatment decision (Ghobrial and Landgren, 2014; Ahn
et al., 2015; van de Donk et al., 2016). This is posing hard
problems in terms of analysis, and makes it a reference
problem for empirical tumor growth modeling in dissem-
inated diseases (Ghobrial, 2012). Our study will permit
to validate key assumptions for the biological models at
the organ and tissue level (Ayati et al., 2010) and for the
dissemination process (Iwata et al., 2000), for the first time
in a human population study.

2. Methods

Data-based tumor growth and disease progression mod-
eling can be difficult, because available data are typically
very limited in time. In particular, understanding free le-
sion growth, a cornerstone, is impeded by the occurrence
of therapy, which usually begins soon after diagnosis. Ani-
mal models can help in that respect (Mehrara and Forssell-
aronsson, 2014; Baratchart et al., 2015). But even with
rather long time series, distinguishing between different
growth models by individual curve fitting is very deli-
cate (Murphy et al., 2016). Here we rely on microscopic
biological models and translate them into clinically rele-
vant observables: local lesion volumes and the tumor load.
We propose a method to analyze longitudinal image time
series of a population, in a hierarchical Bayesian frame-
work (Ribba et al., 2012), both for lesion growth and tumor
dissemination process. We also introduce covariates in a
mixed-effect model (Lavielle, 2015), enabling statistical
relevance tests of possible influential factors on the growth
process.

2.1. Modeling approach
We analyze longitudinal data of a cohort of patients, as

illustrated in Fig 1. At each observation time point, rele-
vant features of all detectable lesions have been extracted,
and used to compute the patient’s tumor load, as detailed in
Sec. 2.2. Local lesions were also re-identified in follow-up
scans, in order to gather a database of lesion growth time
series.
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The functional-statistical modeling approach is schemat-
ically presented in Fig 2. In Sec. 2.3, we introduce our
multi-scale mathematical modeling of disease progression.
We first propose several biophysical models for the local
lesion growth [V(t|r, v0), blue boxes in Fig 2], correspond-
ing to different scenarii at the microscopic scale (Simeoni
et al., 2004; Ayati et al., 2010; Gerlee, 2013; Benzekry
et al., 2014; Murphy et al., 2016). We also propose an
effective model for the crossover from the single-lesion
regime to the dissemination regime [Vtot(t|R,V0), green box
in Fig 2], which builds on the local lesion growth model,
as well as on the IKS model, a model for the dissemination
process (Iwata et al., 2000).

Another necessary component to compare models with
measurements, is the probabilistic model, which encodes
how observations are generated from the predictive model
[yellow boxes in Fig 2]. As detailed in ‘Supplementary
Method 1’, we rely on mixed-effects models (Lavielle,
2015), that are adapted to population-based tumor growth
modeling (Bastogne et al., 2010; Ribba et al., 2012; Har-
tung et al., 2014; Baratchart et al., 2015). We use a pro-
portional error model, to account for a measurement error
that increases with the size of the lesion, see Eq. (1) of
‘Supplementary Method 1’. We also use log-normal popu-
lation priors for the model parameters, θ ∈ {r, v0} for the
lesion growth and θ ∈ {R,V0} for the tumor load, which we
parametrize as log(θ j) = log(θpop) + η j with η j ∼ N(0, ωθ),
such that θpop is the median value. Population priors per-
mit to increase the statistical confidence on shorter time
series, and to incorporate covariates into the predictive
model. In the case of categorical covariates, we define a
θpop,k for each group k, and ξk = log(θpop,k) − log(θpop,0),
where k = 0 is the reference group, as in Eq. (3) of ‘Sup-
plementary Method 1’.

The confrontation of each mathematical model with
the corresponding dataset, and the estimation of the un-
known model parameters, is made via the Stochastic Ap-
proximation of Expectation Maximization (SAEM) algo-
rithm (Delyon et al., 1999; Kuhn and Lavielle, 2004; Sam-
son et al., 2007) [gray arrows in Fig 2] introduced in ‘Sup-
plementary Method 2’. It learns the population parameters
from the data. To quantify the accuracy of the predictive
model on the observed data, we compute the log-likelihood
(LLH). Model comparison is then performed thanks to the
Bayesian and Akaike Information Criteria (BIC and AIC)
and assessed with bootstrapping. Covariates are further

tested with the Wald and Likelihood ratio (LR) tests, see
‘Supplementary Method 3’. From the selected model and
corresponding population priors, the individual parameters
of a time series can be computed with a Maximum a poste-
riori (MAP) estimator [black arrow in Fig 2], cf ‘Supple-
mentary Method 2’. We propose to use them as biomarkers,
and for SMM patients, we explicitly use the tumor load
growth rate. Its power for risk-stratification is assessed
with Receiver Operating Characteristic curves (Zweig and
Campbell, 1993), Kaplan-Meier survival plots (Kaplan
and Meier, 1958) and log-rank tests (Peto et al., 1977), as
presented in ‘Supplementary Method 4’.

2.2. Tumor imaging data
Our datasets result from the analysis of a large cohort of

63 SMM patients from the University Hospital of Heidel-
berg and the German Cancer Research Center, that both
follow the same protocol for imaging and treatment deci-
sions. We focus on the MRI modalities, which directly
image focal lesions and the tumor load and is used to detect
rapid progression to MM (Ghobrial and Landgren, 2014),
whereas lytic bone lesions only appear at a later stage on
CT scans. Our work follows a study for volumetry based
biomarkers (Wennmann et al., 2018) in whole-body MRI
scans. We use the same cohort and additionally analyzed
all non whole-body scans that were available for those
patients. In total, over 370 MR volumes were analyzed,
with a median time interval of 1.1 years between scans,
and a median patient follow-up time of 5.9 years. All
detectable focal lesions were manually volumetrized, as il-
lustrated on a T1-weighted sequence in Fig. 3, and tracked
in time, as sketched in Fig 1, before the occurrence of the
CRAB criteria or any systemic therapy. The manual vol-
umetrization was performed by a research assistant with
medical training, under the supervision of an experienced
musculoskeletal radiology resident. When both T1- and
T2-weighted sequences were available, the latter with fat
suppression, the volume of the lesion was quantified in
both modalities and averaged as in Ref. (Wennmann et al.,
2018). This resulted in the detection of 180 lesions in 33
patients, each being observed at 2.19 different time points
on average (8 time points for the longest observation).

Focal lesions series. Among those focal lesions, 49 were
detected at 3 or more different points in time. 36 of this
subset originate from 11 male patients (M), and the 13
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others from 8 female patients (F). The location of the
tumor was also recorded and classified into 13 different
anatomical regions (see ‘Supplementary Table 1’). Those
49 series constitute the first dataset, with 3.96 time points
per series on average, which is used for lesion growth
modeling.

Tumor load series. We also derived the total tumor load
for each patient, by summing up the volume of all detected
lesions at each time point. In rare cases, focal lesions
became too diffuse to be properly segmented or were tar-
geted by a local therapy, like radiotherapy. As the tumor
load is not expected to decrease in the absence of ther-
apy, if a tumor had already been detected but could not
be segmented, we filled-in the data with its last measured
volume. Selecting the series with 3 or more time points,
we constitute a dataset of 21 patient series (13M and 8F)
bearing 1 to 16 tumors (median of 4) with an average of
4.48 time points per series and a median total observation
time of 3.7 years. The analysis of those tumor load series
is used for tumor load modeling.

Progression to MM. For the 26 patients with focal lesion
measurements on at least two different time points, we
create a tumor load dataset, as above, that we complement
with the date of transition to the progressive state of MM,
as defined by the CRAB-criteria from the IMWG (Inter-
national Myeloma Working Group, 2003), the standard
procedure until 2014. If the transition did not occur, the
data is censored with the date of the last information about
the patient. We use this dataset for a risk-analysis of SMM
patients with focal lesions, comparing different radiologi-
cal biomarkers.

2.3. Mathematical parametric models

The central elements of our modeling approach are de-
scriptive functional models. We base our analysis on ex-
isting microscopic models of tumor and lesion growth
in general (Simeoni et al., 2004; Gerlee, 2013; Benzekry
et al., 2014; Murphy et al., 2016), as well as specific mod-
els for MM (Ayati et al., 2010; Herman et al., 2011), and
for the dissemination process (Iwata et al., 2000). We aim
at deriving tractable models of disseminative disease in a
joint framework, and our approach is summarized in box
‘Descriptive tumor load model’.

2.3.1. Lesion growth models
The lowest scale of our modeling approach is given

by individual tumors, also called focal lesions in MM.
In this paper we assume that all lesions follow the same
parametric growth model, i.e. that the involved biological
processes are the same. This is reasonable as the lesions
are all developing in the bone marrow. But different le-
sions potentially have different parameters, e.g. initial
volume and growth rate, that may depend, for example, on
the local environment of the lesion (Kumar et al., 2017) as
well as its subclonal mutation status (Rasche et al., 2017).
We introduce below several general tumor growth models,
which are biologically founded (Simeoni et al., 2004; Ger-
lee, 2013; Benzekry et al., 2014; Murphy et al., 2016), as
well as a more specific one for the microscopic biology of
MM focal lesions (Ayati et al., 2010), which we interpret
at the macroscopic scale of interest. All models are later
confronted with observations.

Linear growth. We first introduce the linear growth model,
in which the volume of a lesion can be written as:

V(t) = v0 (r t + 1) , (1)

where v0 is the initial volume and r the growth rate, e.g.
in month−1. This simple model corresponds to a constant
rate growth, and holds at the later stage of tumor growth in
some cases (Simeoni et al., 2004; Benzekry et al., 2014;
Murphy et al., 2016).

Cubic growth. A cubic growth corresponds to a rate of
change of the volume proportional to the surface area of
the tumor itself, in a spherical approximation, dV

dt ∝ V2/3,
and reads

V(t) = v0 (r t + 1)3 . (2)

This assumes that only the surface of the tumor is actively
participating in the growth, which is justified in the case of
a solid tumor eroding its environment at its border (Herman
et al., 2011; Gerlee, 2013; Murphy et al., 2016), represent-
ing a plausible model for lytic bone lesions.

Exponential growth. Another important tumor growth
model is the exponential growth,

V(t) = v0 exp(r t) . (3)
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It corresponds to a volumic rate of change proportional
to the volume, dV

dt = rV(t). It therefore assumes that all
cells of the tumor participate in its growth in the same
manner, and typically holds in the early stages of tumor
development (Gerlee, 2013; Benzekry et al., 2014; Murphy
et al., 2016).

Diffusive growth. Ayati et al., have derived in Ref. (Ayati
et al., 2010) a mathematical model for bone remodeling
and lesion growth in MM. Their modeling is based on a
diffusion equation with a Gompertz-like saturation term
for the local tumor density. In ‘Supplementary Method 5’,
we show that it can be reduced to a two-parameters growth
model for the tumor volume,

V(t) = v0(r t + 1)3/2 , (4)

which corresponds to a half-cubic growth law, lying be-
tween the linear and cubic growth. Such a growth law can
also be justified by advanced considerations on the frac-
tal nature of the tumor vasculature (Herman et al., 2011;
Benzekry et al., 2014).

Those models, Eqs. (1)-(4), comprise two free parame-
ters each, v0 and r, which have a clear biophysical inter-
pretation. There exists more involved models describing
individual tumor growth with three parameters, for exam-
ple the Gompertz and the van Bertalanffy models (Ger-
lee, 2013). Even more complex, are the models from
Refs.(Herman et al., 2011) and (Ribba et al., 2012), which
consider metabolic processes in details, but result in a high
number of free parameters. For the sake of simplicity,
and to avoid overfitting, given the limited length of the
available time series, we restricted ourselves to the above
models with two free parameters.

2.3.2. Tumor load models
The tumor load is obtained by summing up the volumes

of all tumors detected in one patient, Vtot =
∑

lesions ` V`.
We now consider how the local lesion growth models in-
troduced above translate to this global scale. Let us dis-
tinguish between the volume of the putative initial lesion,
Vinit, which is the largest detected lesion at first observa-
tion time, and the volume of all subsequent disseminated
lesions, Vdiss:

Vtot(t) = Vinit(t) + Vdiss(t) . (5)

Note that we single out the first detectable lesion for mod-
eling purposes, but this does not necessarily mean that it is
the strict origin of the cancer. In the following, we simplify
MM complex biology and assume that the cancer propa-
gates from this leading cluster of cancerous cells, which
grows and emits malignant cells, at a rate which depends
on its size. Those in turn have a chance to settle in other
locations, and give rise to further cell-emitting growing
clusters, gradually making up the disseminated burden.

Early regime: initial lesion dominated. In the early stages
of the disease, the initial cluster of malignant cells is the
most prominent one and the disseminated burden Vdiss can
be neglected, such that

Vtot(t) ∼ Vinit(t) . (6)

In that case, the tumor load growth model is the same as
the lesion growth model in Eqs. (1)-(4).

Later regime: dissemination dominated. The Iwata-
Kawasaki- Shigesada (IKS) mathematical model (Iwata
et al., 2000) for metastasis formation seems particularly
well suited to describe the evolution of MM. It assumes
that growing tumors emit malignant cells at a rate propor-
tional to the fraction of tumors cells in contact with blood
vessels w(v) = mvα, where v is the volume of the tumor
and α a fractal dimension related to the vascularization
of the tumor. Similarly as above, α would be equal to 1
if the whole tumor volume can emit malignant cells, and
α = 2/3 if only the surface of a round-shaped tumor can
emit malignant cells. Emitted malignant cells can develop
into new lesions far away from the original site, which will
grow following the same tumor model, and emit further
malignant cells. Note that the model assumes that each le-
sion grows with the same parameters, which is not strictly
the case, as they depend on the lesion’s microenvironment
and its subclonal mutation status status (Kumar et al., 2017;
Rasche et al., 2017). However, as extra-medullar dissemi-
nation is rare in SMM, their growth conditions should be
more homogeneous than in multi-organ metastasis.

In ‘Supplementary Method 6’ we present the IKS model
and its solutions, as derived in Refs. (Iwata et al., 2000;
Struckmeier, 2003; Evys et al., 2009). For the different
tumor growth models described above, the number of dis-
seminated lesions Ndiss(t) and the disseminated burden
Vdiss(t) display an exponential asymptotic behaviour. Such
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that, as soon as the volume of the initial lesion becomes
negligeable, we expect

Vtot(t) ∼ Vdiss(t) ∼t→∞ V0eRt . (7)

Crossover regime: effective modeling. In the crossover
regime, neither of the terms of Eq. (5) is negligeable. In the
cases where Vinit(t) follows a power-law, [Eqs. (1), (2) and
(4)], Vtot(t) will effectively appear as a power-law with a
higher power than Vinit(t), due to the exponential behaviour
of Vdiss(t). We therefore propose the effective model

Vtot(t) = V0 (Rt + 1)B . (8)

3. Results

In this section, we present the multi-scale modeling of
disease progression in the SMM state. We compare several
biologically-founded models for the growth of individual
lesions, as well as for the tumor load, by confronting them
with the datasets. We also carry out an analysis of the
influence of the patient’s sex and lesion location on the
growth rate. We finally propose to consider the extracted
parameters as model-based biomarkers, and we assess their
predictive power for the transition to MM.

3.1. Modeling local lesion growth

Model: no covariate M/F cov. for r
Linear 2951.89 (0.12) 2952.99 (0.13)
Cubic 2954.65 (0.17) 2956.99 (0.19)
Exponential 2974.77 (0.22) 2976.85 (0.21)
Diffusive 2950.33 (0.17) 2952.96 (0.17)

Table 1: BIC values for different lesion growth models, in two mixed-
effects models: without covariate (first column) and with the patient’s
sex as a covariate for r (second column).

Lesion growth model. Using the focal lesions dataset,
we estimate the population parameters of a mixed-effect
model without covariate, as presented in Sec. 2.1 with the
different growth models introduced above, using SAEM.
We compare a linear, a cubic, an exponential and a diffu-
sive growth model [Eqs. (1)-(4)]. From the first column
of Table 1, which presents the resulting BIC values for
each model, we conclude that the diffusive growth model

is selected, as it has the lowest BIC. It gives slightly bet-
ter results than the linear and the cubic models (mean
BIC separated by 5 resp. 13 confidence intervals), and
much better than the exponential growth model. The
learned population parameters for the diffusive model are
rpop = 3.2(0.9) × 10−2 month−1 and v0,pop = 393(72) mm3,
associated with the error parameter b = 0.24(0.02), where
the number between brackets is the standard deviation
estimated from the Fisher information matrix. The pre-
dictions from the diffusive model are shown in Fig 4 for
two patients, and further lesion time series are presented
in ‘Supplementary Figure 1’.

To assess the robustness and the generalizability of our
model selection, we use a bootstrapping approach to resam-
ple our dataset, and compare the two best models selected
above. Due to the difficulty of resampling observations
when doing regression (Davison and Hinkley, 2013), we
use case bootstrapping to preserve inter-series variabil-
ity (Thai et al., 2014). We therefore create bootstrapped
sample datasets by resampling individual tumor time se-
ries. Following Ref. (de Graft Acquah, 2012), we then
repeat the model selection procedure on the two best per-
forming models for each sample, and report the selection
rate of each model (i.e. how often a model is ranked first
according to the BIC):

Samples: Diffusive (no cov.) Linear (no cov.)
full dataset 1 0
10 samples 0.75 0.25
20 samples 0.775 0.225

The diffusive model is therefore selected for more than 3/4
of the bootstrapped samples, which confirms its selection.

Subgroup analysis. The statistical model introduced
above allows for the introduction of covariates, as in Eq. (3)
of ‘Supplementary Method 1’. We introduce the sex of the
patient (M/F) as a categorical covariate for the parameter
r. For each of the four growth models, SAEM converges
to prior distributions that correspond to a lower median
growth rates r for women than men (i.e. rpop,F < rpop,M).
With the diffusive model, we find ξM = 0.664(0.59) with
ξF = 0, which corresponds to a factor 1.9 for the ratio of the
median rates. We also find that the LLH is improved com-
pared to the no covariate case. However, the improvement
is not large enough to compensate for the introduction of
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the extra model-parameter ξM, and the BIC does not im-
prove, as can be seen from the second column of Table 1.
In ‘Supplementary Table 2’, we report the AIC values for
the same experiments. Using this less stringent criterion
for model selection would select the M/F covariate split
for some of the growth models. To lift this ambiguity, we
proceed to the Wald and LR tests

Model: Wald (p-value) LR (p-value)
Linear 7 (0.089) 7 (0.0949)
Diffusive 7 (0.26) 7 (0.2617)

Using the threshold p = 0.05 on the p-values, both the
Wald and the LR tests reject the covariate model. Thus
using the sex as a covariate does not bring a statistically
significant improvement for inferring the lesion growth
rates.

Our model also permits to introduce multiclass cate-
gorical covariates, such as the lesion location categories
presented in ‘Supplementary Table 1’. In ‘Supplementary
Table 3’, we illustrate this and test for the significance
of this covariate. We find an indication that focal lesions
might grow slower in long bones (humerus, femur and
tibia), but the limited amount of data does not permit to
draw clear conclusions.

3.2. Modeling global tumor load

Model: no covariate M/F cov. for R
Diffusive B = 3/2 1757.92 (0.13) 1755.52 (0.12)
IKS (exponential) 1745.42 (0.16) 1742.09 (0.12)
Power-law B = 3 1744.15 (0.14) 1741.40 (0.23)
Power-law B = 6.5 1741.30 (0.18) 1738.19 (0.11)

Table 2: BIC values for different tumor load growth models, in two mixed-
effect models: without covariate (first column) and with the patient’s sex
as a covariate for R (second column).

Tumor load effective model. Using SAEM, we estimate
the population parameters of a mixed-effect model with-
out covariate, as presented in Sec. 2.1, with the different
growth models introduced above [Eqs. (6)-(8)]. We test the
diffusive model, which was selected for the lesion growth
in the previous section, and should therefore hold at short
times, together with the IKS model, which should hold

when the dissemination process dominates and different
power-laws for the crossover regime, with B > 3/2.

The resulting BIC values are presented in the first col-
umn of Table 2. We find that the IKS model performs
much better than the diffusive model (mean BIC separated
by 40 confidence intervals), confirming that the dissemina-
tion process plays a great role in the tumor load evolution.
However, power-law models with B ≥ 3, lead to further
improved values of the BIC (mean BIC improved by 8
confidence intervals for B = 6.5), indicating that we are in
the crossover regime. In ‘Supplementary Table 4’, we sys-
tematically look for the most appropriate effective model,
and compare BIC values for different values of B. This
selects B = 6.5 as the best effective model for this dataset.

Subgroup analysis. We now use the sex of the patient as
a categorical covariate for the growth rate R, as in Eq. (3)
of ‘Supplementary Method 1’. The introduction of this ad-
ditional population parameter permits to improve the BIC
for each parametric model (see second column of Table 2),
indicating that the patient’s sex is relevant for modeling
the evolution of the tumor load. We further proceed to the
Wald and LR tests for the three best performing models

Model: Wald (p-value) LR (p-value)
IKS (exponential) 3 (0.008) 3 (0.0116)
Power-law B = 3 3 (0.012) 3 (0.0160)
Power-law B = 6.5 3 (0.0074) 3 (0.0131)

The Wald and the LR test p-values are all smaller than
5%, such that the covariate model is selected in all cases.
The sex is thus a relevant covariate for the tumor load
growth rate R, and in each model, we find Rpop,F < Rpop,M.
For the power-law with B = 6.5, we report Rpop,F =

2.9(1.3) × 10−3 month−1 and ξM = 1.47(0.55), such that
the median of the male population, Rpop,M = Rpop,F × eξM =

12.6(5.7) × 10−3 month−1, is four times as high. Those
prior distributions are presented with the individual infered
values in box ‘Tumor load modeling in SMM’. We also
find V0,pop = 1350(500) mm3, associated with the error
parameter b = 0.281(0.027). The predictions from this
model are shown in Fig. 5 for two patients, together with
the initial lesion. Predictions for the whole cohort are dis-
played in ‘Supplementary Figure 2’. Further introducing
the sex as a covariate for the initial volume V0 or for ωR,
does not improve the BIC further, and gives negative Wald
and LR tests, consistently over all growth models.
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To assess the robustness of our model selection, we
repeat the bootstrapping strategy from above and create
bootstrapped samples, by resampling the tumor load time
series. We repeat the model selection procedure, for each
sample, and report the selection rate of each model, for the
three best-candidates and using M/F as a covariate:

Samples:
Power-law

B = 3
Power-law

B = 6.5
IKS

(exponential)
full dataset 0 1 0
10 samples 0.25 0.65 0.1
20 samples 0.225 0.575 0.2

We see that the power-law model with B = 6.5 is selected
in more than 50% of the cases, confirming our effective
modeling approach for the crossover regime.

Dissemination. As a further check, we carried out in ‘Sup-
plementary Table 5’ a similar model selection analysis,
applied to Ndiss(t), the number of disseminated lesions.
The IKS model directly models the distribution of dissemi-
nated lesions and we indeed find a clear selection of the
exponential model for Ndiss(t), thus nicely complementing
our analysis of the crossover regime. The introduction
of the sex of the patient is, however, not conclusive: the
model predicts a high ratio of the median of the rates in the
two populations, but the Wald and LR tests do not permit
to assert that those distributions are undistinguishable on
this cohort.

3.3. Novel model-based biomarkers

Based on this careful mathematical modeling of the
disease evolution, that is agnostic of the survival chances
of the patient, we propose to use patients parameters as
model-aware biomarkers for clinical use. We show below
that the tumor load growth rate R provides a relevant risk-
stratification for MM. We then compare it with other non-
model-based radiological biomarkers, and find indications
that R is more relevant than the other criteria.

Transition to MM. As described in Sec. 2.2, we select the
patients with at least two focal lesion measurements (26 pa-
tients), and include the information on progression to MM.
For those patients, we compute the tumor load growth rate
R, using the best performing model and priors from above

i.e. power-law with B = 6.5 and M/F as a covariate, and
the resulting prediction curves are shown together with the
measured data in Fig 6. Using a threshold Rth, we then use
R to stratify patients into a low-risk (R < Rth) and a high-
risk (R ≥ Rth) group to progress to MM. For each possible
value of Rth, we then compute the True Positive Rate (TPR)
for the detection of patient who progress to MM during
the observation time, and the False Positive Rate (FPR),
measuring the false alarms, and report them in the Re-
ceiver Operating Characteristic (ROC) curve (Zweig and
Campbell, 1993), red line in Fig 7(a). Using the median of
all observed growth rates R as the stratification threshold,
we obtain a TPR of 0.75 and a FPR of 0.1, as indicated by
the red star. Considering the time of progression to MM,
we show in Fig 7(b) the associated Kaplan-Meier (KM)
curve (Kaplan and Meier, 1958). We compute the signifi-
cance of the split with the log-rank test (Peto et al., 1977)
and find a p-value of 0.00071, showing that the group
compositions are statistically different. In ‘Supplementary
Figure 3’, further searching for the best threshold in this
population, we find that Rth = 7.7 × 10−3 month−1 gives a
better p-value of 0.00003. We observe, however, that this
precise threshold value might be overfitted to this dataset,
and that all splits Rth ∈ [1.7 × 10−3, 4 × 10−2] month−1

consistently give p-values lower than 0.05. R is therefore a
very relevant biomarker to predict the transition to MM.

Comparison with other radiological criteria. We now
compare this stratification with other MRI-based biomark-
ers. Previous studies (Hillengass et al., 2010; Merz et al.,
2014; Brandelik et al., 2018; Wennmann et al., 2018) pro-
posed radiological biomarkers for the risk stratification
of SMM patients. Ref. (Brandelik et al., 2018) showed
that volumetric measurements of tumors leads to a bet-
ter assessment of the tumor load than diametric size, and
Refs. (Merz et al., 2014; Wennmann et al., 2018) proposed
to take into account the evolution between two measure-
ments, by e.g. considering the rate of change of the tumor
load (Wennmann et al., 2018). Here we therefore con-
sider the following non-model-based biomarkers, which,
for a fair comparison with the proposed biomarker R, are
also volumetric and retrospectively based on all available
measurements:

i - the largest observed focal lesions number, Nmax =

maxti Ntot(ti),
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Criteria Median value AUC p-value RR
i Nmax 4 lesions 0.75 0.2038 2.39
ii Vmax 8816 mm3 0.81 0.0116 5.28
iii ∆V/∆t|max 5.2 × 10−1 mm3 month−1 0.80 0.0130 5.13
iv R 1.0 × 10−2 month−1 0.94 0.0007 9.58

Table 3: Area Under the Curve (AUC) values of the ROC curves from Fig. 7(a), KM log-rank test p-values and Relative Risk (RR) for progression to
MM, associated to the stratification into low- and high-risk groups when using the median observed value of different radiological criteria. Details on
those tests for evaluating the discriminative power of biomarkers are given in ‘Supplementary Method 4’.

ii - the largest observed tumor load, Vmax = maxti Vtot(ti),

iii - the largest rate of change of the tumor load be-
tween two consecutive measurements, ∆V

∆t

∣∣∣
max =

maxti
∆Vtot(ti)

∆t = maxti
Vtot(ti+1)−Vtot(ti)

ti+1−ti
.

Figure 7(a) displays the ROC curves for those criteria,
and we see that they provide a fair stratification as well,
although not as good as the one provided by R. In Table 3,
we report the corresponding Area Under the Curve (AUC)
values, which reaches 0.94 for R. We also report the log-
rank test p-values associated to the KM survival curves
obtained using each of those criteria and taking the median
observed value as stratification threshold, together with the
associated Relative Risk (RR) (Stare and Maucort-Boulch,
2016). Criteria ii and iii are both providing a statistically
relevant classification, with comparable p-values ∼ 0.01
and comparable RRs ∼ 5.1−5.3. In row iv, we see that the
growth rates R – i.e. the model-based approach – provide
the most relevant split, with a significantly lower p-value =

0.0007 and the best risk-stratification RR = 9.6, compared
to other radiological criteria.

4. Discussion

Diffusive growth of local lesions. In Sec. 3.1, we ana-
lyzed disease progression at the local scale. We found
that the growth of focal lesions in MM is best modeled
by a diffusive growth, thereby confirming a basic hypoth-
esis of Ayati et al. (Ayati et al., 2010) and is in line with
phenomenological observations, in particular that lesions
sometimes become too diffuse to be properly volumetrized.
This could be further analyzed by the study of the evolu-
tion of lesion borders, possibly in multiple imaging modal-
ities (Konukoglu et al., 2010; Lipkova et al., 2018) With
respect to other tested models, we found that cubic growth,

which would correspond to a solid tumor with a rate of
growth proportional to the tumor surface, performed better
than exponential growth. This does not come as a surprise,
as it would correspond to a volumetric growth, implying
that the newly generated mass is ’pushing’ its surround-
ing, which may be rather unlikely to happen in a bone
environment.

Effective model for the crossover to global dissemination.
In Sec. 3.2, we considered the global propagation of the
disease on the patient’s scale, through the analysis of the
tumor load. We showed that the diffusive growth para-
metric model does not translate to the tumor load as such.
Here, a model taking the dissemination process into ac-
count, like the IKS model using an exponential term (Iwata
et al., 2000), is likely more relevant in our SMM cohort,
where most of the monitored patients show a progress
in the number of lesions observed. Still, the tumor load
model that aligns best with our observations is a power-
law with B = 6.5. As summarized in box ‘Descriptive
tumor load model’, we interpret this as a crossover from
an initial diffusive regime (power-law with power 3/2)
to an exponential dissemination regime. This is best ef-
fectively modeled by a power-law model with a higher
power B > 3/2. Further tests on the number of dissemi-
nated lesions confirm that the basic assumptions of the IKS
model (Iwata et al., 2000), i.e. exponential dissemination,
apply in this cohort, see ‘Supplementary Table 5’.

In the original paper, the IKS model was validated on
one single patient with a metastatic hepatocellular carci-
noma (Iwata et al., 2000) and has been further tested on one
other patient with liver cancer and one with lung cancer
in Ref. (Mehrara et al., 2013). A few population studies
have been carried out on mice populations with ortho-
toptic cell implantation (Hartung et al., 2014; Baratchart
et al., 2015), the observed dissemination dynamics also
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showing an overall good agreement with the IKS model,
although Ref. (Baratchart et al., 2015) incorporated inter-
action between lesions growing in close vicinity to match
the experimental conditions. The model has also been used
to fit cross-sectional data on the risk of metastatic evolu-
tion in breast cancer (Barbolosi et al., 2011), using ad hoc
parameters. We are, however, not aware of any previous
longitudinal human population study of the IKS model,
as well as an application in the context of MM. Such that
our study, with 21 patients in the crossover regime and 13
series for the number of disseminated lesions (in ‘Supple-
mentary Table 5’), is unprecedented.

Role of the sex and other covariates. Our hierarchical sta-
tistical model is evaluated on the whole population jointly,
and permits to systematically test for the impact of covari-
ates on model parameters. We found that the patient’s sex
is a relevant covariate to predict the tumor load growth
rate, with a median rate four times as high in the male
population as in the female one. The role of the patient’s
sex in the incidence of MM is known (Raab et al., 2009;
Roellig et al., 2015; Kumar et al., 2017), but no indication
of its role in the disease evolution in the presence of focal
lesions has been previously reported. However, it has been
shown that activated estrogene receptors inhibit cell sur-
vival pathways and support cell apoptosis in MM (Sola and
Renoir, 2007), which provides one possible explanation.
This effect deserves to be further investigated on a larger
cohort. The sex covariate alone is, however, a less relevant
covariate for the local lesion growth modeling, indicating
that other hidden covariates might play a role and could be
added in the model as well. The location of focal lesions
could be a candidate, and in ‘Supplementary Table 3’ we
have found indication that long bones tend to have lower
growth rates than other bones. Our sample size is, however,
too small to carry out multi-covariate tests with enough
statistical strength. The role of the sex covariate in tumor
load modeling in our cohort could also be explained by a
difference in the dissemination rate, but more statistical
strength would be needed to conclude here as well.

Growth rates as model-based biomarkers. In Sec. 3.3,
we identified the tumor load growth rate as viable image
biomarker that is integrating information along the full
observational sequence. We have shown that it provides
a pertinent risk-stratification of SMM patients to develop

end-organ damage and therefore transition to MM. This
biomarker provides a better risk-stratification than other
MRI-based biomarkers that have been suggested in the
literature, even when few observations are present, gaining
strength from the population priors. The biomarker gets re-
fined over time when the number of observations increases,
as it takes all available measurements into account, thereby
confirming the unprecedented potential of model-based
biomarkers for better and more personalized treatment de-
cisions. This contrasts with current biomarkers, which
consider the most recent examination only (International
Myeloma Working Group, 2003; Rajkumar et al., 2014;
Rajkumar, 2016). The model used for the biomarkers was
derived on part of the population on which the biomarker
is tested. This however does not lead to overfitting, as the
model and the model selection process do not know about
survival and progression to MM. We do acknowledge the
limited size of the patient’s cohort and the retrospective
nature of the study, and for full clinical relevance, the
proposed model-based radiological biomarkers should be
combined with the remainder of MM biomarkers in future
studies.

5. Conclusion

In this paper, we propose a descriptive functional-
statistical framework to carry out multi-scale modeling
of cancer evolution, from single lesion growth to global
dissemination. Applying it to MM, we tested different
mathematical models, which permits to confirm basic as-
sumptions on disease progression (Ayati et al., 2010; Iwata
et al., 2000), learned population priors, as well as tested the
influence of various covariates, on clinical data. Our study
establishes a new benchmark for the study of metastatic
and disseminated diseases in general, and for understand-
ing the progression of MM in particular. We also pro-
pose to use the inferred model parameters as biomarkers,
and showed the relevance of the growth rate to predict
the transition to overt MM in our dataset. We were able
to show that biomarkers based on biologically-grounded,
but tractable, models could be more significant than phe-
nomenological ones, which offers new and unprecedented
directions.

Model-based biomarkers could be used in the clinical
routine, as inference of the individual parameters is very
fast. Indeed, for our study, it takes 0.15s per patient on
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average with the Monolix software (Monolix). This com-
putation could therefore be implemented after computer-
aided segmentation of focal lesions in MRI for example.
The use of whole-body imaging and whole-body lesion
analysis is hindered by a lack of means to postprocess and
analyze these added information. Our model now offers
such means and, fosters the impact of high capacity data
analytics in clinical decision making.

Future work should integrate other image-based and
non-image-based, static and dynamical, features in a ra-
diomics approach. One could in particular investigate re-
lated models for other observed parameters for MM, such
as laboratory parameters that are known to correlate with
the progression of the disease (Mai et al., 2015; Wennmann
et al., 2018), genetic markers or cell-surface proteins mea-
sured with flow-cytometry (Flores-Montero et al., 2017).
Next-generation sequencing, which is becoming available
and permits to distinguish different clonal phenotypes of
plasma cells (Takamatsu, 2017) would enable to analyse
separately the role of different mutations in disease pro-
gression.

Acknowledgments

The authors would like to thank the Deutsche
Forschungsgemeinschaft (DFG; WE 2709/3-1 and ME
3511/3-1) and the Austrian Science Fund (FWF; I2714-
B31) for research funding. U.K. acknowledges founding
from the Deutsche Forschungsgemeinschaft (grants SFB
824 and SFB 1335) and from the Deutsche Krebshilfe
(grants 111305 and 111944).

References

Ahn, I.E., Mailankody, S., Korde, N., Landgren, O., 2015.
Dilemmas in treating smoldering multiple myeloma.
Journal of Clinical Oncology 33, 115–123. doi:10.
1200/JCO.2014.56.4351.

Ayati, B.P., Edwards, C.M., Webb, G.F., Wikswo,
J.P., 2010. A mathematical model of bone re-
modeling dynamics for normal bone cell popula-
tions and myeloma bone disease. Biology direct
5, 28. URL: http://www.biology-direct.com/

content/5/1/28, doi:10.1186/1745-6150-5-28.

Baratchart, E., Benzekry, S., Bikfalvi, A., Colin,
T., 2015. Computational Modelling of Metas-
tasis Development in Renal Cell Carcinoma.
PLoS Computational Biology , 1–23URL: http:

//dx.doi.org/10.1371/journal.pcbi.1004626,
doi:10.1371/journal.pcbi.1004626.

Barbolosi, D., Verga, F., You, B., Benabdallah, A., Hu-
bert, F., Mercier, C., Ciccolini, J., Faivre, C., 2011.
Model-based assessment of the risk of metastatic
spreading in patients with localized cancer. Oncolo-
gie 13, 528–533. URL: http://link.springer.

com/10.1007/s10269-011-2028-6, doi:10.1007/
s10269-011-2028-6.

Bastogne, T., Samson, A., Vallois, P., Wantz-Mézières,
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Driving clinical problem

Multiple Myeloma is a cancer of plasma cells that
is still incurable, with a median survival of 6 years
at the time of diagnosis (Raab et al., 2009; Roellig
et al., 2015; Kumar et al., 2017). It is a systemic
cancer, which can be considered as a model for the
cancer dissemination process (Ghobrial, 2012; Gho-
brial and Landgren, 2014). Its development starts
with the development and infiltration of clonal
plasma cells within and into the bone marrow,
homing into a niche and creating a micrometas-
tasis. This initial cluster of malignant cells, can
grow into a focal lesion and emit malignant cells
that can in turn colonize other niches in the bone
marrow. In overt MM, the malignancy causes end-
organ damage, such as lytic bone lesions due to the
perturbation of the bone remodeling cycle (Ayati
et al., 2010).
The International Myeloma Working Group
(IMWG) distinguishes two precursor stages, Mon-
oclonal Gammopathy of Undertermined Signifi-
cance (MGUS) and Smoldering Multiple Myeloma
(SMM), preceding symptomatic Multiple Myeloma.
This advanced stage is defined by the occurrence
of end organ damage, following the CRAB criteria:
‘C’ for calcium elevation, ‘R’ for renal insuffi-
ciency, ‘A’ for anemia and ‘B’ for bone damage,
corresponding to the appearance of bone lytic le-
sions on skeletal radiography or CT (International
Myeloma Working Group, 2003). In 2014, further
malignancy criteria were added to the definition of
symptomatic MM, such as the presence of more
than one focal lesions in MRI (Rajkumar et al.,
2014; Rajkumar, 2016).
The incidence of MGUS is high in the population
(1% of persons over 50 (International Myeloma
Working Group, 2003)) but only 15% of patients
with MGUS will progress to MM (Kumar et al.,
2017). Risk-stratification of patients in the early
stages is therefore of primordial importance, to
make treatment decisions (Ghobrial and Landgren,
2014; Ahn et al., 2015; van de Donk et al., 2016).

Local lesion growth

time

Global tumor load 
 progression

time

Population observations

Individual observations

Lesions

Figure 1: Overview of the approach: Observations and dataset.
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Figure 2: Overview of the modeling approach.
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Figure 3: Three-dimensional segmentation and volumetrization of all
visible hypo-intense focal lesions in a T1-weighted MRI sagittal MRI
sequence.

Descriptive tumor load model

The tumor load is made of the putative initial le-
sion and the disseminated burden:

Vtot(t) = Vinit(t) + Vdiss(t)

Vinit(t) ∈ {linear, cubic, diff., exp.} and Vdiss(t) ∼
exp.
We propose an effective model in the observation
range:

Vtot(t) ∼ V0 (Rt + 1)B
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a)

b)

Figure 4: Local lesion growth time series (dots) with the predictions
(solid lines) and the corresponding 95% error margin (shaded area), for
(a) a female and (b) a male patient. The predictions are based on the
SAEM results using the diffusive parametric growth model, Eq. (4), and
no covariate.

0 10 20 30 40

t (months)

0

0.5

1

1.5

2

2.5

3

V
in

it
, 
V

to
t (

m
m

3
)

10
4

 T
r
a
n
s
it

io
n
 t

o
 M

M

patient #24, sex F

R=0.0119

a)

0 5 10 15 20

t (months)

0

1

2

3

4

5

6

7

V
in

it
, 

V
to

t (
m

m
3
)

10
4

 T
r
a

n
s
it

io
n

 t
o

 M
M

patient #33, sex M

R=0.0634

b)

Figure 5: Tumor load Vtot(t) (blue dots) and initial lesion Vinit(t) (red
dots) time series with the predictions (solid lines) and the corresponding
95% error margin (dashed lines), for (a) a female and (b) a male patient,
who both transition to MM. The predictions for the tumor load are based
on the SAEM results using the power-law parametric model, Eq. (8) with
B = 6.5, and a covariate model for the sex M/F.
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Tumor load modeling in SMM

We find the effective model

Vtot(t) = V0 (Rt + 1)6.5 ,

with the following median population values:
• Growth rates for males and females

Rpop,M = 12.6(5.7) × 10−3 month−1

Rpop,F = 2.9(1.3) × 10−3 month−1

• Initial volumes: V0,pop = 1350(500) mm3

Figure 6: Rescaled tumor load series for patients with at least two time
points, together with their fit using the best tumor load model and priors.
The proposed risk groups are defined by the dashed separatrix.
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Figure 7: (a) ROC curve for different biomarkers, the red line corresponds
to R. Stars indicate median splits, that are used in (a), (c) and Table 3. (b)
Kaplan-Meier curve obtained for splitting this population into 2 groups
using the median rate Rth = 1 × 10−2 month−1.
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