Abstract
Natural scenes are inherently structured, with meaningful objects appearing in predictable locations. Human vision is tuned to this structure: When scene structure is purposefully jumbled, perception is strongly impaired. Here, we tested how such perceptual effects are reflected in neural sensitivity to scene structure. During separate fMRI and EEG experiments, participants passively viewed scenes whose spatial structure (i.e., the position of scene parts) and categorical structure (i.e., the content of scene parts) could be intact or jumbled. Using multivariate decoding, we show that spatial (but not categorical) scene structure profoundly impacts on cortical processing: Scene-selective responses in occipital and parahippocampal cortices (fMRI) and after 255ms (EEG) accurately differentiated between spatially intact and jumbled scenes. Importantly, this differentiation was more pronounced for upright than for inverted scenes, indicating genuine sensitivity to spatial structure rather than sensitivity to low-level attributes. This sensitivity to spatial structure may support efficient natural scene understanding.
Footnotes
We thank Sina Schwarze for help in EEG data collection and manuscript preparation.
D.K. and R.M.C. are supported by Deutsche Forschungsgemeinschaft (DFG) grants (KA4683/2-1, CI241/1-1, CI241/3-1). R.M.C. is supported by a European Research Council Starting Grant (ERC-2018-StG 803370).