
   1  

Data-driven models reveal the organization of diverse cognitive 
functions in the brain 
 
Tomoya Nakai1,2, Shinji Nishimoto1,2,3* 
1.   Center for Information and Neural Networks (CiNet), NICT, Osaka, Japan 
2.   Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan 
3.   Graduate School of Medicine, Osaka University, Osaka, Japan 
 
*Corresponding author 
Address: 1-4 Yamadaoka, Suita City, Osaka 565-0871 Japan 
Phone number: +81-80-9098-3254 
Email: nishimoto@nict.go.jp 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2019. ; https://doi.org/10.1101/614081doi: bioRxiv preprint 

https://doi.org/10.1101/614081
http://creativecommons.org/licenses/by-nc-nd/4.0/


   2  

Abstract 
Our daily life is realized by the complex orchestrations of diverse brain functions including 
perception, decision, and action. One of the central issues in cognitive neuroscience is to reveal 
the complete representations underlying such diverse functions. Recent studies have revealed 
representations of natural perceptual experiences using encoding models1–5. However, there has 
been little attempt to build a quantitative model describing the cortical organization of multiple 
active, cognitive processes. Here, we measured brain activity using functional MRI while subjects 
performed over 100 cognitive tasks, and examined cortical representations with two voxel-wise 
encoding models6. A sparse task-type encoding model revealed a hierarchical organization of 
cognitive tasks, their representation in cognitive space, and their mapping onto the cortex. A 
cognitive factor encoding model utilizing continuous intermediate features by using metadata-
based inferences7 predicted brain activation patterns for more than 80 % of the cerebral cortex 
and decoded more than 95 % of tasks, even under novel task conditions. This study demonstrates 
the usability of quantitative models of natural cognitive processes and provides a framework for 
the comprehensive cortical organization of human cognition. 
 
Introduction 
The cortical basis of daily cognitive processes has been studied using a voxel-wise encoding and 
decoding model approach6 where multivariate regression analysis is used to determine how brain 
activity in each voxel is modelled by target features, such as visual features1,2, object or scene 
categories3,8,9, sound features5,10,11, and linguistic information4,12,13. Some studies have further 
described the cortical (e.g. semantic) representational space that elucidates important categorical 
dimensions in the brain (e.g. mobile vs. nonmobile, animate vs. inanimate) and how such 
representations are mapped onto the cortex3,14. However, all previous attempts have used brain 
activity recorded during passive listening or viewing tasks. No study has so far been able to clarify 
the comprehensive cortical representations underlying active cognitive processes. 

Here, we combined data-driven encoding modelling and metadata-based reverse 
inference to reveal such representations. Six subjects underwent functional MRI experiments to 
measure whole-brain blood-oxygen-level-dependent (BOLD) responses during 103 naturalistic 
tasks (Fig. 1a), including as many cognitive varieties as possible and ranging from simple visual 
detection to complex cognitive tasks such as memorization, language comprehension, and 
calculation (see Supp. Info for the task list and descriptions). This experimental setup aimed to 
extend the previous efforts at describing the semantic space3,14 by estimating the cognitive space 
that depicts the relative relationships among diverse cognitive processes. Each task was thus 
regarded as a sample taken from the entire cognitive space. To obtain a comprehensive 
representation of the cognitive space, we modelled voxel-wise responses using regularized linear 
regression6 based on two sets of features (Fig. 1b-c). First, using a task-type encoding model 
where tasks were represented as binary labels (Fig. 1b), we evaluated representational 
relationships among cognitive tasks across the cerebral cortex. Second, to further examine the 
generalizability of the modelling approach to any cognitive tasks, we constructed an additional 
cognitive factor encoding model, where each task was transformed into the 715-dimensional 
continuous feature space using metadata references7 (Fig. 1c). This allowed us to use a latent 
feature space for each task6,15 and thereby predict and decode activity for novel tasks that were 
not used during model training (Fig. 1d). 
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Figure 1. Schematic diagrams of task setting and analysis methods. a, Subjects performed 103 naturalistic tasks 
while brain activity was measured using functional MRI. b, Schematic of the encoding model fitting using the task-
type model. c, Schematic of the cognitive factor model. The cognitive transform function was calculated based on 
correlation coefficients between the weight maps of each task and 715 metadata references7, and task-type features 
were transformed into cognitive factor features. d, Schematic of the encoding model fitting using the cognitive factor 
model for novel tasks. Target tasks were not included in the model training datasets (in red). The trained encoder 
provided a prediction of brain activity (in blue). 
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Results 
Hierarchical organization of cognitive tasks 
To examine how the cortical representations of over 100 tasks are related, we calculated a 
representational similarity matrix (RSM) using the estimated weights of the task-type model, 
concatenated across subjects (Fig. 2a). The RSM suggests that tasks form six clusters based on 
their representational patterns in the cerebral cortex. Task clusters were then visualized by the 
dendrogram obtained using hierarchical clustering analysis (HCA). The largest clusters contained 
tasks based on sensory modalities, such as visual (‘AnimalPhoto’, ‘MapSymbol’), auditory 
(‘RateNoisy’, ‘EmotionVoice’), and motor (‘PressLeft’, ‘EyeBlink’) tasks. Some clusters 
contained higher cognitive components, such as language (‘WordMeaning’, ‘RatePoem’), 
introspection (‘ImagineFuture’, ‘RecallPast’), and memory (‘MemoryLetter’, ‘RecallTaskEasy’). 
Tasks were further represented in sub-clusters of specific cognitive properties (Fig. 2b-d). For 
example, in the visual cluster, tasks with food pictures (‘RateDeliciousPic’, ‘DecideFood’) were 
closely located, whereas tasks with negative pictures (‘RateDisgustPic’, ‘RatePainfulPic’) formed 
a separate cluster, memory (Fig. 2b) tasks involving calculations (‘CalcEasy’, ‘CalcHard’) were 
close while those involving simple digit matching (‘MemoryDigit’, ‘MatchDigit’) formed a 
separate cluster, and in the introspection cluster (Fig. 2d), tasks involving imagining future and 
recalling past events were more closely located than tasks involving the imagination of places or 
faces. These results indicate hierarchically organized brain representations of cognitive tasks. 
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Figure 2. Hierarchical organization of over 100 tasks. a, Representational similarity matrix of the 103 tasks, 
reordered according to the hierarchical cluster analysis (HCA) using the task-type model weights (concatenated across 
subjects). The dendrogram shown at the top panel represents the results of the HCA. The six largest clusters were 
named after the included task types. b-d, Example task sub-clusters and their dendrograms in the visual (b), memory 
(c), and introspection clusters (d). 
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Spatial visualization of cognitive space and its cortical mapping 
The HCA reveals the relative relationships between task samples taken from the entire cognitive 
space. To further determine the structure and cortical organization of the cognitive space, we 
performed principal component analysis (PCA) with the estimated weight matrix of the task-type 
model, concatenated across subjects (Fig. 3 and Supplementary Fig. 1). Figure 3a shows the 
distributions of the tasks according to their PC coefficients, where task position is determined by 
the first and second PC and task colour by the first, second, and third PC (corresponding to red, 
green, and blue, respectively; see Fig. 3b inset). Tasks with similar representations were assigned 
similar colours and were closely located in the 2-dimensional space (Fig. 3a). Tasks involving 
movie processing are clustered on the left at the top. Tasks dedicated to image and auditory 
processing are located more centrally on both the left and right side, gradually shifting towards 
complex cognitive tasks involving language, memory, logic, and calculation at the bottom of the 
distribution. To further visualize cortical distributions of cognitive space representations, the 
voxel-wise PCs were projected to the cortical sheet of each subject (Fig. 3b and Supplementary 
Fig. 2, 3), using the same RGB colour scheme as in Figure 3a. For example, the occipital areas 
are mostly green, showing that voxels in these areas represent movie and image-related tasks (Fig. 
3a). The adjacent temporal parietal junction (TPJ) tends to be coloured in red, corresponding to 
internal cognitive tasks involving memory and calculations. Frontal areas show intricate patterns, 
including language-related representations (blue) in the left lateral regions. This topographical 
organization was consistent across subjects (Supplementary Fig. 3), indicating that our analyses 
provide a broad representation of the cognitive space in the human cerebral cortex. 
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Figure 3. Cognitive space and cortical mapping. a, Colour and spatial visualization of the cognitive space. Colours 
indicate the loadings of the top three principal components (PC1 = auditory (red); PC2 = audiovisual (green); PC3 = 
language (blue)) of the task-type model weights (concatenated across subjects), mapped onto the 2-dimensional 
cognitive space based on the loadings of PC1 and PC2. For better visibility, only 24 tasks are labelled (in white). b, 
Cortical map of the cognitive space shown on the inflated and flattened cortical sheets of subject ID01 (Supplementary 
Fig. 3 shows all other subjects); PC1-PC3 are shown in red, green, and blue, respectively. 
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Prediction and decoding of brain activity with the cognitive factor model 
Although the task-type model can reveal distinctive relationships among tasks, it is too sparse to 
encompass latent and continuous features and is not generalizable to novel tasks. To tackle these 
issues, we transformed over 100 tasks into the 715-dimensional latent feature space using the 
Neurosynth database7 and constructed a voxel-wise cognitive factor model (Fig. 1c). To examine 
the generalizability of this model under novel task conditions (i.e. on a task that was not used to 
train the model), we trained the cognitive factor model with four fifths of the tasks (82 or 83 tasks), 
and predicted brain activity for the 20 or 21 remaining tasks (Fig. 1d). The model achieved 
significant prediction accuracy throughout the entire cortex (Fig. 4a and Supplementary Fig. 4; 
mean ± SD, 0.322 ± 0.042; 86.2 ± 5.1 % of voxels were significant; p < 0.05, FDR-corrected). To 
show that this cannot merely be explained by sensorimotor effects, we performed an additional 
encoding model analysis that regressed out visual, auditory, and motor components (see Methods). 
This analysis again revealed significant prediction accuracy across the cerebral cortex (mean ± 
SD, 0.285 ± 0.035; 82.4 ± 4.9 %; Supplementary Fig. 5), indicating that the generalizability of 
the cognitive factor-model stems from higher-order (i.e. not sensory) cognitive components.  

To further test the generalizability and task specificity of cognitive factors, we 
performed a task decoding analysis with novel tasks. We trained a decoding model with four fifths 
of the tasks and decoded the cognitive factors related to the remaining target tasks at each time 
point. We tested whether the decoded features were more similar to the target task than to each of 
the remaining 102 tasks in the cognitive space. We obtained significant decoding accuracy for 
novel tasks (mean ± SD, 96.5 ± 0.9 %; 98.9 ± 0.4 % of tasks were significant; sign tests, p < 0.05, 
FDR-corrected; Fig. 4b, Supplementary Fig. 6), indicating that brain activity patterns were task-
specific, and that the portion of the human cognitive space our model covers is sufficient to also 
decode novel tasks. 
 

Figure 4 Predicting and decoding of novel tasks using the cognitive factor model. a, Cortical map of model 
prediction accuracy on inflated and flattened cortical sheets of subject ID01 (Supplementary Fig. 4 shows other 
subjects). Mean prediction accuracy across the cortex was 0.323 (87.2 % of voxels significant; p < 0.05, FDR-corrected; 
dashed line indicates threshold). The minimum correlation coefficient for the significance criterion was 0.0846. b, 
Histogram of task decoding accuracies for all tasks for subject ID01 (Supplementary Fig. 6 shows other subjects). The 
red line indicates chance-level accuracy (50 %). Blue bars show significantly decoded tasks (mean decoding accuracy, 
97.5 %; 99.0 % of tasks significant; sign test, p < 0.05, FDR-corrected). 
 
Discussion 
Most previous studies using encoding or decoding model approaches have used passive viewing 
or listening tasks2–4,13, and standard neuroimaging studies using active tasks usually focus on a 
few conditions and examine effects of pre-assumed cognitive factors by comparing induced brain 
activations. While the latter strategy is a powerful way to test the plausibility of certain hypotheses, 
outcomes from such specialized studies could so far not elucidate the representational 
relationships among diverse tasks and cannot be generalized to naturalistic tasks where cognitive 
factors cannot be inferred in advance. Here, using over 100 naturalistic tasks that broadly sample 
the human cognitive space, the prediction accuracy we find for our model throughout the entire 
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cortex is in clear contrast to the results of previous studies. While, for example, our earlier 
modelling attempt using a passive viewing paradigm3 provided significant predictions for 22 % 
of cortical voxels, largely restricted to the occipital and temporal areas, the cognitive factor model 
in the current study achieved significant predictions for about 86 % of all cortical voxels. The 
metadata-based inference technique used here further demonstrates the contribution of cognitive 
factors to these tasks7 and the applicability of such a data-driven approach to elucidate the brain 
organization of diverse cognitive functions.  

 While several clusters and components found in the current study have also 
been identified in previous multi-task studies16–21, we reveal a gradual shift in cognitive space, 
from perceptual to more complex cognitive tasks, that can only be elucidated by using our broad 
sampling paradigm. The subject-wise modeling also allowed the examination of the 
generalizability of the cognitive space, of task hierarchy, and of the representations in each 
subject’s brain to novel tasks; the latter may form the quantitative basis for elucidating personal 
traits in cognitive functions22. The fact that our model achieved unprecedentedly wide 
generalizability regarding cortical coverage and multi-task decodability indicates that our task 
battery represents a sufficient number of samples to probe a major proportion of the human 
cognitive space. Although the tasks used here do not cover the entire domain of human perception 
and cognition (e.g. they do not cover odour perception, speech, social interaction, etc.), our 
method is applicable to any arbitrary task that could be performed in a scanner, and our framework 
provides a powerful step forward to the complete modelling of the representations underlying 
human cognition. 
 
 
Methods  
Subjects 
Six healthy subjects (aged 22-33 years, two females; referred to as ID01-06) with normal vision 
and normal hearing participated in the current experiment. Subjects were all right-handed 
(laterality quotient = 70-100), as assessed using the Edinburgh inventory23. Prior to their 
participation in the study, written informed consent was obtained from all subjects. This 
experiment was approved by the ethics and safety committee of the National Institute of 
Information and Communications Technology in Osaka, Japan.  
 
Stimuli and procedure 
We prepared 103 naturalistic tasks that can be performed without any pre-experimental 
training (see Supplementary Data for the detailed description of each task and 
Supplementary Fig. 7 for the behavioural results). Tasks were selected to include as many 
cognitive domains as possible. Each task had 12 instances; eight instances were used in 
the training runs, and four instances were used in the test runs. Stimuli were presented on 
a projector screen inside the scanner (21.0 × 15.8 degrees of visual angle at 30 Hz). The 
root-mean square of auditory stimuli was normalized. During scanning, subjects wore 
MR-compatible ear tips. The experiment was executed in 3 days, with six runs performed 
on each day. 

The experiment was composed of 18 runs, 12 training runs and six test runs. Each run 
contained 77-83 trials with a duration of 6-12 s per trial. To keep subjects attentive and engaged 
and to ensure all runs had the same length, a 2-s feedback for the preceding task (correct or 
incorrect) was presented 9-13 times per run. In addition to the task, 6 s of imaging without a task 
were inserted at the beginning and at the end of each run; the former was discarded in the analysis. 
The duration of a single run was 556 s. In the training runs, task order was pseudo-randomized, 
as some tasks depend on each other and were therefore presented close to each other in time (e.g. 
the tasks ‘MemoryDigit’ and ‘MatchDigit’). In the test runs, 103 tasks were presented four times 
in the same order across all six runs (but with different instances for each repetition). There was 
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no overlap between instances in the training runs and the test runs. No explanation of tasks was 
given to the subjects prior to the experiment. Subjects only underwent a short training session on 
how to use the buttons to respond.  
 
MRI data acquisition 
The experiment was conducted on a 3.0 T scanner (TIM Trio; Siemens, Erlangen, Germany) 
with a 32-channel head coil. We scanned 72 interleaved axial slices that were 2.0 mm thick, 
without a gap, parallel to the anterior and posterior commissure line, using a T2*-weighted 
gradient-echo multiband echo-planar imaging (MB-EPI) sequence24 [repetition time (TR) = 
2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 62°, field of view (FOV) = 192 × 192 mm2, 
resolution = 2 × 2 mm2, MB factor = 3]. We obtained 275 volumes in each run, each following 
three dummy images. For anatomical reference, high-resolution T1-weighted images of the 
whole brain were also acquired from all subjects with a magnetization-prepared rapid 
acquisition gradient echo sequence (MPRAGE, TR = 2530 ms, TE = 3.26 ms, FA = 9°, FOV = 
256 × 256 mm2, voxel size = 1 × 1 × 1 mm3). 
 
fMRI data preprocessing 
Motion correction in each run was performed using the statistical parametric mapping toolbox 
(SPM8). All volumes were aligned to the first EPI image for each subject. Low-frequency drift 
was removed using a median filter with a 240-s window. The response for each voxel was then 
normalized by subtracting the mean response and scaling it to the unit variance. We used 
FreeSurfer25,26 to identify cortical surfaces from anatomical data, and to register them to the voxels 
of functional data. For each subject, the voxels identified in the cerebral cortex were used in the 
analysis (53,345~∼66,695 voxels per subject). 
 
Task-type model 
The task-type model was composed of one-hot vectors which were assigned 1 or 0 for each time 
bin, indicating whether one of the 103 tasks was performed in that period. The total number of 
task-type model features was thus 103. 
 
Encoding model fitting 
In the encoding model, cortical activation in each voxel was fitted with a set of linear temporal 
filters that capture the slow hemodynamic response and its coupling with brain activity2. The 
feature matrix FE [T × 3N] was modelled by concatenating sets of [T × N] feature matrices with 
three temporal delays of 2, 4, and 6 s (T = # of samples; N = # of features). The cortical response 
RE [T × V] was then modelled by multiplying the feature matrix F with the weight matrix WE [3N 
× V] (V = # of voxels): 
                      R"# = F#W# 
We used an L2-regularized linear regression using the training dataset to obtain the weight matrix 
WE. The training dataset consisted of 3336 samples (6672 s). The optimal regularization 
parameter was assessed using 10-fold cross validation, with the 18 different regularization 
parameters ranging from 100 to 100 × 217. 
 The test dataset consisted of 412 samples (824 s, repeated four times). To reshape the 
data spanning over six test runs into the four times-repeated dataset, we discarded 6 s of the no-
task period at the end of each run, as well as the 2-s feedback periods at the end of the 3rd and 6th 
test runs. Four repetitions of the test dataset were averaged to increase the signal-to-noise ratio. 
Prediction accuracy was calculated using Pearson’s correlation coefficient between predicted 
signal and measured signal in the test dataset. The statistical threshold was set at p < 0.05, and 
corrected for multiple comparisons using the false discovery rate (FDR) procedure27.  
 
Evaluation of optimal regularization parameter 
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To keep the scale of weight values consistent across subjects, we performed a bootstrapping 
procedure to assess the optimal regularization parameter used for the group HCA and PCA4.  For 
each subject, we randomly divided the training dataset into training samples (80 %) and validation 
samples (20 %) and performed model fitting using an L2-regularized linear regression. This 
procedure was repeated 50 times, with the 18 different regularization parameters ranging from 
100 to 100 × 217. The resultant prediction accuracies were averaged across six subjects for each 
parameter. We selected the optimal regularization parameter which provided the highest mean 
prediction accuracy across subjects. This regularization parameter was used for model fitting in 
the group HCA and PCA. 
 
Hierarchical cluster analysis 
For the HCA, we used the weight matrix of the task-type model concatenated across six subjects. 
For each subject, we selected voxels which showed a significant prediction accuracy with p < 
0.05 (with FDR correction, 39,485~56,634 voxels per subject) and averaged three time delays for 
each task. RSM was then obtained by calculating Pearson’s correlation coefficients between mean 
brain activations of all task pairs. A dendrogram of 103 tasks was described using the task 
dissimilarity (1 – correlation coefficient) as a distance metric, with the minimum distance as a 
linkage criterion. Each cluster was labelled based on the included cognitive tasks. To obtain an 
objective interpretation of cluster labelling, we also performed a metadata-based inference of 
cluster-related cognitive factors (Supplementary Fig. 8 and Table 3). 
 
Principal component analysis of task-type weights 
For each subject, we performed a PCA on the weight matrix of the task-type model concatenated 
across six subjects. We selected voxels which showed a significant prediction accuracy with p < 
0.05 (with FDR correction, 39,485~56,634 voxels per subject) and averaged three time delays for 
each task. The number of meaningful PCs was determined based on the prediction accuracy with 
the reconstructed weight matrix (Supplementary Fig. 1). To interpret each PC, we quantified the 
relative contribution of each task using the PCA loadings; tasks with higher PCA loading values 
were regarded to contribute more to the target PC (Supplementary Table 1). Each PC was thus 
labelled based on these cognitive tasks. To obtain an objective interpretation of PC labelling, we 
also performed a metadata-based inference of PC-related cognitive factors (Supplementary Table 
2). PCA loadings were also used to evaluate the representational correspondence between task 
clusters and PCs (Supplementary Fig. 9). To show the structure of the cognitive space, 103 tasks 
were mapped onto the 2-dimensional space using the loadings of PC1 (1st PC) and PC2 as the x- 
and y-axis. The tasks were further coloured in red, green, and blue, based on the relative PCA 
loadings in PC1, PC2, and PC3, respectively. 
 To represent the cortical organization of the cognitive space for each subject, we 
extracted and normalized PCA scores from each subject’s voxels. The resultant cortical map 
indicates the relative contribution of each cortical voxel to the target PC (denoted as PCA score 
map, Supplementary Fig. 2). By combining the PCA score maps of the top three PCs of each 
subject, we visualized how each cortical voxel is represented by cognitive clusters. Each cortical 
voxel was coloured based on the relative PCA scores of PC1, PC2, and PC3, corresponding to the 
colour of the tasks in the 2-dimensional space. 
 
Cognitive factor model 
To obtain a task representation using the continuous features in the human cognitive space, we 
transformed sparse task-type features into the latent cognitive factor feature space (Fig.1c). We 
used Neurosynth (http://neurosynth.org; accessed 26th January 2018) as a metadata reference of 
the past neuroimaging literature7. From the approximately 3,000 terms in the database, we 
manually selected 715 terms that cover the comprehensive cognitive factors while avoiding 
redundancy. Specifically, we removed several plural terms which had their singular counterpart 
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(e.g. ‘concept’ and ‘concepts’) and past tense verbs which had their present counterpart (‘judge’ 
and ‘judged’) in the dataset. We also excluded terms which indicated anatomical regions (e.g. 
‘parietal’) (see Supplementary Data for the complete set of 715 terms). We used the reverse-
inference image of the Neurosynth database for each of the selected terms. The reverse-inference 
image indicates the likelihood of a given term being used in a study if activation is observed at a 
particular voxel. Each reverse-inference image in MNI152 space was registered to the subjects’ 
reference EPI data using FreeSurfer25,26. 

We calculated correlation coefficients between the weight map of each task in the task-
type model and the registered reverse-inference maps. This resulted in the [103 × 715] coefficient 
matrix. We obtained a cognitive transform function (CTF) of each subject, by averaging the 
coefficient matrices of the other five subjects. The CTF is a function that transforms the feature 
values of 103 tasks into the 715-dimensional latent feature space. The feature matrix of the 
cognitive factor model was then obtained by multiplying the CTF with the feature matrix of the 
task-type model. Note that the CTF (and the resultant feature matrix) of each target subject was 
independent of their own data. The total number of cognitive factor model features was 715. 
 
Encoding model fitting with sensorimotor regressors 
To evaluate a possible effect of low-level sensorimotor features on the model predictions, we 
performed an additional encoding model fitting while regressing out sensorimotor components. 
We concatenated motion-energy (ME) model features (visual), modulation transfer function 
(MTF) model features (auditory), and button response (BR) model features (motor) with the 
original feature matrix during the model training (see the Supplementary Methods for details). 
ME model features were obtained by applying 3-dimensional spatio-temporal Gabor wavelet 
filters to the visual stimuli2. MTF model features were obtained by applying spectro-temporal 
modulation-selective filters to the cochleogram of the auditory stimuli28. BR model features were 
obtained based on the number of button responses made by each subject. The model testing 
excluded the sensorimotor regressors from the concatenated feature matrix and the corresponding 
weight matrix. This analysis revealed that model prediction accuracy is independent of low-level 
sensorimotor features. 
 
Motion-energy model (regressor of non-interest for visual features) 
The details of the ME model design have been described elsewhere2. First, movie frames and 
pictures were spatially down-sampled to 96 × 96 pixels. The RGB pixel values were then 
converted into the Commission International de l’Eclairage (CIE) LAB colour space, and colour 
information was discarded. The luminance (L*) pattern was passed through a bank of 3-
dimensional spatio-temporal Gabor wavelet filters. The outputs of two filters with orthogonal 
phases (quadrature pairs) were squared and summed to yield local motion-energy. Motion-energy 
was compressed with a log-transform and temporally down-sampled to 0.5 Hz. Filters were tuned 
to six spatial frequencies (0, 1.5, 3.0, 6.0, 12.0, 24.0 cycles/image) and three temporal frequencies 
(0, 4.0, 8.0 Hz), without directional parameters. Filters were positioned on a square grid that 
covered the screen. The adjacent filters were separated by 3.5 standard deviations of their spatial 
Gaussian envelopes. The total number of ME model features was 1395. 
 
Modulation transfer function model (regressor of non-interest for auditory features) 
A sound cochleogram was generated using a bank of 128 overlapping bandpass filters ranging 
from 20 to 10,000 Hz29. The window size was set to 25 ms, and the hop size to 10 ms. Filter 
output was averaged across 2 s (TR). We further extracted features from the MTF model28. For 
each cochleogram, a convolution with modulation-selective filters was calculated. The outputs of 
two filters with orthogonal phases (quadrature pairs) were squared and summed to yield local 
modulation energy2. Modulation energy was log-transformed, averaged across 2 s, and further 
averaged within each of the 10 non-overlapping frequency ranges logarithmically spaced along 
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the frequency axis. The filter outputs of upward and downward sweep directions were used. 
Modulation-selective filters were tuned to five spectral modulation scales (Ω = 0.50, 1.0, 2.0, 4.0, 
8.0 cyc/oct) and five temporal modulation rates (ω = 4.0, 8.0, 16.0, 32.0, 64.0 Hz). The total 
number of MTF model features was 1000. 
 
Button response model (regressor of non-interest) 
The BR model was constructed based on the number of button responses within 1 s for each of 
the four buttons, with the right two buttons pressed by the right thumb and the left two buttons 
pressed by the left thumb. The total number of BR model features was four. 
 
Decoding model fitting 
In the decoding model, the cortical response matrix RD [T × 3V] was modelled by concatenating 
sets of [T × V] matrices with temporal delays of 2, 4, and 6 s. The feature matrix FD [T × N] was 
modelled by multiplying the cortical response matrix RD with the weight matrix WD [3V × N]: 
                       F'( 	
  = 	
  R(W( 
The weight matrix WD was estimated using an L2-regularized linear regression with the training 
dataset, following the same procedure as for the encoding model fitting. 
 
Encoding and decoding with novel tasks 
In order to examine the generalizability of our models, we performed encoding and decoding 
analyses with novel tasks which were not used in the model training (Fig. 1d). We randomly 
divided the 103 tasks into five task groups. A single task group contained 20-21 tasks. We 
performed five independent model fittings, each with a different task group as the target. From 
the training dataset, we excluded the time points during which the target tasks were performed, 
and those within 6 s after the presentation of the target tasks. In the test dataset, we used only the 
time points during which the target tasks were performed, and those within 6 s after the 
presentation of the target tasks. This setting allowed us to assume that the activations induced by 
the target task group and those induced by the other four task groups (training task groups) did 
not overlap, and it enabled us to investigate the prediction and decoding accuracy for the novel 
tasks. We performed the encoding and decoding model fitting with the training task groups 
composed of 82-83 tasks. For the model testing, we concatenated the predicted responses or 
decoded features of the five task groups. Responses or features for the time points that were 
duplicated were averaged across the five task groups. Note that encoding and decoding with novel 
tasks was only possible with the cognitive factor model, because the original tasks needed to be 
transformed into the latent feature space.  

For the decoding analysis with novel tasks, we measured the similarity between the CTF 
of each task and each decoded cognitive factor vector using Pearson’s correlation coefficient for 
each time point. We refer to the correlation coefficient as the task score12. We then calculated the 
time-averaged task scores for each task using the one-vs.-one method. For each target task, a 
series of binary classification was performed between the target task and each of the remaining 
102 tasks. Decoding accuracy was then calculated as a percentage that the target task had a higher 
task score in this procedure. Statistical significance of decoding accuracy was tested for each task 
using the sign test (p < 0.05, with FDR correction). 
 
Code and data availability 
The MATLAB code used in the current study and the datasets generated during and/or analysed 
during the current study are available from the corresponding author upon reasonable request. 
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Supplementary information and Extended data 

 
Supplementary Figure 1. Determination of the number of meaningful components. a, Prediction accuracy of the 
task-type model with reconstructed weight matrices using principal component analysis (PCA) results, averaged across 
six subjects. The black line indicates the original prediction accuracy averaged across six subjects. Error bars indicate 
SD. b, Variance explained in the PCA. The explained variance of the original weight matrix of the task-type model was 
plotted for each PC. Note that the explained variance is common for all subjects in the group PCA. 
 
Determination of the number of meaningful components 
To determine the number of meaningful principal components (PCs), we calculated the prediction 
accuracy of the task-type model with the reconstructed weight matrix, using a restricted number 
of PCs. For each subject, the weight matrix WEK [N × V] was reconstructed by multiplying the 
1st to Kth component of the PCA loading matrix VK [N × K] with the PCA score matrix UK [V × 
K]: 
                      W#* = V*U*- 
The cortical response RE [T × V] was then modelled by multiplying the feature matrix FE [T × N] 
with the reconstructed weight matrix WEK:  
                      R"# = F#W#* 
Note that the feature matrix in this analysis did not include the three temporal delay components, 
since the original weight matrix used in the PCA was averaged across delays. The prediction 
accuracy was calculated using Pearson’s correlation coefficient between predicted signals and 
measured signals in the test dataset. For comparison, we also calculated the prediction accuracy 
with the original weight matrix.  

This analysis showed that the prediction accuracy reached a plateau with the top eight 
PCs (Supplementary Fig. 1a), at a total explained variance of 49.5 % (Supplementary Fig. 1b). 
We thus analysed the dominant cognitive components based on these eight PCs. 
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Supplementary Figure 2. PCA score maps. Normalized principal component analysis (PCA) scores of PC1-8 
projected onto the flattened cortical sheets of subject ID01. 
 
Cortical representation of principal components 
To assess the cortical regions related to the top PCs, we projected normalized PCA scores onto 
the cortical maps (Supplementary Fig. 2). PC1 (auditory component, according to Supplementary 
Table 1) had large weights in the superior temporal regions. PC2 (audiovisual component) had 
large weights in the superior temporal and occipital regions. PC3 and PC5 (language components) 
had large weights in the frontal and inferior temporal regions. PC4 (introspection component) had 
large weights in the medial frontal and cingulate regions. PC6 and PC7 (memory components) 
had large weights in the frontal and parietal regions. PC8 (motor component) had large weights 
in the pericentral regions. These PCA score maps were further used to evaluate the cognitive 
factors related to each PC. 
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Supplementary Figure 3. Cortical mapping of the cognitive space. Cortical maps of the cognitive space are shown 
on the inflated and flattened cortical sheets of subjects ID02-ID06, visualized using scores of the top three principal 
components (PC1-PC3) in red, green, and blue, respectively. 
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Supplementary Table 1. Top tasks related to each principal component  
 Top 10 tasks 
PC1  
(auditory) 

'SoundLeft', 'ForeignListen', 'SoundRight', 'CountTone', 'RestClose', 'Harmony', 
'RateBeautySound', 'ImagineMove', 'Rhythm', 'RateNoisy' 

PC2 
(audiovisual) 

'RateSexyMovM', 'RatePainfulMov', 'RateHappyMov', 'RateDisgustMov', 
'RateSexyMovF', 'RateDeliciousMov', 'RateBeautyMov', 'DetectTargetMov', 
'RateBeautySound', 'RateNoisy' 

PC3  
(language) 

'MoralPersonal', 'Irony', 'MoralImpersonal', 'ForeignListenQ', 'WordMeaning', 
'ForeignReadQ', 'Metaphor', 'DecidePresent', 'RatePoem', 'DomesticName' 

PC4 
(introspection) 

'ImagineMove', 'ImaginePlace', 'ImagineIf', 'RecallPast', 'RestOpen', 'PressLeft', 
'PressRight', 'EyeBlink', 'PressLR', 'RecallFace' 

PC5  
(language) 

'MoralPersonal', 'MoralImpersonal', 'EyeMoveHard', 'EyeMoveEasy', 'Metaphor', 
'Irony', 'ForeignRead', 'EyeBlink', 'PropLogic', 'ForeignReadQ' 

PC6  
(memory) 

'RecallKnowledge', 'LetterFluency', 'ImagineIf', 'CategoryFluency', 'ForeignRead', 
'ImaginePlace', 'MemoryNameEasy', 'MemoryNameHard', 'MemoryLetter', 
'MemoryDigit' 

PC7  
(memory) 

'RecallPast', 'RecallTaskEasy', 'RecallTaskHard', 'ImagineFuture', 
'MatchNameHard', 'MatchNameEasy', 'DomesticPlace', 'DetectTargetMov', 
'ImaginePlace', 'TimeMov' 

PC8  
(motor) 

'ButtonOrdEasy', 'ButtonOrdHard', 'MatchNameHard', 'MatchNameEasy', 
'DomesticName', 'WorldName', 'PressRight', 'RateSexyPicM', 'ForeignListenQ', 
'RateSexyPicF' 

Top 10 tasks with the largest PCA loadings for PC1 to PC8. 
 
Supplementary Table 2. Top cognitive factors related to each principal component  

 Top 10 cognitive factors in the NeuroSynth database 
PC1  
(auditory) 

‘auditory’, ‘sound’, ‘listening’, ‘speech’, ‘acoustic’, ‘pitch’, ‘audiovisual’, ‘speech 
perception’, ‘auditory visual’, ‘music’ 

PC2 
(audiovisual) 

‘auditory’, ‘pitch’, ‘sound’, ‘acoustic’, ‘listening’, ‘audiovisual’, ‘musical’, 
‘music’, ‘hearing’, ‘multisensory’ 

PC3  
(language) 

‘comprehension’, ‘semantic’, ‘sentence’, ‘language’, ‘linguistic’, ‘syntactic’, 
‘word’, ‘language comprehension’, ‘reading’, ‘lexical’ 

PC4 
(introspection) 

‘default’, ‘default mode’, ‘mode’, ‘mode network’, ‘dmn’, ‘network dmn’, ‘default 
network’, ‘motor’, ‘somatosensory’, ‘sensorimotor’ 

PC5  
(language) 

‘theory mind’, ‘mind tom’, ‘tom’, ‘mentalizing’, ‘mind’, ‘mode’, ‘default mode’, 
‘default’, ‘mode network’, ‘visual’ 

PC6  
(memory) 

‘eye’, ‘task’, ‘production’, ‘phonological’, ‘working memory’, ‘saccade’, 
‘preparation’, ‘language’, ‘load’, ‘speech production’ 

PC7  
(memory) 

‘memory’, ‘retrieval’, ‘default’, ‘episodic’, ‘default mode’, ‘mode’, ‘memory 
retrieval’, ‘autobiographical memory’, ‘navigation’, ‘mode network’ 

PC8  
(motor) 

‘hand’, ‘finger’, ‘action’, ‘movement’, ‘finger movements’, ‘motor’, ‘motor task’, 
‘action observation’, ‘sensorimotor’, ‘viewing’ 

Top 10 cognitive factors in the Neurosynth database for PC1 to PC8, based on the correlation coefficients between each 
PC score map and the 715 registered reverse-inference maps. 
. 
 
Interpretation of cognitive factors related to principal components  
To interpret the plausible cognitive factors related to the target sub-clusters, we used Neurosynth 
(http://neurosynth.org; accessed 26th January 2018) as a metadata reference of the past 
neuroimaging literature7. Each reverse-inference image in the Neurosynth database in MNI152 
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space was registered to the subjects’ reference EPI data using FreeSurfer25,26. For each PCA score 
map obtained with the task-type model, we calculated Pearson’s correlation coefficients between 
the PCA score map and the 715 registered reverse-inference maps, resulting in a cognitive factor 
vector with 715 elements. Terms with higher correlation coefficient values were regarded to 
contribute more to the target PC. 
 Several top PCs distinguished a class of sensorimotor components to the others, such 
as auditory (PC1; tasks with high loading, e.g. ‘SoundLeft’, ‘Harmony’), audiovisual (PC2; 
‘RatePainfulMov’, ‘RateHappyMov’), and motor components (PC8; ‘ButtonOrdEasy’, 
‘PressRight’), while the other PCs distinguished higher-order cognitive components such as 
language (PC3; ‘Irony’, ‘WordMeaning’; PC5; ‘MoralPersonal’, ‘Metaphor’), memory 
(PC6; ’RecallKnowledge’, ‘MemoryNameEasy’; PC7; ‘RecallPast’, ‘RecallTaskHard’), and 
introspection components (PC4; ‘ImagineMove’, ’ImaginePlace’) (Supplementary Table 1).     

To obtain an objective interpretation of the estimated PCs, we performed a metadata-
based reverse inference of the cognitive factors related to each PC using the NeuroSynth database7. 
The top 10 terms for each PC provided an interpretation of the relevant cognitive components, 
with PC1 (auditory) showing a high correlation with auditory-related terms (e.g. ‘auditory’, 
‘sound’), PC2 (audiovisual) showing a high correlation with auditory- and vision-related terms 
(e.g. ‘auditory’, ‘audiovisual’), PC3 (language) showing a high correlation with language-related 
terms (‘language’, ‘sentence’), and PC8 (motor) showing a high correlation with motor-related 
terms (‘movement’, ‘motor’) (Supplementary Table 2). These results were largely consistent with 
the interpretations based on the high loading task types.  

For the other components, the interpretation based on NeuroSynth provided a more 
detailed description. Although we labelled PC4 as ‘introspection component’ based on the high 
loading task types, PC4 showed a high correlation with default mode-related terms in the 
Neurosynth database (‘default mode’, ‘dmn’). Moreover, PC5 was labelled as ‘language 
component’ but showed a high correlation with theory of mind-related terms (‘theory mind’, 
‘mentalizing’). PC6 and PC7 were both labelled as ‘memory components’, but the former was 
more related to the working memory component (‘language’, ‘working memory’) and the latter 
was related to the default mode-related component (‘memory’, ‘default’). These results indicate 
that the metadata-based reverse inference reliably captured fundamental cognitive factors 
involved in the diverse cognitive tasks. 
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Supplementary Figure 4. Prediction accuracy using the cognitive factor model under novel task conditions. The 
cortical map is shown on the flattened cortical sheets of subjects ID02-ID06 (mean prediction accuracy and percent 
significant voxels; ID02, 0.311 and 86.4 %; ID03, 0.316 and 84.5 %; ID04, 0.357 and 90.7 %; ID05, 0.252 and 77.2 %; 
ID06, 0.373 and 91.4 %; p < 0.05, FDR-corrected, the minimum correlation coefficient for the significance criterion 
ranged from 0.0833 to 0.0872 for each individual subject). 
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Supplementary Figure 5. Prediction accuracy of the cognitive factor model excluding sensorimotor features. The 
cortical map is shown on the flattened cortical sheets of subjects ID01-ID06 (mean prediction accuracy and percent 
significant voxels; ID01, 0.285, 82.3 %; ID02, 0.273, 82.0 %; ID03, 0.283, 81.7 %; ID04, 0.315, 86.9 %; ID05, 0.226, 
73.9 %; ID06, 0.327, 87.6 %; p < 0.05, FDR-corrected, the minimum correlation coefficient for the significance 
criterion ranged from 0.0844 to 0.0881 for each individual subject). 
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Supplementary Figure 6. Decoding accuracy of novel tasks. Histogram of decoding accuracies of over 100 tasks 
obtained using the cognitive factor model with novel tasks, for subjects ID02-ID06. The red line indicates chance-level 
accuracy (50 %). Bars showing significantly decoded tasks are filled in blue (mean decoding accuracy and percent 
significant tasks; ID02, 96.7 %, 99.0 %; ID03, 96.5 %, 99.0 %; ID04, 96.7 %, 98.0 %; ID05, 94.8 %, 99.0 %; ID06, 
96.6 %, 99.0 %; sign tests, p < 0.05, FDR-corrected). 
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Supplementary Figure 7. Behavioural results. Box plots of accuracy for 48/103 tasks are shown for subjects ID01-
06. Each box shows the median (red), the interquartile range (blue), and the maximum and minimum values. 
 
Behavioural results 
To show that the tasks used in the current study were sufficiently natural and easy to perform, we 
analysed the behavioural performance for 48/103 tasks (Supplementary Fig. 7). The 48 tasks were 
selected because only these tasks presented a single ‘yes or no’ question. All subjects performed 
these tasks significantly better than chance level (mean ± SD, 77.9 ± 2.8 %; Wilcoxon signed-
rank tests, p < 0.05, FDR-corrected), indicating that they understood the tasks without any pre-
experimental training or explanation. We also confirmed that the subjects did not have any 
difficulty in understanding the task settings via self-reports after the experiment. 
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Supplementary Figure 8. Cortical maps of task clusters. Normalized cortical maps of weight matrices using the 
task-type model, showing the visual (a), memory (b), language (c), motor (d), introspection (e), and auditory (f) clusters.   
 
Cortical representation of task clusters 
To assess the brain regions related to each task cluster, we examined the weight matrix for only 
those tasks that are within each of the six largest task clusters (Supplementary Fig. 8). The weight 
values of the target clusters were averaged across tasks and normalized across voxels. This 
indicates the relative contribution of each cortical voxel to the target task cluster. The task cluster 
related to visual processing showed large weights in occipital regions, the cluster related to 
auditory processing showed large weights in the superior temporal regions, and the one related to 
memory processing showed large weights in the frontal and parietal regions. The language cluster 
showed large weights in the left frontal and inferior temporal regions, the motor cluster showed 
large weights in the pericentral regions, and the task cluster that was related to introspective 
processes showed large weights in the medial frontal and cingulate regions. These cluster weight 
maps were further used to evaluate the cognitive factors related to each task cluster.  
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Supplementary Table 3. Top cognitive factors related to each task cluster 
 Top 10 cognitive factors in the NeuroSynth database 
Visual cluster ‘visual’, ‘object’, ‘face’, ‘motion’, ‘viewing’, ‘perceptual’, ‘vision’, ‘visual 

motion’, ‘early visual’, ‘visual stream’ 
Memory cluster ‘working memory’, ‘task’, ‘calculation’, ‘load’, ‘attentional’, ‘memory wm’, 

‘numerical’, ‘spatial’, ‘arithmetic’, ‘memory load’ 
Language cluster ‘reading’, ‘language’, ‘comprehension’, ‘sentence’, ‘semantic’, ‘word’, 

‘linguistic’, ‘native’, ‘syntactic’, ‘lexical’ 
Motor cluster ‘finger’, ‘motor’, ‘hand’, ‘sensorimotor’, ‘somatosensory’, ‘movement’, ‘motor 

imagery’, ‘execution’, ‘finger movements’, ‘motor task’ 
Introspection 
cluster 

‘default’, ‘default mode’, ‘mode’, ‘mode network’, ‘autobiographical’, ‘dmn’, 
‘network dmn’, ‘default network’, ‘self’, ‘autobiographical memory’ 

Auditory cluster ‘auditory’, ‘sound’, ‘pitch’, ‘listening’, ‘acoustic’, ‘speech’, ‘music’, ‘musical’, 
‘audiovisual’, ‘speech perception’ 

Top 10 cognitive factors in the Neurosynth database for each of the six task clusters, based on the correlation 
coefficients between the task weight map and the 715 registered reverse-inference maps. 
 
Top cognitive factors related to each task cluster 
We labelled each task cluster of the HCA (e.g. ‘visual cluster’ or ‘language cluster’) based on the 
included task types. To avoid arbitrariness, we performed a metadata-based objective evaluation 
of the task clusters using the NeuroSynth metadata7. For each of the cortical maps of the task 
cluster weight matrix, we calculated Pearson’s correlation coefficients with the 715 registered 
reverse-inference maps, resulting in a cognitive factor vector with 715 elements. Terms with 
higher correlation coefficient values were regarded as contributing more to the target cluster. 
 The top 10 terms for most task clusters were consistent with our interpretation 
based on the included task types (Supplementary Table 3). The visual cluster showed a high 
correlation with vision-related terms (e.g. ‘visual’, ‘perception’), the memory cluster with 
working memory-related terms (‘working memory’, ‘memory’), and the language cluster showed 
a high correlation with language-related terms (‘language’, ‘reading’). The motor cluster showed 
a high correlation with motor-related terms (‘movement’, ‘motor’), and the auditory task cluster 
showed a high correlation with auditory-related terms (‘auditory’, ‘listening’). The introspection 
cluster showed a high correlation with default mode-related terms (‘default mode’, ‘default’), in 
line with our interpretation of the introspection PC (PC4). These results suggest that data-driven 
reverse inference is effective in providing an objective evaluation of the cognitive factors 
underlying different task clusters. 
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Supplementary Figure 9. Relationship between principal components and task clusters. Mean PCA loadings of 
the tasks in the six largest clusters, plotted for each of the top eight PCs. Task clusters with positive and negative PCA 
loadings are shown in red and blue, respectively (significantly different from zero; sign tests, p < 0.05, FDR-
corrected). Task clusters with non-significant PCA loadings are shown in grey. 
 
Correspondence between task clusters and principal components 
To examine the relationship between the HCA and PCA results, we calculated the relative 
contribution of the top eight PCs to the six largest task clusters (Supplementary Fig. 9). We 
averaged the PCA loadings of the tasks included in each of the target clusters. We found that the 
top four PCs corresponded well to the related clusters (with mean PCA loadings significantly 
larger than zero; sign test, p < 0.05, FDR-corrected). PC1 (auditory component) contributed to 
the auditory cluster; PC2 (audiovisual component) contributed to the auditory and visual clusters, 
PC3 (language component) contributed to the language cluster; and PC4 (introspection 
component) contributed to the motor and introspection clusters. These results indicate the 
representational correspondence between the HCA and PCA results. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2019. ; https://doi.org/10.1101/614081doi: bioRxiv preprint 

https://doi.org/10.1101/614081
http://creativecommons.org/licenses/by-nc-nd/4.0/


   28  

Description of each task 
1. PressRight 
Subjects pressed the buttons (with their right hand) as many times as possible. Duration: 8 s. 
 
2. PressLeft 
Subjects pressed the buttons (with their left hand) as many times as possible. Duration: 8 s.  
 
3. PressLR 
Subjects pressed the buttons (with their right or left hand) as many times as possible. Duration: 8 
s. 
 
4. RestOpen 
Subjects did not perform any task, with their eyes open. Duration: 10 s. 
 
5. RestClose 
Subjects did not perform any task, with their eyes closed. Duration: 10 s. 
 
6. EyeBlink 
Subjects blinked their eyes as many times as possible. Duration: 8 s. 
 
7. RateTired 
Subjects rated how tired they were by pressing one of the four buttons. Duration: 6 s. 
 
8. RateConfidence 
Subjects rated how confident they were about their accuracy on the previous task by pressing one 
of the four buttons. Duration: 6 s. 
 
9. RateSleepy 
Subjects rated how sleepy they were by pressing one of the four buttons. Duration: 6 s. 
 
10. ImagineFuture 
Subjects imagined their future situation (e.g. ‘Imagine your next weekend’). Duration: 8 s. 
 
11. ImagineIf 
Subjects imagined they were some other living thing. Duration: 8 s. 
 
12. ImagineMove 
Subjects imagined their body moving. Duration: 8 s. 
 
13. ImaginePlace 
Subjects imagined a certain place. Duration: 8 s. 
 
14. RecallPast 
Subjects recalled a past event. Duration: 8 s. 
 
15. RecallKnowledge 
Subjects recalled as many names as possible which have a given property (e.g. recall as many 
Japanese river names as possible). Duration: 10 s. 
 
16. RecallFace 
Subjects recalled the face of somebody. Duration: 8 s. 
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17. LetterFluency 
Subjects recalled as many words as possible starting with a given letter. Duration: 10 s. 
 
18. CategoryFluency 
Subjects recalled as many words as possible belonging to a given word category. Duration: 10 s. 
 
19. Clock 
Subjects looked at a photo of a clock, and judged whether the indicated time matched the time 
displayed above the photo. Duration: 6 s. 
 
20. AnimalPhoto 
Subjects looked at a photo of an animal, and judged whether its name matched the name displayed 
above the photo. Duration: 6 s. 
 
21. AnimalVoice 
Subjects listened to the voice of an animal, and judged whether its name matched the name shown 
on the screen. Duration: 6 s. 
 
22. Money 
Subjects looked at a photo of money, and judged whether the indicated amount matched the 
amount displayed above the photo. Duration: 8 s. 
 
23. Traffic 
Subjects looked at a photo of a traffic sign, and judged whether its meaning matched the meaning 
indicated above the photo. Duration: 6 s. 
 
24. EmotionFace 
Subjects looked at a photo of a face with a specific emotion, and judged whether the emotion 
matched the emotion indicated above the photo. Duration: 6 s. 
 
25. EmotionVoice 
Subjects listened to a voice with a specific emotion, and judged whether the emotion matched the 
emotion indicated above the photo. Duration: 6 s. 
 
26. Flag 
Subjects looked at a photo of a national flag, and judged whether the country matched the country 
indicated above the photo. Duration: 6 s. 
 
27. MapSymbol 
Subjects looked at a photo of a map symbol, and judged whether its meaning matched the meaning 
indicated above the photo. Duration: 6 s. 
 
28. CalcEasy 
Subjects solved an easy arithmetic problem using single digits. Duration: 8 s. 
 
29. CalcHard 
Subjects solved a difficult arithmetic problem using two-digit numbers. Duration: 10 s. 
 
30. DailyPhoto 
Subjects looked at a photo of a tool used daily, and judged whether its name matched the name 
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displayed above the photo. Duration: 6 s. 
 
31. DailySound 
Subjects listened to the sound of tool used daily, and judged whether its name matched the name 
displayed above the photo. Duration: 6 s. 
 
32. CountDot 
Subjects counted the number of presented dots. Duration: 8 s. 
 
33. CountTone 
Subjects counted the number of presented tones. Duration: 8 s. 
 
34. CountryMap 
Subjects looked at a photo of a country map and judged whether its name (nation) matched the 
name displayed above the photo. Duration: 6 s. 
 
35. StateMap 
Subjects looked at a photo of a state (prefecture) map and judged whether its name matched the 
name displayed above the photo. Duration: 6 s. 
 
36. RateSexyPicF 
Subjects looked at a photo of a female, and rated how sexy they thought she was. Duration: 6 s. 
 
37. RateSexyPicM 
Subjects looked at a photo of a male, and rated how sexy they thought he was. Duration: 6 s. 
 
38. RateSexyMovM 
Subjects viewed a movie of a male, and rated how sexy they thought he was. Duration: 10 s. 
 
39. RateSexyMovF 
Subjects viewed a movie of a female, and rated how sexy they thought she was. Duration: 10 s. 
 
40. RateBeautyPic 
Subjects looked at a photo, and rated how beautiful they thought it was. Duration: 6 s. 
 
41. RateBeautySound 
Subjects listened to a piece of music, and rated how beautiful they thought it was. Duration: 10 s. 
 
42. RateBeautyMov 
Subjects viewed a movie, and rated how beautiful they thought it was. Duration: 10 s. 
 
43. RateDisgustPic 
Subjects looked at a photo, and rated how disgusting they thought it was. Duration: 6 s. 
 
44. RateDisgustSound 
Subjects listened to a sound, and rated how disgusting they thought it was. Duration: 6 s. 
 
45. RateDisgustMov 
Subjects viewed a movie, and rated how disgusting they thought it was. Duration: 10 s. 
 
46. RateHappyPic 
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Subjects looked at a photo, and rated how happy the situation seemed to be. Duration: 6 s. 
 
47. RateHappyMov 
Subjects viewed a movie, and rated how happy the situation seemed to be. Duration: 10 s. 
 
48. RateDeliciousPic 
Subjects saw a photo of food, and rated how delicious it looked. Duration: 6 s. 
 
49. RateDeliciousMov 
Subjects viewed a movie of food, and rated how delicious it looked. Duration: 10 s. 
 
50. RatePainfulPic 
Subjects looked at a photo, and rated how painful the situation seemed to be. Duration: 6 s. 
 
51. RatePainfulMov 
Subjects viewed a movie, and rated how painful the situation seemed to be. Duration: 10 s. 
 
52. RateNoisy 
Subjects listened to a sound, and rated how noisy they thought it was. Duration: 8 s. 
 
53. RatePoem 
Subjects read a poem, and rated how good they thought it was. Duration: 12 s. 
 
54. WordMeaning 
Subjects judged whether the meaning of a presented word matched the sentence displayed above 
the word. Duration: 6 s. 
 
55. EyeMoveEasy 
Subjects looked at a small circle moving around in 1 Hz. Duration: 8 s. 
 
56. EyeMoveHard 
Subjects looked at a small circle moving around at 2 Hz. Duration: 8 s. 
 
57. WorldName 
Subjects looked at the photo of a foreign celebrity and judged whether their name matched the 
name displayed above the photo. Duration: 6 s. 
 
58. DomesticName  
Subjects looked at the photo of a local celebrity and judged whether their name matched the name 
displayed above the photo. Duration: 6 s. 
 
59. SoundPlace 
Subjects listened to an environmental sound, and judged whether it matched the location on the 
screen. Duration: 6 s. 
 
60. WorldPlace 
Subjects looked at a photo of a place in some foreign country, and judged whether it matched the 
site displayed above the photo. Duration: 6 s. 
 
61. DomesticPlace 
Subjects looked at a photo of a place in their home country, and judged whether it matched the 
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site displayed above the photo. Duration: 6 s. 
 
62. MusicCategory 
Subjects judged whether the genre of a piece of music matched the name displayed on the screen. 
Duration: 10 s. 
 
63. DetectTargetPic 
Subjects judged whether a target item was shown in a photo. Duration: 8 s. 
 
64. DetectTargetMov 
Subjects judged whether a target item was shown in a movie clip. Duration: 10 s. 
 
65. Metaphor 
Subjects read a metaphorical text and judged whether the writer’s intention matched the meaning 
indicated above the text. Duration: 8 s. 
 
66. Irony 
Subjects read an ironical text and judged whether the writer’s intention matched the meaning 
indicated above the text. Duration: 8 s. 
 
67. TimeMov 
Subjects judged whether the duration of a presented movie matched the duration indicated on the 
screen. Duration: 8 s. 
 
68. TimeSound 
Subjects judged whether the duration of a presented sound matched the duration indicated on the 
screen. Duration: 8 s. 
 
69. ComparePeople 
Subjects looked at two photos of people and judged whether or not the two were the same person. 
Duration: 6 s. 
 
70. DetectDifference 
Subjects looked at two pictures and judged whether or not they were exactly the same. Duration: 
8 s. 
 
71. Harmony 
Subjects listened to a sequence of chords and judged whether the chord progression was 
consonant or dissonant. Duration: 6 s. 

 
72. DecideFood 
Subjects looked at four photos of different foods and judged which looked the most delicious. 
Duration: 8 s. 
 
73. DecidePeople 
Subjects looked at four photos of different people and judged who looked the most reliable. 
Duration: 8 s. 
 
74. DecidePresent 
Subjects chose one among four items they wanted to receive as a present. Duration: 8 s. 
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75. DecideShopping 
Subjects chose one among four items they would buy during shopping. Duration: 8 s. 
 
76. LanguageSound 
Subjects listened to a sound and judged whether the language matched the language indicated on 
the screen. Duration: 6 s. 
 
77. DetectColor 
Subject judged whether the colour of a word matched the colour displayed above the word. 
Duration: 6 s. 
 
78. SoundLeft 
Subjects judged whether a sound was presented from their left side. Duration: 8 s. 
 
79. SoundRight 
Subjects judged whether a sound was presented from their right side. Duration: 8 s. 
 
80. RelationLogic 
Subjects read a syllogism based on spatial relationships and indicated whether the conclusion was 
valid or not. Duration: 12 s. 
 
81. PropLogic 
Subjects read a syllogism based on prepositional logical relationships and indicated whether the 
conclusion was valid or not. Duration: 12 s. 
 
82. MoralPersonal 
Subjects read a text and judged whether the described activity (which included harming 
somebody) was ethically permissible or not. Duration: 12 s. 
 
83. MoralImpersonal 
Subjects read a text and judged whether the described activity (which did not include harming 
somebody) was ethically permissible or not. Duration: 12 s. 
 
84. Recipe 
Subjects judged whether a given recipe matched the actual recipe of a given dish. Duration: 8 s. 
 
85. TimeValue 
Subjects selected one of two money rewards which would be offered to them at different points 
in the future. Duration: 8 s. 
 
86. PressOrdEasy 
Subjects pressed buttons based on a series of numbers presented at 1 Hz. Duration: 8 s. 
 
87. PressOrdHard 
Subjects pressed buttons based on a series of numbers presented at 2 Hz. Duration: 8 s. 
 
88. Rhythm 
Subjects listened to a series of sound pulses and judged whether its rhythm was constant or not. 
Duration: 6 s. 
 
89. RecallTaskEasy 
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Subjects judged whether the two earlier tasks matched the task described on the screen. Duration: 
6 s. 
 
90. RecallTaskHard 
Subjects judged whether the three earlier tasks matched the task described on the screen. 
Duration: 6 s. 
 
91. MemoryDigit 
Subjects memorized a series of digits. Duration: 6 s. 
 
92. MatchDigit 
Subjects judged whether a presented series of digits matched the one presented before 
(corresponding to the digits memorized in the MemoryDigit task). Duration: 6 s. 
 
93. MemoryLetter 
Subjects memorized a series of letters. Duration: 6 s. 
 
94. MatchLetter 
Subjects judged whether a presented series of letters matched the one presented before 
(corresponding to the letters memorized in the MemoryLetter task). Duration: 6 s. 
 
95. MemoryNameEasy 
Subjects memorized three names associated with three photos of different animal species. 
Duration: 6 s. 
 
96. MatchNameEasy 
Subjects judged whether two presented photos matched the names displayed on the screen 
(corresponding to the names memorized in the MemoryNameEasy task). Duration: 8 s. 
 
97. MemoryNameHard 
Subjects memorized three names associated with three photos of the same animal species. 
Duration: 6 s. 
 
98. MatchNameHard 
Subjects judged whether two presented photos matched the names displayed on the screen 
(corresponding to the names memorized in the MemoryNameHard task). Duration: 8 s.  
 
99. ForeignRead 
Subjects read an English sentence (i.e. a foreign language for the subjects). Duration: 12 s. 
 
100. ForeignReadQ 
Subjects answered a question about the English sentence they read just before. Duration: 6 s. 
 
101. ForeignListen 
Subjects listened to an English sentence. Duration: 10 s. 
 
102. ForeignListenQ 
Subjects answered a question about the English sentence they listened to just before. Duration: 6 
s. 
 
103. MirrorImage 
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Subjects judged whether a photo was symmetrical or not. Duration: 6 s. 
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