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Abstract:  

Retina is a crucial tissue for the capturing and processing of light stimulus. 

Characterization of the retina at single cell level is essential for the understanding of 

its biological functions. A variety of abnormalities in terms of morphology and 

function were reported in T21 retina. To evaluate the effects of chromosome 

aneuploidy on retina development, we characterized single cell transcriptional profiles 

of a T21 fetus and performed comprehensive bioinformatic analyses. Our data 

revealed the diversity and heterogeneity of cellular compositions in T21 retina. In 

total, we identified seven major cell types, and detected several subtypes within each 
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cell type, followed by the detection of corresponding molecular markers including 

previously reported ones and a series of novel markers. Our analyses identified 

extensive communication networks between distinct cellular types, among which a 

few ligand-receptor interactions were associated with the development of retina and 

immunoregulatory interactions. Taken together, our data provided the first single cell 

transcriptome profile for human T21 retina which facilitates our understanding on the 

dosage effects of chromosome 21 on the development of retina. 

 

Introduction: 

Retina is a highly specialized neural tissue that contains a variety of neurocyte types 

that sense light and initiate image processing. Retinal development begins with the 

establishment of SHH and SIX3 protein-mediated eyeballs, followed by PAX6 and 

LHX2 proteins to regulate the development of optic nerve vesicles1. The vesicles 

produce three structures: the neural retina, the retinal pigment epithelium, and the rod. 

The neural retina contains retinal progenitor cells (RPC), which produce seven cell 

types of the retina2. Akina Hoshino, et al. divided the development of the retina into 

three periods according to RNA-Sequencing. Progenitor cell proliferation and ganglion 

cell production predominate in the early retina 3. The second period is characterized by 

the appearance of horizontal cells and amacrine cells. At this time, synapse-related 

genes also showed significant up-regulation. The third period showed the production 

and differentiation of photoreceptors, bipolar cells and Müller glial cells4,5,6. 

 

Trisomy 21, also known as Down syndrome, is the most common birth defect  caused 

by abnormal chromosome dosage with a worldwide incidence reaching 1 in 7007. 

Patients with Down’s syndrome may have clinical manifestations such as congenital 

heart defects, premature aging, early onset of Alzheimer's disease and leukemia, as well 

as retinal developmental abnormality8. One of the clinical complications in children 

with Down syndrome is ophthalmic disease. T21 patients were reported to have 

abnormalities in neurological pathway9. Sharon J. Krinsky-McHale, et al. reported that 

adults with Down syndrome have significant visual impairment relative to the 
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normals10.  

 

Although it has been reported T21 individuals suffered from retina diseases, but the 

cellular compositions and related molecular regulatory mechanism in T21 retina 

remains largely unknown. The single cell RNA-sequencing (scRNA-seq) technique has 

been widely employed to profile the transcriptome of retina in human, mouse, monkey 

and chicken11,12,13,14, which comprehensively characterized transcription profiles of 

retina cells and attempted to identify the gene regulatory networks of neurogenesis and 

cell fate specification15. To explore the heterogeneity of T21 retina, we performed 

scRNA-seq analysis on the retina from a fetus at the gestational age of 22 weeks. 

According to the study in time series in single cell resolution of human retinal 

development, in the mid-gestational stages (GW14 to GW27), the cell types of retina 

were specified by retina progenitor cells sequentially. Especially the GW22 was the 

start point of emergence of rod photoreceptors.11 In this study, we examined the gene 

expression profiles of T21 retinal cells, identified major retina cell types and explored 

the significant influence of redundancy chromosome 21 in certain cell types. Finally, 

we trained a machine learning model using random decision forests to make 

classification of the 21 cells from normal cells. 

 
Result: 
Collection of the 21-trisomy retina tissue and single cell RNA-seq 

We collected retinal biopsies from a trisomy 21 donor and dissociated the sample into 

single-cell suspension without surface marker pre-selection, followed by scRNA-seq 

(Methods). After sequencing, we obtained the single-cell transcriptome of 3136 cells, 

with a mean coverage of 115,969 reads per cell (Figure S1b). After filtering, a total of 

2866 cells were retained for subsequent analysis (Figure 1). 

 

Cellular heterogeneity in retina tissues   

Using unsupervised clustering method, 2866 cells were classified into 10 major clusters, 

corresponding to seven cell types (retinal progenitor cells, bipolar cells, rod 
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photoreceptor, cone photoreceptor cells, retina ganglion cells, Müller glia and 

astrocytes) (Figure 2a). Briefly, C0, C1, C4, C7&C9, C3&C5&C6 were annotated as 

retinal cells based on specific expression of previously reported cell types markers and 

GO term enrichment analysis of cluster specific expressing genes. C0, expressing retina 

progenitor markers OTX2, was defined as retina progenitor cells (RPC). C1 was 

composed of bipolar cells (BC), according to the expression of TRPM1. C4 was 

considered to be retina ganglia cells due to the enrichment of RBPMS. C7 and C9 were 

identified as cone photoreceptor, because of the specific expression of LMOD1 
16(Figure 2c, d, e, Figure S2).  

 

C3, C5 and C6 expressed three different Müller glia cell markers respectively, CLU, 

GPX3 and HES117. C6, displayed characteristics of Müller glia cell with differentiation 

potential, through the high expression of HES1 (marker for retina progenitor cells) and 

the enrichment of development Gene Ontology such as dendrite development. The 

distinction between C3 and C5 revealed two functional subtypes of Müller glia cells, 

with C3 being related to renal system development and axonogenesis while C5 

specifically expressing GPX3 and enriching for GO terms associated with synapse 

organization. Trajectory analysis further confirmed that these three clusters had 

differential relationship and seemed to represent three differentiation stages of Müller 

glia cell11.  

 

C2 and C8 were annotated as astrocytes and retina pigment cells respectively. C2 was 

characterized by the high expression of ANGPT1. C8, expressing markers of retina 

pigment cells, such as TYRP1 and RMEL16, was defined as retina pigment cells. 

To explore the cellular compositions of T21 retina, we calculated the proportion of each 

retinal cell type. It was found that the most abundant cell type was rod photoreceptors, 

followed by Müller glia and bipolar cells. Cone photoreceptors and RPE accounted for 

only 3.7% and 2.69% respectively. We noticed that two major retinal cell types 

(horizontal cells and amacrine cells) were undetected in our data, probably because of 

their relatively low proportion. The cell type proportion of the sample (Fig 2b) 
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demonstrated the abnormal constitution of retina neuron compared with normal fetal at 

the same gestational weeks according to recent researches11,17. 

 

Dissection of retina neuron states transition through developmental trajectory 

analysis 

To dissect the differentiation process among human retina, we first removed RPE and 

glia cells due to the irrelevance in retinal developmental relationship 18 and then 

merged remaining retina neural cell clusters to create a systematic landscape for the 

whole cell lineage using Monocle 19,20,21. Each cluster was ordered along with the 

pseudo-time (Figure 3a). To further investigate the mechanism of cell types 

determination, we interrogated 113 transcription factors which expressed variably 

along the constructed developmental path. SOX522 specifically expressed at 

progenitor cells and NFATC4 specifically expressed at cone photoreceptor cells had 

been shown to regulate the neuron morphogenesis which played positive and negative 

role respectively (Figure 3c). Previous study reported that POU6F223 could promote 

stem cells commitment to ganglion cell fate while RORB24 showed the capacity to 

facilitate cone cell development (Figure 3c). The transcription factors (TFs) ontology 

was enriched to cast the tree of term according to the similarities among their gene 

memberships (Figure 3c, d). MCODE algorithm was then applied on the network to 

identify neighborhoods where proteins were densely connected (Figure 3e). We then 

calculated differentially expressed genes of each branch of development trajectory 

and clustered the genes according to the expression pattern between branches (Figure 

3f). There were two main specific patterns of gene expression. Gene cluster 2 was 

specifically expressed in RPCs, enriching in neural system development, while gene 

clusters 1 was specifically expressed in BCs, enriching in inorganic cation transport 

and synapse localization (Figure 3g, h). To further illuminate the key regulatory 

elements during retina neural development, we then constructed the regulatory 

network using nine TFs that not only differentially expressed between branches but 

showed neurodevelopment related functions. By calculating the co-expression pattern 

of genes with the selected TFs (Figure S3a) and then extracting the top1000 links 
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showing positive correlation with each TF, we revealed a densely connected network 

for retinal cell type specification (Figure S3c). Next, we inferred a regulatory network 

among all differentially expressed TFs based on known interactions collected in the 

STRING database25. 

 

Identification of master regulators specifying photoreceptor cells development 

Next, we reconstructed the developmental trajectories of photoreceptor cells. To infer 

TFs contributing to cell status transition, we constructed the regulatory network using 

differentially expressed TFs for retina progenitor cell and photoreceptor cells. We 

constructed the regulation network of these 13 TFs by analyzing the genes co-expressed 

with TFs (Figure S4b) and extracted the top1000 links showing positive correlation 

with each TF. The result suggested that all these 13 TFs demonstrated strong regulatory 

function and MYRF, PRDM16, BNC2, HMGA2 and PBX1 were key regulators of the 

network since extensive co-regulation with potential target genes was showed. 

Consistent with our functional annotation result, these key regulators played important 

roles in the process of retina formation and the light signal transition of photoreceptor 

(Figure S4c). 

 

Construction of Müller glia cell differentiation trajectory 

To characterize the Müller glia with differentiation potential, we extracted the Müller 

clusters and constructed the trajectory with unsupervised clustering gene. C6 lay at the 

root state, consisting of the specifically expressing of developmental markers, while C3 

and C5 respectively lay at the two ends of development trajectory. We then compared 

the TF expression at three states, and found that MEIS1 was expressed specifically in 

C5, of which top 1000 target genes enriching Gene Otology of positive regulation of 

neurological system process and JUND highly expressed in C3 and C5, correlating with 

neurotransmitter secretion and transport. Interestingly, CUX1 and FOXP2 expressed in 

C3 and C5, whose top 1000 target genes enriching immune regulatory function terms, 

suggesting the multiple supportive and regulatory function of Müller glia during human 

retina development (Figure S4 f, g, h, i). 
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Widespread cross-cell type and intercellular communication network 

Based on the identification of several different Müller cell types and astrocytes, whose 

intense communication with other retinal cell types has been found in previous study26, 

we further moved on to explore the cross-cluster and intercellular communication 

network within retina. Müller glia fulfil many crucial roles, supporting neuronal 

development, survival and information processing27. The cellular interactions were 

inferred using public ligand-receptor database (Methods). The expression patterns of 

ligand-receptor pairs in the networks revealed dense cross-cluster and intercellular 

communication networks28 (Figure 4a, stable 1). Briefly, in cross-cluster network, 56 

ligands and 36 receptors were expressed within C3, and the most frequently interactions 

were observed in the subtype of Müller glia cell while C6 and C7 were the clusters that 

received the most interactions. To further explore the roles of Müller glia cells in 

supporting neural cells, we extracted the communication pairs between Müller glia cells 

and other retinal neural cells to compare both the shared and cell-type specific 

interactions (Figure 4c,4e). We found ITGAV receptor (expressed in all retinal neural 

cell types) (Figure 4d,4f), together with ligand FBN1 to be the most frequent interaction 

pair in Müller glia signaling network. The FBN1-ITGAV pair was shown to be involved 

in mediating R-G-D-dependent cell adhesion29. Likewise, the widely expressed 

receptor ROBO1, presented simultaneously with its cognate counterpart SLIT2, holds a 

crucial role in the regulation of commissural axon pathfinding30. Besides, LRP1 

expressed in C4 and CD74 expressed in C6, might both bind to the APP protein 

expressed by C3, which are associated with different signaling circuits regarding the 

formation and function of retina31 (supplementary table2). Another observation is that 

the Müller glia-expressing ligand CTGF, by signaling through ERBB4 (specifically 

expressed in C0), could regulate nervous system development according to a previous 

study32. As for the communications between Müller glia cell with all other glia cell 

types, DDR2 was found to be specifically expressed in astrocytes and together with 

COL3A1 and COL1A1, involved in the maintenance of immune homeostasis in retina33. 

The densely connected communication network revealed a global signaling interactions 
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within retinal cells, plenty of which still deserve thorough studies in the future. 

 

Investigation of the expression profiles of chromosome 21 encoding genes 

To study the functional implications of trisomy 21 on retina, we analyzed the expression 

profiles of genes located on chromosome 21(Figure S6). Next, we performed 

hypergeometric enrichment test (Methods) and found RPCs(C0) and one subtype of 

Müller glia cell(C6) were significantly enriched for chromosome 21 encoding genes, 

indicating the association between the influence of redundant chromosome 21 and the 

specific cell types (Figure 5a). Also, we found RPCs specifically expressed CLIC6 and 

the Müller glia subtypes which has developmental potential specifically expressed ERG 

and ETS2, all of which are encoded by chromosome 21.  

 

Leber congenital amaurosis and Macular degeneration associated genes were enriched 

in RPCs(C0) with the P value less than 0.05. Also, we noticed that C0 specifically 

expressed RPE65, OTX2, LRAT and BEST134,35. While Optic atrophy associated genes 

was enriched in astrocyte(C2), where NR2F136 and AFG3L237 were highly expressed.  

 

The obtained sample were chimera of chromosome 21, which was verified using 

karyotype detection. To explore the ratio of trisomy 21 cells and diploid 21 cells in our 

sample, we employed a training Random Forest classifier which fed with the normal 

counterpart single cell data38 and in-silico negative data then performed prediction on 

mixed status sample. The predict result manifested the proportion of cells with trisomy 

21 in this sample was 0.63 (Figure 5)39,40, which consisted of 50 trisomy 21 cells and 

39 diploid cells.  

   

Discussion: 

In this study, we conducted scRNA-seq of the retina from a trisomy 21 fetal to dissect 

the heterogeneity of retina, providing the first retinal cell atlas under T21 condition. We 

also studied the influence of redundant chromosome 21 in the process of retinogenesis 

through reconstructing pseudo-time trajectories. 
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The transcriptome of single cell of retinal tissue revealed significant heterogeneity 

within retina. The study identified subtypes of retinal progenitor cell exhibiting the 

potential of different retinal cell type commitments and characterized certain Müller 

glia cell with differentiating potency. Furthermore, we constructed a detailed 

communication network of Müller glia and other retinal neural cells, while the 

communication regulatory interactions of the subtypes of progenitor Müller glia were 

the most widely identified. As expected, the astrocytes were involved in the interactions 

of immune system regulation. As the mean of detected gene numbers of single cell 

transcripts sequencing is generally low, we validated the reliability of our data by 

identifying the detection of housekeeping genes. Overall, this study provides a data 

resource for the heterogeneity and development progression of trisomy 21 retina. The 

significant correlation between progenitor cells and trisomy 21 as well as retina disease 

provided orientation of the research about these retina diseases. 

 

Finally, two retinal cell types, amacrine cells and horizontal cells, were found in another 

single cell human fetal study11 and several other mammalians retinal study14, but absent 

in a retinal organoids study16 speculatively due to the deficiency of sampled cells 

number. We assumed that the absence of these two cell types in our data might indicate 

the general delay of the development of trisomy 21 retina or the severe abnormity of 

highly chimera of trisomy 21. Further researches and experimental verifications are 

needed to test the above hypotheses. 

 

Materials and Methods 

Ethics statement 

T21 human fetal retina collection and research was approved by Medical Ethics 

Committee of Shiyan Taihe Hospital (201813). The informed consent forms were 

designed under the ISSCR guidelines for fetal tissue donation and in strict observance 

of the legal and institutional ethical regulations for elective pregnancy termination from 

the patient after her decision to legally terminate her pregnancy but before the abortive 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 20, 2019. ; https://doi.org/10.1101/614149doi: bioRxiv preprint 

https://doi.org/10.1101/614149


procedure. All tissue samples used in this study were not previously involved in any 

other procedures. All protocols were in compliance with the ‘Interim Measures for the 

Administration of Human Genetic Resources’ administered by the Chinese Ministry of 

Health. 

 

Tissue sample collection and dissociation 

We collected 23 weeks retina which from left eye of a T21 human fetal. Gestational age 

was measured in weeks from the first day of woman’s last menstrual cycle to the sample 

collecting date. T21 human fetal retina sample was collected into the Stroke-

physiological saline solution. A rapid hemi-section was performed to remove the 

vitreous and the anterior. The retina was carefully dissected free from posterior eyecup 

and then flash frozen in liquid nitrogen. The tissue was provided with de-identified 

medical records including time and cause of death. The time between death and tissue 

collection was 3hrs.  

 

Single cell cDNA library preparation and high-throughput sequencing 

Flash-frozen tissue was homogenized in 2mL ice-cold Lysis buffer (10 mM Tris-HCl, 

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40, protease inhibitors) then dounced in 

an RNase-free 2ml glass dounce (D8938-1SET SIGMA) 15x with a loose pestle and 

15x with tight pestle on ice. Transfer homogenization through 40 µm filter (352340 BD) 

and removed the block mass. The cell filtrate was proceeded to Density Gradient 

Centrifugation. Mixed 400 µL cell filtrate with 400 µL 50% Iodixanol Solution in 2mL 

lo-Bind tubes (Z666556-250EA SIGMA). Carefully layer 29% Iodixanol Solution and 

35% Iodixanol Solution to the bottom of tube. Centrifuging at 3,000 g, 4℃ for 30min.  

Nuclei were resuspended in ice-cold 1 x PBS (10010-031 GIBCO) containing 0.04% 

BSA and spin down at 500g for 5min. Discarded supernatant and then using regular-

bore pipette tip gently pipette the cell pellet in 50 μL ice-cold 1 x PBS containing 0.04% 

BSA and 0.2U/µl RNase Inhibitor. Determined the nuclei concentration using a 

Hemocytometer (101010 QIUJING). Then, loaded on a Chromium Single Cell 
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Controller (10x Genomics) to generate single-cell Gel Bead-In-EMulsions (GEMs) by 

using Single Cell 3’ Library and Gel Bead Kit V2 (120237 10x Genomics). Captured 

cells released RNA and barcoded in individual GEMs. Following manufacturer’s 

instructions (120237 10x Genomics) library was generated from the donor sample. 

Indexed library was converted by MGIEasy Lib Trans Kit (1000004155, MGI) then 

sequenced on the MGISEQ 2000 (MGI) platform with pair-end 26bp+100bp+8bp 

(PE26+100+8).  

 

Pre-processing and quality control of scRNA-seq data 

We first used Cell Ranger 2.0.0 (10X Genomics) to process raw sequencing data and 

then applied Seurat (10.1038/nbt.3192) for downstream analysis. Before we start 

downstream analysis, we focus on four filtering metrics to guarantee the reliability of 

our data. (1) We filter out genes that are detected in less than 0.1% of total cell number 

to guarantee the reliability of each gene; (2) We filter out cells whose percentage of 

expressed mitochondrial genes is greater than 10%; (3) We also filter out cells whose 

UMI counts is either less than or greater than one IQR distance outer of the quartiles of 

UMI counts to filter out cells; Finally, we use the house keeping genes from Protein 

Alta( http://www.proteinatlas.org/) to verify the reliability of our data. 

 

Analysis of heterogeneity in each tissue and cell line 

The heterogeneity of the retina sample was determined using Seurat R package 

(10.1038/nbt.3192). Then we determined significant PCs using the JackStrawPlot 

function. The top twelve PCs were used for cluster identification with resolution 1.0 

using k-Nearest Neighbor (KNN) algorithm and visualization using t-Distributed 

Stochastic Neighbor Embedding (tSNE) algorithm. Cell type were assigned by the 

expression of known cell-type markers and functional enrichment analysis. The 

FindAllMarkers function in Seurat was used to identify marker genes for each cluster 

using default parameters. Removal of cell cycle effects in clustering and cell cycle 

analysis. We collected 43 genes and 54 genes related to S phase and G2/M phase 

respectively (10.1126/science.aad0501; 10.1101/gr.192237.115). For clustering, each 
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cell was assigned a score to describe its cell cycle state by CellCycleScoring function 

in Seurat according to the expression of these genes. Subsequently, the cell cycle effect 

was regressed out based on the scores, leading to a more accurate clustering result. For 

cell cycle analysis, cells were determined to be quiescent (G1 stage) if their S score < 

0 and G2/M score < 0; otherwise, they were deemed proliferative. In addition, 

proliferative cells were designated G2/M if their G2/M score > S score, whereas cells 

were designated S if their S score > G2/M score. 

 

GO term and KEGG pathway enrichment analysis 

Lists of genes were analyzed using clusterProfiler R package (10.1089/omi.2011.0118) 

and the BH method was used for multiple test correction. GO terms with a P value less 

than 0.05 and KEGG term with a P value less than 0.05 were considered as significantly 

enriched. GO terms enrichment analysis of target genes of TFs used Metascape 

(http://metascape.org/gp/index.html), which is flexible for gene multiple functional 

analysis. 

 

Construction of trajectory using variable genes 

Monocle (10.1038/nbt.2859) ordering was conducted for constructing single cell 

pseudo-time of retinal cells.using highly variable genes 

identified by Monocle to sort cells in pseudo-time order with default parameters.. 

“DDRTree” was applied to reduce dimensional space, and the minimum spanning tree 

on cells was plotted by the visualization functions “plot_cell_trajectory” or 

“plot_complex_cell_trajectory”. BEAM tests were performed on the first branch points 

of the cell lineage using all default parameters. Plot_genes_branched_pseudotime 

function was performed to plot a couple of genes for each lineage. 

 

Regulatory network construction 

We downloaded human TF list from AnimalTFDB (10.1093/nar/gkr965) as a TF 
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reference and extracted TFs in marker genes list of each cluster to construct the 

regulatory network. The extracted TFs were submitted to STRING database 

(10.1093/nar/gkw937) to infer regulatory networks based on known interaction 

relationships (supported by data from curated databases, experiments and text-mining). 

TFs without any interactions with other proteins were removed from the network.  

 

Construction of cellular communication network 

The ligand-receptor interaction relationships were downloaded from the database, 

IUPHAR/BPS Guide to PHARMACOLOGY (10.1093/nar/gkx1121), and the Database 

of Ligand-Receptor Partners (DLRP) (10.1101/gr.207597.116; 10.1093/nar/gkh086). 

The average expression level of UMI number of 1 was used as a threshold. Ligands and 

receptors above this threshold were considered as expressed in the corresponding 

cluster. The R package Circlize (10.1093/bioinformatics/btu393) was used to visualize 

the interactions. 

 

Construction of cross-tissue and cross cell type correlation network 

To reduce noise, we averaged the expression of every 30 cells within cluster and then 

calculated the pairwise Pearson correlation between two dots based on their average 

expression profiles. Inter-dots relationship will be shown if their Pearson correlation is 

greater than 0.95. This correlation network is generated using Cytoscape 

(10.1101/gr.1239303). 

 

Enriched ontology clusters 

We first identified all statistically enriched terms, accumulative hypergeometric p-

values and enrichment factors were calculated and used for filtering.  Remaining 

significant terms were then hierarchically clustered into a tree based on Kappa-

statistical similarities among their gene memberships. Then 0.3 kappa score was applied 

as the threshold to cast the tree into term clusters (stable4). We then selected a subset 

of representative terms from this cluster and convert them into a network layout. More 
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specifically, each term is represented by a circle node, where its size is proportional to 

the number of input genes fall into that term, and its color represent its cluster identity. 

The network is visualized with Cytoscape (v3.1.2) with “force-directed” layout and 

with edge bundled for clarity. One term from each cluster is selected to have its term 

description shown as label. 

 

Protein-protein interaction network 

MCODE algorithm was then applied to this network to identify neighborhoods where 

proteins are densely connected.  Each MCODE network is assigned a unique color.  

GO enrichment analysis was applied to each MCODE network to assign “meanings” to 

the network component. 

 

Binary classification of trisomy 21 and normal cell by machining learning  

1. Standardization 

Since the difference between read counts based on the third-party data and UMI 

counts based on our experiments, standardization was employed to unify the 

distributions in the two different sources. Theoretically the gene expression level 

is as a continuous random variable subject to the normal distribution. We employ 

centralization and variance normalization to normalize both datasets on the basis 

of read counts and UMI counts both considered as finitely sampling from the 

intrinsic gene expression and converged to the normal distribution. 

  

2. Batch effects normalization 

In analysis of single-cell mRNA-seq data, batch effects give rise to non-negligible 

deviation. Map points shown as two clusters from two sources present significant 

batch effects including library preparations, read-mapping methods and etc. This 

effect performs the first components beyond intrinsic biological differentiate. 

Batch effects were adjusted by sva package in R. 

3.Generate in-silico negative samples 
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For discrimination of normal cells from mixed samples, we generated in-silico 

negative samples of the same amount as normal cells based on some prior 

knowledge about abnormal expression of trisomy 21 cells.  

The related experiment was divided into five steps: 

1). Count the amounts of different genes appearing in all datasets as features to 

construct the feature space. 

2). Generate the preliminary sample vector in the feature space from the normal 

distribution N(1, 0.01). 

3). Sample from a given set of highly expressed genes (highly expressed in trisomy 

21) to obtain a subset of highly expressed genes with random numbers and positions. 

4). Up-regulate the gene expression level at the corresponding position of the 

preliminary sample vector. 

5). Sample vector center and variance normalization. 

 

4.Data sharding & model fitting 

In-silico samples were mixed into the real-world datasets after all normalization 

completed and during this mixture one special label in normal or abnormal was tagged 

to each sample, which helped subsequently training classifier. Then eighty percent of 

mixed data was split to feed Random Forest and twenty percent left was to evaluate the 

model. Random Forest was fitted with default parameters and dumped for permanent 

access with 0.97 OOB score and 0.98 AUC score on test dataset. 

5. Prediction 

The dumped model performed predictions on our datasets where normal cells and 

abnormal cells had not been distinguished. The predictions were mapped into t-SNE 

plot of dimensional reduction of origin data with no standardization and normalization. 

6. Optimizing 

Lack of sufficient prior knowledge, the distribution of the in-silico simulated samples 

have great differences with the trisomy 21, which makes it unreasonable to decide the 

abnormal cell predicted by Random Forest as the trisomy 21. There are too many 

unwanted variations between the two data so that it is hard to control moderate 
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adjustment. Over-correction of batch effects possibly eliminates the intrinsic 

biological difference. PCA pre-processing can be alleviated before classification. 

Additionally, too few cells sequenced and too many genes measured increase risk of 

over-fitting, which can be alleviated by dimensional reduction of PCA or other tools. 

Acknowledgements 

This work was supported by NSFC 81770925, 81790641; the Non-profit Central 

Research Institute Fund of Chinese Academy of Medical Sciences 2018PT32019 

 
Author contributions: 

JW，DC, XS, FC, FH conceived the project. JZ, ZH, SX, GG, PX, FG, DW, DZ 

coordinated and collected the human donor retinas, XD, XL, QF, JZ, JZ, WL performed 

scRNA-seq data analysis. scRNA-seq library generation and protocol optimization 

performed by ZX, LL, CC. ZX, SW generated the scRNA-seq data (with help from JX). 

YC, XD developed the binary classification model. JW, XD, FH wrote the manuscript 

with input from all authors. DC, XS, FC, SJ, JL, YG revised the manuscript. 

 
Reference: 
1. Heavner, W. & Pevny, L. Eye development and retinogenesis. Cold Spring Harb. Perspect. 

Biol. 4, (2012). 
2. Masland, R. H. The Neuronal Organization of the Retina. Neuron 76, 266–280 (2012). 
3. Rheaume, B. A. et al. Single cell transcriptome profiling of retinal ganglion cells identifies 

cellular subtypes. Nat. Commun. 9, (2018). 
4. Hoshino, A. et al. Molecular Anatomy of the Developing Human Retina. Dev. Cell 43, 763–

779.e4 (2017). 
5. Baker, N. E., Li, K., Quiquand, M., Ruggiero, R. & Wang, L. H. Eye development. Methods 

68, 252–259 (2014). 
6. Cepko, C. L. The Determination of Rod and Cone Photoreceptor Fate. Annu. Rev. Vis. Sci. 1, 

211–234 (2015). 
7. Stoll, C., Alembik, Y., Dott, B. & Roth, M. P. Study of Down syndrome in 238,942 

consecutive births. Ann. Genet. 41, 44–51 (1998). 
8. Malt, E. A. et al. Health and disease in adults with Down syndrome 290 – 4. Tidsskr Nor 

Legeforen 3, 290–4 (2013). 
9. Ramírez, E. et al. Triplication of DYRK1A causes retinal structural and functional alterations 

in Down syndrome. Hum. Mol. Genet. 22, 2775–2784 (2013). 
10. Abramov, I. et al. Vision Deficits in Adults with Down Syndrome. J. Appl. Res. Intellect. 

Disabil. 27, 247–263 (2013). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 20, 2019. ; https://doi.org/10.1101/614149doi: bioRxiv preprint 

https://doi.org/10.1101/614149


11. Yufeng Lu, Wenyang Yi, Qian Wu, Suijuan Zhong, Zhentao Zuo, Fangqi Zhao, Mei Zhang, 
Nicole Tsai, Yan Zhuo, Sheng He, Jun Zhang, Xin Duan, Xiaoqun Wang, T. X. Single-cell 
RNA-seq analysis maps the development of human fetal retina. bioRxiv (2018). 
doi:http://dx.doi.org/10.1101/423830 

12. Laboissonniere, L. A. et al. Single cell transcriptome profiling of developing chick retinal cells. 
J. Comp. Neurol. 525, 2735–2781 (2017). 

13. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells 
Using Nanoliter Droplets. Cell 161, 1202–1214 (2015). 

14. Clark, B. et al. Comprehensive analysis of retinal development at single cell resolution 
identifies NFI factors as essential for mitotic exit and specification of late-born cells. bioRxiv 
378950 (2018). doi:10.1101/378950 

15. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: Current state of the 
science. Nature Reviews Genetics 17, 175–188 (2016). 

16. Collin, J. et al. Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular 
Components of Human Pluripotent Stem Cell-Derived Retina. Stem Cells (2019). 
doi:10.1002/stem.2963 

17. Liang, Q. et al. Single-nuclei RNA-seq on human retinal tissue provides improved 
transcriptome profiling. bioRxiv 468207 (2018). doi:10.1101/468207 

18. Tao, C. & Zhang, X. Development of astrocytes in the vertebrate eye. Developmental 
Dynamics 243, 1501–1510 (2014). 

19. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. 
Methods 14, 309–315 (2017). 

20. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. 
Methods 14, 979–982 (2017). 

21. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). 

22. Lai, T. et al. SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron 
Subtypes. Neuron 57, 232–247 (2008). 

23. Patthey, C. et al. Identification of molecular signatures specific for distinct cranial sensory 
ganglia in the developing chick. Neural Dev. 11, (2016). 

24. Srinivas, M., Ng, L., Liu, H., Jia, L. & Forrest, D. Activation of the Blue Opsin Gene in Cone 
Photoreceptor Development by Retinoid-Related Orphan Receptor β. Mol. Endocrinol. 20, 
1728–1741 (2006). 

25. Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein-protein 
association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017). 

26. Nagashima, M., Hadidjojo, J., Barthel, L. K., Lubensky, D. K. & Raymond, P. A. Anisotropic 
Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish 
retina. Neural Dev. 12, (2017). 

27. Reichenbach, A. & Bringmann, A. Müller cells in the healthy and diseased retina. Müller Cells 
in the Healthy and Diseased Retina (2010). doi:10.1007/978-1-4419-1672-3 

28. Pavličev, M. et al. Single-cell transcriptomics of the human placenta: Inferring the cell 
communication network of the maternal-fetal interface. Genome Res. 27, 349–361 (2017). 

29. Jovanovic, J. et al. αVβ6 is a novel receptor for human fibrillin-1: Comparative studies of 
molecular determinants underlying integrin-RGD affinity and specificity. J. Biol. Chem. 282, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 20, 2019. ; https://doi.org/10.1101/614149doi: bioRxiv preprint 

https://doi.org/10.1101/614149


6743–6751 (2007). 
30. Ricaño-Cornejo, I. et al. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the 

postoptic commissure in the mammalian forebrain. J. Neurosci. Res. 89, 1531–1541 (2011). 
31. Matsuda, S., Matsuda, Y. & D’Adamio, L. CD74 interacts with APP and suppresses the 

production of A. Mol. Neurodegener. 4, (2009). 
32. Haskins, J. W., Nguyen, D. X. & Stern, D. F. Neuregulin 1-activated ERBB4 interacts with 

YAP to induce Hippo pathway target genes and promote cell migration. Sci. Signal. 7, (2014). 
33. Vecino, E., Rodriguez, F. D., Ruzafa, N., Pereiro, X. & Sharma, S. C. Glia-neuron interactions 

in the mammalian retina. Progress in Retinal and Eye Research 51, 1–40 (2016). 
34. Henderson, R. H. et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal 

dystrophy and pituitary dysfunction. Mol. Vis. 15, 2442–7 (2009). 
35. Hosono, K. et al. Molecular diagnosis of 34 Japanese families with leber congenital amaurosis 

using targeted next generation sequencing. Sci. Rep. 8, (2018). 
36. Bosch, D. G. M. et al. NR2F1 mutations cause optic atrophy with intellectual disability. Am. J. 

Hum. Genet. 94, 303–309 (2014). 
37. Charif, M. et al. A novel mutation of AFG3L2 might cause dominant optic atrophy in patients 

with mild intellectual disability. Front. Genet. 6, (2015). 
38. Welby, E. et al. Isolation and Comparative Transcriptome Analysis of Human Fetal and iPSC-

Derived Cone Photoreceptor Cells. Stem Cell Reports 9, 1898–1915 (2017). 
39. Malhotra, R., Jha, M., Poss, M. & Acharya, R. A random forest classifier for detecting rare 

variants in NGS data from viral populations. Comput. Struct. Biotechnol. J. 15, 388–395 
(2017). 

40. Chen, Y., Li, Y., Narayan, R., Subramanian, A. & Xie, X. Gene expression inference with deep 
learning. Bioinformatics 32, 1832–1839 (2016). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 20, 2019. ; https://doi.org/10.1101/614149doi: bioRxiv preprint 

https://doi.org/10.1101/614149


Figure 1. Generation of T21 human fetal retina scRNA-seq data set. 

a. Schematic representation of the experimental workflow. 

b. Summary statistics for sequencing information and filtration results of the sample. 

 

Figure 2. Cellular diversity in retina tissue. 

a. Clustering of 2866 single-cell expression profiles into 10 retinal cell populations and 2D 

visualization of single-cell clusters using t-SNE. Each dot represents a single cell, and clusters 

are color-coded.  

b. Pie plot of cell types proportion in the trisomy 21 sample. 

c. Violin plots demonstrating expression levels of marker genes for cell cluster. 

d. T-SNE maps of retina single-cell data with cell colored based on the expression of marker genes 

for particular cell types. Gene expression levels are indicated by shades of red. 

e. A gene expression heatmap showing top differentially expressed gene for each cluster in 10 major 

clusters. Yellow corresponds to high expression level; purple and black correspond to low 

expression level. Significant marker genes were listed on the right as well as enriched GO terms 

and corresponding P values. 

 

Figure 3. Developmental trajectory analysis of the retina neural cells state transition. 

a. Single cell trajectories by Monocle analysis showing development of the T21 human fetal 

retinal neural cells.  

b. g. Enriched GO terms of variably expressed TFs along the trajectory and variably expressed 

genes along the branches respectively.. 

c. h. Expression profiles of selected cell lineage master regulators on developmental trajectory and 

key genes on branches respectively. 

d. Accumulated hypergeometric p-values of identified statistically enriched terms were 

hierarchically clustered into a tree based on Kappa-statistical similarities among their gene 

memberships. Selected subsets of representative terms from these clusters and converted them 

into a network layout. 

e. MCODE algorithm (supplementary note) was then applied to this network to identify 

neighborhoods where proteins are densely connected. 
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f. Changes for the genes that are significantly branch dependent. 

 

Figure 4.  

a. Summary of the communication network broadcast by major 10 clusters and those populations 

expressing cognate receptors primed to receive a signal. 

b. Detailed view of Müller glial subtype and astrocytes ligands and the paired expressed receptors 

numbers. 

c. e. Visualization of the interactions between Müller glial cells subtype and other glia cells and 

other retina neural cells respectively. 

d. f. Comparison with communication pairs of each individual cell type regulated by Müller glial 

cells subtypes. 

 

Figure 5.  

a. b. c. d. P values of enrichment of each cluster about trisomy 21 dosage genes and three retina 

diseases related genes and heatmaps of the corresponding significantly expressing genes. 

e. f. PCA plots and correlation heatmaps of before and after remove of batch effects respectively. 

g. Prediction result of binary classification machining learning model.  

h. Enriched GO terms of variably expressed genes between 21 trisomy cells and normal cells 

 

 

 

 

 

 

 

Figure s1： 

a: Visualization of cell cycles of clusters by pie chart and scatter plot ； 

b: Presentation of the gene expression number(above), UMI number(intermediate) and the 

mitochondrial genes proportion (below) in clusters by violin plots; 

c: Correlations of the UMI and mitochondrial genes(above) as well as the UMI and gene(below). 
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d: Venn plot shows housekeeping gene expression in our data set. 

 

Figure s2: 

a: Box plot of genes specifically expressed in clusters; 

b: Expression of melanin markers in clusters. 

 

Figure s3: 

a：Enriched GO terms of top1000 predicted target genes of variably expressed TFs along the 

trajectory. 

b: Gene regulatory network of top100 variably expressed TFs. 

c：Regulatory network of top1000 predicted target genes of selected variably expressed TFs. 

 

Figure s4: 

a, d: Analysis of development trajectories of cone cells and the muller cells.  

a: according to cell differentiation status(above) and cell subpopulations(below);  

d: differentiation trajectories of the three subpopulations of muller cells. 

b: Regulatory network of the cone cells 

c: Go term enrichment analysis of the differentially expressing TFs in cone subtypes. 

e - i: Enrichment analysis of specific transcriptional regulators in different differentiated branches 

 

Figure s5: 

a-h: The interaction between clusters characterized by the number of ligands and receptors; 

i:  The detail visualization of the interaction between clusters 2/3/4/6/7. 

 

Figure s6: 

Violin plots of genes on chromosome 21 specifically expressed in clusters 
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