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Abstract 19 

Background: One common task in Computational Biology is the prediction of aspects of 20 

protein function and structure from their amino acid sequence. For 26 years, most state-of-the-21 

art approaches toward this end have been marrying machine learning and evolutionary 22 

information. The retrieval of related proteins from ever growing sequence databases is 23 

becoming so time-consuming that the analysis of entire proteomes becomes challenging. On 24 

top, evolutionary information is less powerful for small families, e.g. for proteins from the Dark 25 

Proteome.  26 

Results: We introduce a novel way to represent protein sequences as continuous vectors 27 

(embeddings) by using the deep bi-directional model ELMo taken from natural language 28 

processing (NLP). The model has effectively captured the biophysical properties of protein 29 

sequences from unlabeled big data (UniRef50). After training, this knowledge is transferred to 30 

single protein sequences by predicting relevant sequence features. We refer to these new 31 

embeddings as SeqVec (Sequence-to-Vector) and demonstrate their effectiveness by training 32 

simple convolutional neural networks on existing data sets for two completely different 33 

prediction tasks. At the per-residue level, we significantly improved secondary structure (for 34 

NetSurfP-2.0 data set: Q3=79%±1, Q8=68%±1) and disorder predictions (MCC=0.59±0.03) 35 

over methods not using evolutionary information. At the per-protein level, we predicted 36 

subcellular localization in ten classes (for DeepLoc data set: Q10=68%±1) and distinguished 37 

membrane-bound from water-soluble proteins (Q2= 87%±1). All results built upon the 38 

embeddings gained from the new tool SeqVec neither explicitly nor implicitly using evolutionary 39 

information. Nevertheless, it improved over some methods using such information. Where the 40 

lightning-fast HHblits needed on average about two minutes to generate the evolutionary 41 

information for a target protein, SeqVec created the vector representation on average in 0.03 42 

seconds. 43 
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Conclusion: We have shown that transfer learning can be used to capture biochemical or 1 

biophysical properties of protein sequences from large unlabeled sequence databases. The 2 

effectiveness of the proposed approach was showcased for different prediction tasks using 3 

only single protein sequences. SeqVec embeddings enable predictions that outperform even 4 

some methods using evolutionary information. Thus, they prove to condense the underlying 5 

principles of protein sequences. This might be the first step towards competitive predictions 6 

based only on single protein sequences. 7 

 8 

Availability: SeqVec:  https://github.com/mheinzinger/SeqVec  Prediction  server: https://embed.protein.properties 9 

Key words: Machine Learning, Language Modeling, Sequence Embedding, Secondary structure prediction, 10 

Localization prediction, Transfer Learning, Deep Learning. 11 

Abbreviations: 1D, one-dimensional – information representable in a string such as secondary structure or solvent 12 

accessibility; 3D, three-dimensional; 3D structure, three-dimensional coordinates of protein structure; MCC, 13 

Matthews-Correlation-Coefficient; RSA, relative solvent accessibility;  14 

 15 

Background 16 

Over two decades ago, the combination of evolutionary information (from Multiple Sequence 17 

Alignments – MSA) and machine learning (standard feed-forward artificial neural networks – 18 

ANN) completely changed protein secondary structure prediction [1-3]. The concept was 19 

quickly taken up [4-8], and it was shown how the improvement in prediction increased with 20 

even larger families including more diverse evolutionary information [9, 10]. The idea was 21 

applied to other tasks, including the prediction of transmembrane regions [11-13], solvent 22 

accessibility [14], residue flexibility (B-values) [15, 16], inter-residue contacts [17] and protein 23 

disorder [15, 18-20]. Later, methods predicting aspects of protein function improved through 24 

the combination of evolutionary information and machine learning, including predictions of sub-25 

cellular localization (aka cellular location [21, 22]), protein interaction sites [23-25], and the 26 

effects of sequence variation upon function [26, 27]. Arguably, the most important 27 

breakthrough for protein structure prediction over the decade was a more efficient way of using 28 

evolutionary couplings [28-31]. 29 

Although evolutionary information has become increasingly crucial, it is also becoming 30 

increasingly costly. Firstly, bio-sequence databases grow faster than computers making it 31 

expensive to find and align related proteins. For instance, the number of UniProt entries is now 32 

more than doubling every two years [32]. Consequently, methods as fast as PSI-BLAST [33] 33 

have to be replaced by faster solutions such as HHblits [34]. Even its latest version HHblits3 34 

[35] still needs several minutes to search UniRef50 (subset of UniProt; ~20% of UniProt 35 

release 2019_02). The next step up in speed such as MMSeqs2 [36] appear to cope with the 36 

challenge at the expense of increasing hardware requirements while databases keep growing. 37 

However, even these solutions might eventually lose the battle against the speedup of 38 

sequencing. Analyzing data sets involving millions of proteins, i.e. samples of the human gut 39 

microbiota or metagenomic samples, will be one of the major challenges for computational 40 

biology. Secondly, evolutionary information is missing for some proteins, e.g. for proteins with 41 

substantial intrinsically disordered regions [15, 37, 38], or the entire Dark Proteome [39] full of 42 

proteins that are less-well studied but important for function [40]. 43 
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 1 

Here, we propose a novel embedding of protein sequences that replaces the explicit search 2 

for evolutionary related proteins by an implicit transfer of biophysical information derived from 3 

large, unlabeled sequence data (here UniRef50). Towards this end, we have adopted a 4 

method that has been revolutionizing Natural Language Processing (NLP), namely the bi-5 

directional language model ELMo (Embeddings from Language Models) [41]. In NLP, ELMo 6 

is trained on unlabeled text-corpora such as Wikipedia to predict the most probable next word 7 

in a sentence, given all previous words in this sentence. By learning a probability distribution 8 

for sentences, these models develop autonomously a notion for syntax and semantics of 9 

language. The trained vector representations (embeddings) are contextualized, i.e. 10 

embeddings of a given word depend on its context. This has the advantage that two identical 11 

words can have different embeddings, depending on the words surrounding them.  12 

We hypothesized that the ELMo concept could be applied to learn aspects of what 13 

makes up the language of life distilled in protein sequences. Three main challenges arose. (1) 14 

Proteins range from about 30 to 33,000 residues, a much larger range than for the average 15 

English sentence extending over 15-30 words [42], and even more extreme than notable 16 

literary exceptions such as James Joyce’s Ulysses (1922) with almost 4,000 words in a 17 

sentence. Longer proteins require more GPU memory and the underlying models (so called 18 

Long Short-Term Memory networks (LSTMs) [43]) have only a limited capability to remember 19 

long-range dependencies. (2) Proteins mostly use 20 standard amino acids, 100,000 times 20 

less than in the English language. Smaller vocabularies might be problematic if protein 21 

sequences encode a similar complexity as sentences. (3) We found UniRef50 to contain 22 

almost ten times more tokens (9.5 billion amino acids) than the largest existing NLP corpus (1 23 

billion words). Simply put: Wikipedia is roughly ten times larger than Webster’s Third New 24 

International Dictionary and the entire UniProt is over ten times larger than Wikipedia. As a 25 

result, larger models might be required to absorb the information provided. 26 

 We trained the bi-directional language model ELMo on UniRef50. Then we assessed 27 

the predictive power of the embeddings by application to tasks on two levels: per-residue 28 

(word-level) and per-protein (sentence-level). For the per-residue prediction task, we predicted  29 

secondary structure in three (helix, strand, other) and eight states (all DSSP [44]), as well as 30 

long intrinsic disorder in two states. For the per-protein prediction task, we implemented the 31 

predictions of protein subcellular localization in ten classes and a binary classification into 32 

membrane-bound and water-soluble proteins. We used publicly available data sets from two 33 

recent methods that achieved break-through performance through Deep Learning, namely 34 

NetSurfP-2.0 (secondary structure [45]) and DeepLoc (localization [46]). We compared the 35 

performance of the SeqVec embeddings to state-of-the-art methods, and also to a popular 36 

embedding tool for protein sequences, namely ProtVec [47]. ProtVec assumes that every 37 

token or word consists of three consecutive residues (amino acid 3-mers). During training, 38 

each protein sequence in SwissProt [48] is split into overlapping 3-mers and another tool from 39 

NLP, namely the word2vec (skip-gram) model [49] is used to predict adjacent words, given the 40 

word at the center. After training, protein sequences can be split into overlapping 3-mers which 41 

are mapped onto a 100-dimensional latent space. While this approach can capture local 42 

information, it loses information on sequence ordering and the resulting embeddings are 43 

insensitive to their context (non-contextualized), i.e. the same word results in the same 44 

embedding regardless of the specific context.  45 
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Results 1 

SeqVec embeddings compress UniProt50.  SeqVec, our ELMo-like implementation was 2 

trained for three weeks on 5 Nvidia Titan GPUs with 12 GB memory each. The model was 3 

trained until its perplexity (uncertainty when predicting the next token) converged at around 4 

10.5 (Fig. SOM_1). Training and testing were not split due to technical limitations (incl. 5 

shortage of CPU/GPU). ELMo was designed to reduce the risk of overfitting by sharing weights 6 

between forward and backward LSTMs and by using dropout. The model had about 93M 7 

(mega/million) free parameters which was about 100-times smaller than the 9.6G (giga/billion) 8 

tokens to predict. Similar approaches have shown that even todays largest models (750M free 9 

parameters), are not able to overfit on a large corpus (250M protein sequences) [50]. 10 

 11 

Per-residue performance high, not highest.  NetSurfP-2.0 uses HHblits profiles along with 12 

advanced combinations of Deep Learning architectures [45]. NetSurfP-2.0 could be today’s 13 

best method for protein secondary structure prediction, reaching a three-state per-residue 14 

accuracy Q3 of 82-85% (lower value: small very non-redundant CASP12 set, upper value: 15 

larger slightly more redundant TS115 and CB513 sets; Table 1, Fig. 1; note that several 16 

contenders such as Spider3 and RaptorX appear to differ by fewer than three standard errors). 17 

All six methods developed by us (DeepProf, DeepSeqVec, DeepProf+SeqVec, DeepProtVec, 18 

DeepOneHot, DeepBLOSUM65) fell short of reaching this mark (Fig. 1A, Table 1). When 19 

comparing methods that use only single protein sequences as input (DeepSeqVec, 20 

DeepProtVec, DeepOneHot, DeepBLOSUM65; all white in Table 1), the proposed SeqVec 21 

outperformed others by 5-10 (Q3), 5-13 (Q8) and 0.07-0.12 (MCC) percentage points. The 22 

evolutionary information (DeepProf with HHblits profiles) remained about 4-6 percentage 23 

points below NetSurfP-2.0 (Q3=76-81%, Fig. 1, Table 1). Depending on the test set, using 24 

SeqVec embeddings instead of evolutionary information (DeepSeqVec: Fig. 1A, Table 1) 25 

remained 2-3 percentage points below that mark (Q3=73-79%, Fig. 1A, Table 1). Using both 26 

evolutionary information and SeqVec embeddings (DeepProf+SeqVec) improved over both, 27 

but still did not reach the top (Q3=77-82%). In fact, the embedding alone (DeepSeqVec) did 28 

not surpass any of the existing methods using evolutionary information (Fig. 1A). 29 

For the prediction of intrinsic disorder, we observed the same: NetSurfP-2.0 performed 30 

best; our implementation of evolutionary information (DeepProf) performed worse (Fig. 1B, 31 

Table 1). However, for this task the embeddings alone (DeepSeqVec) performed relatively 32 

well, exceeding our in-house implementation of a model using evolutionary information 33 

(DeepSeqVec MCC=0.575-0.591 vs. DeepProf MCC=0.506-0.516, Table 1). The combination 34 

of evolutionary information and embeddings (DeepProf+SeqVec) improved over using 35 

evolutionary information alone but did not improve over the SeqVec embeddings for disorder. 36 

Compared to other methods, the embeddings alone reached similar values (Fig. 1B).  37 

 38 

 39 

 40 

 41 

 42 
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 1 

Figure 1: Performance comparisons.  The predictive power of the ELMo-like SeqVec embeddings 2 

was assessed for per-residue (upper row) and per-protein (lower row). Methods using evolutionary 3 

information (mostly in the form of alignments) are highlighted by a ‘#’ above the bar(s) of the methods. 4 

Approaches using only the proposed SeqVec embeddings are highlighted by a ‘*’. Panel A compared 5 

three-state secondary structure prediction of the proposed SeqVec to other embeddings based on single 6 

protein sequences. Panel B compared predictions of intrinsically disordered residues. Panel C 7 

compared per-protein predictions for subcellular localization between top methods (numbers taken from 8 

DeepLoc [46] and embeddings based on single sequences (ProtVec [47] and our SeqVec). Panel D: 9 

the same data set was used to assess the predictive power of SeqVec for the classification of a protein 10 

into membrane-bound and water-soluble. 11 

 12 

 13 
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Table 1: Per-residue predictions: secondary structure and disorder ◊ 1 

D
a

ta
  Prediction task Secondary structure Disorder 

Method Q3 (%) Q8 (%) MCC FPR 

C
A

S
P

1
2

 

NetSurfP-2.0 (hhblits)* 82.4 71.1 0.604 0.011 

NetSurfP-1.0* 70.9 - - - 

Spider3* 79.1 - 0.582 0.026 

RaptorX* 78.6 66.1 0.621 0.045 

Jpred4* 76.0 - - - 

DeepSeqVec 73.1 ± 1.3 61.2 ± 1.6 0.575 ±0.075 0.026 ±0.008 

DeepProf 76.4 ± 2.0 62.7 ± 2.2 0.506 ±0.057 0.022 ±0.009 

DeepProf + SeqVec 76.5 ± 1.5 64.1 ±1.5 0.556 ±0.080 0.022 ±0.008 

DeepProtVec 62.8 ± 1.7 50.5 ± 2.4 0.505 ±0.064 0.016 ±0.006 

DeepOneHot 67.1 ± 1.6 54.2 ± 2.1 0.461 ±0.064  0.012 ±0.005 

DeepBLOSUM65 67.0 ± 1.6 54.5 ± 2.0 0.465 ±0.065 0.012 ±0.005 

T
S

1
1
5
 

NetSurfP-2.0 (hhblits)* 85.3 74.4 0.663 0.006 

NetSurfP-1.0* 77.9 - - - 

Spider3* 83.9 - 0.575 0.008 

RaptorX* 82.2 71.6 0.567 0.027 

Jpred4* 76.7 - - - 

DeepSeqVec 79.1 ±0.8 67.6 ±1.0 0.591 ±0.028 0.012 ±0.001 

DeepProf 81.1 ±0.6 68.3 ±0.9 0.516 ±0.028 0.012 ±0.002 

DeepProf + SeqVec 82.4 ±0.7 70.3 ±1.0 0.585 ±0.029 0.013 ±0.003 

DeepProtVec 66.0 ± 1.0 54.4 ± 1.3 0.470 ±0.028 0.011 ±0.002 

DeepOneHot 70.1 ± 0.8 58.5 ± 1.1 0.476 ±0.028 0.008 ±0.001 

Deep BLOSUM65 70.3 ± 0.8 58.1 ± 1.1 0.488 ±0.029 0.007 ±0.001 

C
B

5
1
3

 

NetSurfP-2.0 (hhblits)* 85.3 72.0 - - 

NetSurfP-1.0* 78.8 - - - 

Spider3* 84.5 - - - 

RaptorX* 82.7 70.6 - - 

Jpred4* 77.9 - - - 

DeepSeqVec 76.9 ± 0.5 62.5 ± 0.6 - - 

DeepProf 80.2 ± 0.4 64.9 ± 0.5 - - 

DeepProf + SeqVec 80.7 ± 0.5 66.0 ± 0.5  - - 

DeepProtVec 63.5 ± 0.4 48.9 ± 0.5 - - 

DeepOneHot 67.5 ± 0.4 52.9 ± 0.5 - - 

DeepBLOSUM65 67.4 ± 0.4 53.0 ± 0.5 - - 

 2 

*  Performance comparison for 3- and 8-class secondary structure prediction as well as disorder 3 

prediction for the CASP12, TS115 and CB513 data sets. Accuracies (Q3, Q10) are given in 4 

percentage. Results marked with * are taken from NetSurfP-2.0 [45]; the authors did not provide 5 

standard errors. DeepSeqVec, DeepProtVec, DeepOneHot and DeepBLOSUM65 use only 6 

information from single protein sequences. All methods using evolutionary information are marked 7 

by gray boxes, these performed best (best in each set marked by bold numbers) for all tasks and 8 

measures.  9 
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Per-protein performance close to best.  For the task of predicting subcellular localization in 1 

ten classes, DeepLoc [46] appears to be today’s best tool with Q10=78% (Fig. 1C, Table 2). 2 

Our simple embeddings model DeepSeqVec-Loc reached second best performance together 3 

with iLoc-Euk [51] with Q10=68% (Fig. 1C, Table 2). For this application the SeqVec 4 

embeddings outperformed several other methods that use evolutionary information by up to 5 

Q10=13%. 6 

 7 

Table 2: Per-protein predictions: localization and membrane/globular ◊ 8 

 Localization  Membrane/globular 

Method Q10 (%) Gorodkin (MCC)  Q2 MCC 

LocTree2* 61 0.53    

MultiLoc2* 56 0.49    

CELLO* 55 0.45    

WoLF PSORT* 57 0.48    

YLoc* 61 0.53    

SherLoc2* 58 0.51    

iLoc-Euk* 68 0.64    

DeepLoc* 78 0.73  92.3 0.844 

DeepSeqVec-Loc 68 ± 1 0.61 ± 0.01  86.8 ± 1.0 0.725 ± 0.021  

DeepProtVec-Loc 42 ± 1 0.19 ± 0.01  77.6 ± 1.3 0.531 ± 0.026  
 

9 

◊  Performance for per-protein prediction of subcellular localization and the classification of proteins 10 

into membrane-bound and water-soluble. Results marked with * were taken from DeepLoc [46]; 11 

the authors did not provide standard errors. The results reported for SeqVec and ProtVec were 12 

based on single protein sequences, i.e. methods NOT using evolutionary information (neither 13 

during training nor testing). All methods using evolutionary information are marked by gray boxes, 14 

these performed best (best in each set marked by bold numbers) for all tasks and measures. 15 

 16 

Performance for the classification into membrane-bound and water-soluble proteins followed 17 

a similar trend (Fig. 1D, Table 2): while DeepLoc still performed best (Q2=92.3, MCC=0.844), 18 

DeepSeqVec-Loc reached just a few percentage points lower (Q2=86.8±1.0, 19 

MCC=0.725±0.021; full confusion matrix Figure SOM_2). In contrast to this, ProtVec, another 20 

method using only single sequences, performed substantially worse (Q2=77.6±1.3, 21 

MCC=0.531±0.026).  22 

 23 

Visualizing results.  Lack of insight often triggers the misunderstanding that machine learning 24 

methods are black box solutions barring understanding. In order to interpret the SeqVec 25 

embeddings, we have projected the protein-embeddings of the per-protein prediction data 26 

upon two dimensions using t-SNE [52]. We performed this analysis once for the raw 27 

embeddings (SeqVec, Fig. 2 upper row) and once for the hidden layer representation of the 28 

per-protein network (DeepSeqVec-Loc) after training (Fig. 2 lower row). All t-SNE 29 

representations in Fig. 2 were created using 3,000 iterations and the cosine distance as metric. 30 

The two analyses differed only in that the perplexity was set to 20 for one (SeqVec) and 15 for 31 

the other (DeepSeqVec-Loc). The t-SNE representations were colored either according to their 32 
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localization within the cell (left column of Fig. 2) or according to whether they are membrane-1 

bound or water-soluble (right column). 2 

 3 

 Despite never provided during training, the raw embeddings appeared to capture some 4 

signal for classifying proteins by localization (Fig. 2, upper row, left column). The most 5 

consistent signal was visible for extra-cellular proteins. Proteins attached to the cell membrane 6 

or located in the endoplasmic reticulum also formed well-defined clusters. In contrast, the raw 7 

embeddings neither captured an ambiguous signal for nuclear nor for mitochondrial proteins. 8 

Through training, the network improved the signal to reliably classify mitochondrial and plastid 9 

proteins. However, proteins in the nucleus and cell membrane continued to be poorly 10 

distinguished via t-SNE. 11 

Coloring the t-SNE representations for membrane-bound or water-soluble proteins 12 

(Fig. 2, right column), revealed that the raw embeddings already provided well-defined clusters 13 

although never trained on membrane prediction (Fig. 2, upper row). After training, the 14 

classification was even better (Fig. 2, lower row). 15 

 16 

 17 

Figure 2: t-SNE representations of SeqVec. t-SNE projections from embedded space onto a 2D 18 

representation; upper row: unsupervised 1024-dimensional ELMo embeddings, averaged over all 19 

residues in a protein; lower row: supervised 32 dimensional ELMo embeddings, reduced via per-protein 20 

machine learning predictions. The redundancy reduced DeepLoc data set was used for this figure. 21 

Proteins were colored according to their localization (left column) or whether they are membrane-bound 22 

or water-soluble (right column). Not all proteins in the data set have annotations for the classification 23 

into membrane-bound/water-soluble and have thus been excluded in the panels on the right. 24 
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The plots in the upper row suggest that the SeqVec embeddings already capture various aspects of 1 

proteins prior even to supervised learning. After supervised training (lower row), this information is 2 

transferred to, and further distilled by networks with simple architectures to distinguish aspects of protein 3 

function (sometimes drastically, as in the case of membrane boundness, as suggested by the coloured 4 

clusters in the bottom right panel). 5 

After training machine learning devices (lower row) on the supervised tasks of localization (left) and 6 

membrane boundness (right) prediction, the power of SeqVeq embeddings to distinguish aspects of 7 

function and structure become even more pronounced, sometimes drastically so, as suggested by the 8 

almost fully separable clusters in the lower right panel. 9 

 10 

Analogously, we used t-SNE projections to analyze SeqVec embeddings on different 11 

levels of complexity inherent to proteins (Fig. 3), ranging from the building blocks (amino acids, 12 

Fig. 3a), to secondary structure defined protein classes (Fig. 3b), over functional features (Fig. 13 

3c), and onto the macroscopic level of the kingdoms of life and viruses (Fig. 3d; classifications 14 

in panels 3b-3d based on SCOPe [53]). Similar to the results described in [50], our projection 15 

of the embedding space confirmed that the model successfully captured bio-chemical and bio-16 

physical properties on the most fine-grained level, i.e. the 20 standard amino acids (Fig. 3a). 17 

For example, aromatic amino acids (W, F, Y) are well separated from aliphatic amino acids (A, 18 

I, L, M, V) and small amino acids (A, C, G, P, S, T) are well separated from large ones (F, H, 19 

R, W, Y). The projection of the letter indicating an unknown amino acid (X), clustered closest 20 

to the amino acids alanine (A) and glycine (G) (data not shown). The two amino acids with the 21 

smallest side chains might be least biased towards other biochemical features like charge and 22 

they are the 2nd (A) and 4th (G) most frequent amino acids in our training set (Table SOM_1). 23 

Rare (O, U) and ambiguous amino acids (Z, B) were removed from the projection as their 24 

clustering showed that the model could not learn a reasonable embedding from the very small 25 

number of samples. 26 

 Crude structural classes as defined in SCOPe (Fig. 3b) were also captured by SeqVec 27 

embeddings. Although the embeddings were only trained to predict the next amino acid in a 28 

protein sequence, well separated clusters emerged from those embeddings in structure space. 29 

Especially, membrane proteins and small proteins formed distinct clusters (note: protein length 30 

did not affect the t-SNE grouping). Also, these results indicated that the embeddings captured 31 

complex relationships between proteins which are not directly observable from sequence 32 

similarity alone as SCOPe was redundancy reduced at 40% sequence identity. Therefore, the 33 

new embeddings could complement sequence-based structural classification as it was shown 34 

that the sequence similarity does not necessarily lead to structural similarity [54].   35 

 To further investigate the clusters which emerged from the SCOPe data set, we colored 36 

the same data set based on protein functions (Fig. 3c) and kingdoms (Fig. 3d). This analysis 37 

revealed that many of the small, distinct clusters emerged based on protein functions. For 38 

example, transferases and hydrolases form many small clusters. When increasing the level of 39 

abstraction by coloring the proteins according to their kingdoms, we observed certain clusters 40 

which are dominated by e.g. eukaryotes. Comparing the different views captured in panels 3b-41 

3 revealed connections, e.g. that all-beta or small proteins dominate in eukaryotes (compare 42 

blue and orange islands in Fig. 3b with the same islands in Fig. 3d – colored blue to mark 43 

eukaryotes). 44 

 45 
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 1 

Figure 3: Modeling the language of life. 2D t-SNE projections of unsupervised SeqVec embeddings 2 

highlight different realities of proteins and their constituent parts, amino acids. Panels (b) to (d) are 3 

based on the same data set (Structural Classification of Proteins – extended (SCOPe) 2.07, redundancy 4 

reduced at 40%). For these plots, only subsets of SCOPe containing proteins with the annotation of 5 

interest (enzymatic activity (c) and kingdom (d)) may be displayed. Panel (a): the embedding space 6 

confirms: the 20 standard amino acids are clustered according to their biochemical and biophysical 7 

properties, i.e. hydrophobicity, charge or size. The unique role of Cysteine (C, mostly hydrophobic and 8 

polar) is conserved. Panel (b): SeqVec embeddings capture structural information as annotated in the 9 

main classes in SCOPe without ever having been explicitly trained on structural features. Panel (c): 10 

many small, local clusters share function as given by the main classes in the Enzyme Commission 11 

Number (E.C.). Panel (d): similarly, small, local clusters represent different kingdoms of life. 12 

 13 

CPU/GPU time used.  Due to the sequential nature of LSTMs, the time required to embed a 14 

protein grew linearly with protein length. Depending on the available main memory or GPU 15 

memory, this process could be massively parallelized. To optimally use available memory, 16 

batches are typically based on tokens rather than on sentences. Here, we sorted proteins 17 

according to their length and created batches of ≤15K tokens that could still be handled by a 18 

single Nvidia GeForce GTX1080 with 8GB VRAM. On average the processing of a single 19 

protein took 0.027s when applying this batch-strategy to the NetSurfP-2.0 data set (average 20 

protein length: 256 residues, i.e. shorter than proteins for which 3D structure is not known). 21 

The batch with the shortest proteins (on average 38 residues, corresponding to 15% of the 22 

average protein length in the whole data set) required about one tenth (0.003s per protein, i.e. 23 
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11% of that for whole set). The batch containing the longest protein sequences in this data set 1 

(1578 residues on average, corresponding to 610% of average protein length in the whole data 2 

set), took about six times more (1.5s per protein, i.e. 556% of that for whole set). When creating 3 

SeqVec for the DeepLoc set (average length: 558 residues; as this set does not require a 3D 4 

structure, it provides a more realistic view on the distribution of protein lengths), the average 5 

processing time for a single protein was 0.08 with a minimum of 0.006 for the batch containing 6 

the shortest sequences (67 residues on average) and a maximum of 14.5s (9860 residues on 7 

average).  Roughly, processing time was linear with respect to protein length. On a single Intel 8 

i7-6700 CPU with 64GB RAM, processing time increased by roughly 50% to 0.41s per protein, 9 

with a minimum and a maximum computation time of 0.06 and 15.3s, respectively. Compared 10 

to an average processing time of one hour for 1000 proteins when using evolutionary 11 

information directly [45], this implied an average speed up of 120-fold on a single GeForce 12 

GTX1080 and 9-fold on a single i7-6700 when predicting structural features; the inference time 13 

of DeepSeqVec for a single protein is on average 0.0028s. 14 

 15 

Discussion 16 

ELMo alone did not suffice for top performance.  On the one hand, none of our 17 

implementations of ELMo reached anywhere near today’s best (NetSurfP-2.0 for secondary 18 

structure and protein disorder and DeepLoc for localization and membrane protein 19 

classification; Fig. 1, Table 1, Table 2). Clearly, “just” using ELMo did not suffice to crack the 20 

challenges. On the other hand, some of our solutions appeared surprisingly competitive given 21 

the simplicity of the architectures. In particular for the per-protein predictions, for which SeqVec 22 

clearly outperformed the previously popular ProtVec [47] approach and even commonly used 23 

expert solutions (Fig. 1, Table 2: no method tested other than the top-of-the-line DeepLoc 24 

reached higher numerical values). For that comparison, we used the same data sets but could 25 

not rigorously compare standard errors which were unavailable for other methods. Estimating 26 

standard errors for our methods suggested that the differences were statistically significant as 27 

the difference was more than 7 sigmas for all methods (except DeepLoc (Q10=78) and iLoc-28 

Euk(Q10=68)). The results for localization prediction implied that frequently used methods 29 

using evolutionary information (all marked with stars in Table 2) did not clearly outperform our 30 

simple ELMo-based tool (DeepSeqVec-Loc in Table 2). This was very different for the per-31 

residue prediction tasks: here almost all top methods using evolutionary information 32 

numerically outperformed the simple model built on the ELMo embeddings (DeepSeqVec in 33 

Fig. 1 and Table 1). However, all models introduced in this work were deliberately designed to 34 

be relatively simple to demonstrate the predictive power of SeqVec. More sophisticated 35 

architectures using SeqVec are likely to outperform the approaches introduced here. 36 

 When we combined ELMo with evolutionary information for the per-residue predictions, 37 

the resulting tool still did not quite achieve top performance (Q3(NetSurfP-2.0)=85.3% vs. 38 

Q3(DeepProf + SeqVec)=82.4%, Table 1). This might suggest some limit for the usefulness of 39 

ELMo/SeqVec. However, it might also point to the more advanced solutions realized by 40 

NetSurfP-2.0 which applies two LSTMs of similar complexity as our entire system (including 41 

ELMo) on top of their last step leading to 35M (35 million) free parameters compared to about 42 

244K for DeepProf + SeqVec. Twenty times more free parameters might explain some fraction 43 

of the success, however due to limited GPU resources, we could not test how much. 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/614313doi: bioRxiv preprint 

https://doi.org/10.1101/614313
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 Why did the ELMo-based approach improve more (relative to competition) for per-1 

protein than for per-residue predictions? Per-protein data sets were over two orders of 2 

magnitude smaller than those for per-residue (simply because every protein constitutes one 3 

sample in the first and protein length samples for the second). It is likely that ELMo helped 4 

more for the smaller data sets because the unlabeled data is pre-processed so meaningful 5 

that less information needs to be learned by the ANN during per-protein prediction. This view 6 

was strongly supported by the t-SNE [52] results (Fig. 2): ELMo apparently had learned enough 7 

to realize a very rough clustering into localization and membrane/not. 8 

 We picked four particular tasks as proof-of-principle for our ELMo/SeqVec approach. 9 

These tasks were picked because recently developed methods implemented deep learning 10 

and the associated data sets for training and testing were made publicly available. We cannot 11 

imagine why our findings should not hold for other tasks of protein prediction and welcome the 12 

community to test our SeqVec for their particular tasks. We assume that our findings will be 13 

more relevant for small data sets than for large ones. For instance, we assume predictions of 14 

inter-residue contacts to improve less, and those for protein binding sites possibly more. 15 

 16 

Good and fast predictions without using evolutionary information.  SeqVec predicted 17 

secondary structure and protein disorder over 100-times faster on a single 8GB GPU than the 18 

top-of-the-line prediction method NetSurfP-2.0 which requires to retrieve evolutionary 19 

information summarized in alignments. For some applications, the speedup might outweigh 20 

the reduction in performance. Therefore, embedding-based approaches such as SeqVec 21 

suggested a promising solution toward solving one of the biggest challenges for computational 22 

biology: How to efficiently handle the exponentially increasing number of sequences? Here, 23 

we showed that relevant information from large unannotated biological databases can be 24 

compressed into embeddings that condense and abstract the underlying biophysical 25 

principles. These embeddings, essentially the weights of a neural network, help as input to 26 

many problems for which smaller sets of annotated data are available (secondary structure, 27 

disorder, localization). Although the compression step needed to build the SeqVec model is 28 

very GPU-intensive, it can be performed in a centralized way using large clusters. After 29 

training, the model can be used as input by any consumer hardware. Such solutions are ideal 30 

to support researches without access to expensive cluster infrastructure. 31 

 32 

Modeling the language of life?  Our ELMo implementation learned to model a probability 33 

distribution over a protein sequence. The sum over this probability distribution constituted a 34 

very informative input vector for any machine learning task. It also picked up context-35 

dependent protein motifs without explicitly explaining what these motifs are relevant for. In 36 

contrast, tools such as ProtVec will always create the same vectors for a k-mer, regardless of 37 

the residues surrounding this k-mer in a particular protein sequence.  38 

Our hypothesis had been that the ELMo embeddings learned from large databases of 39 

protein sequences (without annotations) could extract a probabilistic model of the language of 40 

life in the sense that the resulting system will extract aspects relevant both for per-residue and 41 

per-protein prediction tasks. All the results presented here have added independent evidence 42 

in full support of this hypothesis. For instance, the three state per-residue accuracy for 43 

secondary structure prediction improved by over eight percentage points through ELMo (Table 44 

1: e.g. for CB513: Q3(DeepSeqVec)=76.9% vs. Q3(DeepBLOSUM65)=67.4%, i.e. 9.4 45 
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percentage points corresponding to 14% of 67.4), the per-residue MCC for protein disorder 1 

prediction also rose (Table 1: e.g. TS115: MCC(DeepSeqVec)=0.591 vs. 2 

MCC(DeepBLOSUM65)=0.488, corresponding to 18% of 0.488). On the per-protein level, the 3 

improvement over the previously popular tool extracting “meaning” from proteins, ProtVec, was 4 

even more substantial (Table 1: localization: Q10(DeepSeqVec-Loc)=68% vs. 5 

Q10(DeepProtVec-Loc)=42%, i.e. 62% rise over 42; membrane: Q2(DeepSeqVec-6 

Loc)=86.8% vs. Q2 (DeepProtVec-Loc)=77.6%, i.e. 19% rise over 77.6). We could 7 

demonstrate this reality even more directly using the t-SNE [52] results (Fig. 2 and Fig. 3): 8 

different levels of complexity ranging from single amino acids, over some localizations, 9 

structural features, functions and the classification of membrane/non-membrane had been 10 

implicitly learned by SeqVec without any training on such data. Clearly, our ELMo-driven 11 

implementation succeeded to model some aspects of the language of life as proxied for 12 

proteins. 13 

 14 

Conclusion 15 

We have shown that it is possible to capture and transfer knowledge, e.g. biochemical or 16 

biophysical properties, from a large unlabeled data set of protein sequences to smaller, 17 

labelled data sets. In this first proof-of-principle, our comparably simple models have already 18 

reached promising performance for a variety of per-residue and per-protein prediction tasks 19 

obtainable from only single protein sequences as input, that is: without any direct evolutionary 20 

information, i.e. without alignments. This reduces the dependence on the time-consuming and 21 

computationally intensive calculation of protein profiles, allowing the prediction of per-residue 22 

and per-protein features of a whole proteome within less than an hour. For instance, on a 23 

single GeForce GTX 1080, the creation of embeddings and predictions of secondary structure 24 

and subcellular localization for the whole human proteome took about 32 minutes. Building 25 

more sophisticated architectures on top of the proposed SeqVec will increase sequence-based 26 

performance further. 27 

Our new SeqVec embeddings may constitute an ideal starting point for many different 28 

applications in particular when labelled data are limited. The embeddings combined with 29 

evolutionary information might even improve over the best available methods, i.e. enable high-30 

quality predictions. Alternatively, they might ease high-throughput predictions of whole 31 

proteomes when used as the only input feature. Alignment-free predictions bring speed and 32 

improvements for proteins for which alignments are not readily available or limited, such as for 33 

intrinsically disordered proteins, for the Dark Proteome, or for particular unique inventions of 34 

evolution. The trick was to tap into the potential of Deep Learning through transfer learning 35 

from large repositories of unlabeled data by modeling the language of life. 36 

 37 

Methods 38 

Data.  UniRef50 training of SeqVec: We trained ELMo on UniRef50 [32], a sequence 39 

redundancy-reduced subset of the UniProt database clustered at 50% pairwise sequence 40 

identity (PIDE). It contained 25 different letters (20 standard and 2 rare amino acids (U and O) 41 

plus 3 special cases describing either ambiguous (B, Z) or unknown amino acids (X); Table 42 
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SOM_1) from 33M proteins with 9,577,889,953 residues. Each protein was treated as a 1 

sentence and each amino acid was interpreted as a single word. We referred to the resulting 2 

embedding as to SeqVec (Sequence-to-Vector). 3 

Visualization of projection space: The current release of the “Structural Classification 4 

Of Proteins” (SCOPe, [53]) database (2.07) contains 14323 proteins at a redundancy level of 5 

40%. Functions encoded by the Enzyme Commission number (E.C., [55]) were retrieved via 6 

the "Structure Integration with Function, Taxonomy and Sequence” (SIFTS) mapping [56]. 7 

SIFTS allows among other things a residue-level mapping between UniProt and PDB entries 8 

and a mapping from PDB identifiers to E.C.s. If no function annotation was available for a 9 

protein or if the same PDB identifier was assigned to multiple E.C.s, it was removed from Fig. 10 

3c. Taxonomic identifiers were used to map proteins to one of the 3 kingdoms of life or to 11 

viruses. Again, proteins were removed if no such information was available. The number of 12 

iterations for the t-SNE projections was set again to 3000 and the perplexity was adjusted 13 

(perplexity=5 for Fig. 3a and perplexity=30 for Fig. 3b-3d). 14 

Per-residue level: secondary structure & intrinsic disorder (NetSurfP-2.0).  To simplify 15 

compatibility, we used the data set published with a recent method seemingly achieving the 16 

top performance of the day in secondary structure prediction, namely NetSurfP-2.0 [45]. 17 

Performance values for the same data set exist also for other recent methods such as Spider3 18 

[57], RaptorX [58, 59] and JPred4 [60]. The set contains 10,837 sequence-unique (at 25% 19 

PIDE) proteins of experimentally known 3D structures from the PDB [61] with a resolution of 20 

2.5 Å (0.25 nm) or better, collected by the PISCES server [62]. DSSP [44] assigned secondary 21 

structure and intrinsically disordered residues are flagged (residues without atomic 22 

coordinates, i.e. REMARK-465 in the PDB file). The original seven DSSP states (+ 1 for 23 

unknown) were mapped upon three states using the common convention: [G,H,I] → H (helix), 24 

[B,E] → E (strand), all others to O (other; often misleadingly referred to as coil or loop). As the 25 

authors of NetSurfP-2.0 did not include the raw protein sequences in their public data set, we 26 

used the SIFTS file to obtain the original sequence. Only proteins with identical length in SIFTS 27 

and NetSurfP-2.0 were used. This filtering step removed 56 sequences from the training set 28 

and three from the test sets (see below: two from CB513, one from CASP12 and none from 29 

TS115). We randomly selected 536 (~5%) proteins for early stopping (cross-training), leaving 30 

10,256 proteins for training. All published values referred to the following three test sets (also 31 

referred to as validation set): TS115 [63]: 115 proteins from high-quality structures (<3Å) 32 

released after 2015 (and at most 30% PIDE to any protein of known structure in the PDB at 33 

the time); CB513 [64]: 513 non-redundant sequences compiled 20 years ago (511 after SIFTS 34 

mapping); CASP12 [65]: 21 proteins taken from the CASP12 free-modelling targets (20 after 35 

SIFTS mapping; all 21 fulfilled a stricter criterion toward non-redundancy than the two other 36 

sets; non-redundant with respect to all 3D structures known until May 2018 and all their 37 

relatives). Each of these sets covers different aspects of the secondary structure prediction 38 

problem: CB513 and TS115 only use structures determined by X-ray crystallography, applying 39 

similar cutoffs with respect to redundancy (30%) and resolution (2.5-3.0Å). While they serve 40 

as a good proxy for a baseline performance, CASP12 might better reflect the true 41 

generalization capability for unseen proteins including NMR and Cryo-EM as means of 42 

structure determination. Also, the strict redundancy reduction based on publication date 43 

reduces the bias towards well studied families. Nevertheless, toward our objective of 44 

establishing a proof-of-principle, these sets sufficed. All test sets had fewer than 25% PIDE to 45 

any protein used for training and cross-training (ascertained by the NetSurfP-2.0 authors). To 46 
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compare methods using evolutionary information and those using our new word embeddings, 1 

we took the HHblits profiles published along with the NetSurfP-2.0 data set. 2 

Per-protein level: localization & membrane proteins (DeepLoc). Localization prediction 3 

was trained and evaluated using the DeepLoc data set [46] for which performance was 4 

measured for several methods, namely: LocTree2 [66], MultiLoc2 [67], SherLoc2 [68], CELLO 5 

[69], iLoc-Euk [51], WoLF PSORT [70] and YLoc [71]. The data set contained proteins from 6 

UniProtKB/Swiss-Prot [48] (release: 2016_04) with experimental annotation (code: 7 

ECO:0000269). The DeepLoc authors mapped these to ten classes, removing all proteins with 8 

multiple annotations. All these proteins were also classified into water-soluble or membrane-9 

bound (or as unknown if the annotation was ambiguous). The resulting 13,858 proteins were 10 

clustered through PSI-CD-HIT [72, 73] (version 4.0; at 30% PIDE or Eval<10-6). Adding the 11 

requirement that the alignment had to cover 80% of the shorter protein, yielded 8,464 clusters. 12 

This set was split into training and testing by using the same proteins for testing as the authors 13 

of DeepLoc. The training set was randomly sub-divided into 90% for training and 10% for 14 

determining early stopping (cross-training set). 15 

 16 

ELMo terminology.  One-hot encoding (also known as sparse encoding) assigns each word 17 

(referred to as token in NLP) in the vocabulary an integer N used as the Nth component of a 18 

vector with the dimension of the vocabulary size (number of different words). Each component 19 

is binary, i.e. either 0 if the word is not present in a sentence/text or 1 if it is. This encoding 20 

drove the first application of machine learning that clearly improved over all other methods in 21 

protein prediction [1-3]. TF-IDF represents tokens with the product of “frequency of token in 22 

data set” times “inverse frequency of token in document”. Thereby, rare tokens become more 23 

relevant than common words such as “the” (so called stop words). This concept resembles 24 

that of using k-mers for database searches [33], clustering [74], motifs [75, 76], and prediction 25 

methods [66, 70, 77-81]. Context-insensitive word embedding replaced expert features, such 26 

as TF-IDF, by algorithms that extracted such knowledge from unlabeled corpus such as 27 

Wikipedia, by either predicting the neighboring words, given the center word (skip-gram) or 28 

vice versa (CBOW). This became known in Word2Vec [49] and showcased for computational 29 

biology through ProtVec [49, 82]. More specialized implementations are mut2vec [83] learning 30 

mutations in cancer, and phoscontext2vec [84] identifying phosphorylation sites. The 31 

performance of context-insensitive approaches was pushed to its limits by adding sub-word 32 

information (FastText [85]) or global statistics on word co-occurance (GloVe [86]). Context-33 

sensitive word embedding started a new wave of word embedding techniques for NLP in 2018: 34 

the particular embedding renders the meaning of the phrase “paper tiger” dependent upon the 35 

context. Popular examples like ELMo [41] and Bert [87] have achieved state-of-the-art results 36 

in several NLP tasks. Both require substantial GPU computing power and time to be trained 37 

from scratch. However, in this work we focused on ELMo as it allows processing of sequences 38 

of variable length. This ELMo model consists of a single CharCNN [88] over the characters in 39 

a word and two layers of bidirectional LSTMs that introduce the context information of 40 

surrounding words. The CharCNN transforms all characters within a single word via an 41 

embedding layer into vector space and runs multiple CNNs of varying window size (here: 42 

ranging from 1 to 7) and number of filters (here: 32, 64, …, 1024). In order to obtain a fixed-43 

dimensional vector for each word, regardless of its length, the output of the CNNs is max-44 

pooled and concatenated. The first bi-directional LSTM operates directly on the output of the 45 

CharCNN, while the second LSTM layer takes the output of the first LSTM as input. As 46 
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described in the original ELMo publication, the weights of the forward and the backward model 1 

are shared in order to reduce the memory overhead of the model and to combat overfitting. 2 

Even though, the risk of overfitting is small due to the high imbalance between number of 3 

trainable parameters (93M) versus number of tokens (9.3B), dropout at a rate of 10% was 4 

used to reduce the risk of overfitting. This model is trained to predict the next word given all 5 

previous words in a sentence. To the best of our knowledge, the context-sensitive ELMo has 6 

not been adapted to protein sequences, yet. 7 

 8 

ELMo adaptation.  In order to allow more flexible models and easily integrate into existing 9 

solutions, we have used and generated ELMo as word embedding layers. No fine-tuning was 10 

performed on task-specific sequence sets. Thus, researchers could just replace their current 11 

embedding layer with our model to boost their task-specific performance. Furthermore, it will 12 

simplify the development of custom models that fit other use-cases. The embedding model 13 

takes a protein sequence of arbitrary length and returns 3076 features for each residue in the 14 

sequence. These 3076 features were derived by concatenating the outputs of the three internal 15 

layers of ELMo (1 CharCNN-layer, 2 LSTM-layers), each describing a token with a vector of 16 

length 1024. For simplicity, we summed the components of the three 1024-dimensional vectors 17 

to form a single 1024-dimensional feature vector describing each residue in a protein. In order 18 

to demonstrate the general applicability of SeqVec, we neither fine-tuned the model on a 19 

specific prediction task, nor optimized the combination of the three internal layers. Instead, we 20 

used the standard ELMo configuration [41] with the following changes: (i) reduction to 28 21 

tokens (20 standard and 2 rare (U,O) amino acids + 3 special tokens describing ambiguous 22 

(B,Z) or unknown (X) amino acids + 3 special tokens for ELMo indicating padded elements 23 

(‘<MASK>’) or the beginning (‘<S>’) or the end of a sequence (‘</S>’)), (ii) increase number of 24 

unroll steps to 100, (iii) decrease number of negative samples to 20, (iv) increase token number 25 

to 9,577,889,953.  26 

 27 

SeqVec 2 prediction.  On the per-residue level, the predictive power of the new SeqVec 28 

embeddings was demonstrated by training a small two-layer Convolutional Neural Network 29 

(CNN) in PyTorch using a specific implementation [89] of the ADAM optimizer [90], cross-30 

entropy loss, a learning rate of 0.001 and a batch size of 128 proteins. The first layer (in 31 

analogy to the sequence-to-structure network of earlier solutions [1, 2]) consisted of 32-filters 32 

each with a sliding window-size of w=7. The second layer (structure-to-structure [1, 2]) created 33 

the final predictions by applying again a CNN (w=7) over the output of the first layer. These 34 

two layers were connected through a rectified linear unit (ReLU) and a dropout layer [91] with 35 

a dropout-rate of 25% (Fig. 4, left panel). This simple architecture was trained independently 36 

on six different types of input, each with a different number of free parameters. (i) DeepProf 37 

(14,000=14k free parameters): Each residue was described by a vector of size 50 which 38 

included a one-hot encoding (20 features), the profiles of evolutionary information (20 features) 39 

from HHblits as published previously [45], the state transition probabilities of the Hidden-40 

Markov-Model (7 features) and 3 features describing the local alignment diversity. (ii) 41 

DeepSeqVec (232k free parameters): Each protein sequence is represented by the output 42 

from SeqVec. The resulting embedding described each residue as a 1024-dimensional vector. 43 

(iii) DeepProf+SeqVec (244k free parameters): This model simply concatenated the input 44 

vectors used in (i) and (ii). (iv) DeepProtVec (25k free parameters): Each sequence was split 45 

into overlapping 3-mers each represented by a 100-dimensional ProtVec [47]. (v) DeepOneHot 46 
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(7k free parameters): The 20 amino acids were encoded as one-hot vectors as described 1 

above. Rare amino acids were mapped to vectors with all components set to 0. Consequently, 2 

each protein residue was encoded as a 20-dimensional one-hot vector. (vi) DeepBLOSUM65 3 

(8k free parameters): Each protein residue was encoded by its BLOSUM65 substitution matrix 4 

[92]. In addition to the 20 standard amino acids, BLOSUM65 also contains substitution scores 5 

for the special cases B, Z (ambiguous) and X (unknown), resulting in a feature vector of length 6 

23 for each residue.  7 

On the per-protein level, a simple feed-forward neural network was used to 8 

demonstrate the power of the new embeddings. In order to ensure equal-sized input vectors 9 

for all proteins, we averaged over the embeddings of all residues in a given protein resulting 10 

in a 1024-dimensional vector representing any protein in the data set. ProtVec representations 11 

were derived the same way, resulting in a 100-dimensional vector. These vectors (either 100-12 

or 1024 dimensional) were first compressed to 32 features, then dropout with a dropout rate 13 

of 25%, batch normalization [93] and a rectified linear Unit (ReLU) were applied before the 14 

final prediction (Fig. 4, right panel). In the following, we refer to the models trained on the two 15 

different input types as (i) DeepSeqVec-Loc (33k free parameters): average over SeqVec 16 

embedding of a protein as described above and (ii) DeepProtVec-Loc (320 free parameters): 17 

average over ProtVec embedding of a protein. We used the following hyper-parameters: 18 

learning rate: 0.001, Adam optimizer with cross-entropy loss, batch size: 64. The losses of the 19 

individual tasks were summed before backpropagation. Due to the relatively small number of 20 

free parameters in our models, the training of all networks completed on a single Nvidia 21 

GeForce GTX1080 within a few minutes (11 seconds for DeepSeqVec-Loc, 15 minutes for 22 

DeepSeqVec). 23 

 24 

Figure 4: On the left the architecture of the model used for the per-residue level predictions 25 

(secondary structure and disorder) is sketched, on the right that used for per-protein level predictions 26 

(localization and membrane/not membrane). The ’X’, on the left, indicates that different input features 27 

corresponded to a difference in the number of input channels, e.g. 1024 for SeqVec or 50 for profile-28 

based input. The letter ’W’ refers to the window size of the corresponding convolutional layer (W=7 29 

implies a convolution of size 7x1). 30 
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 1 

Evaluation measures.  To simplify comparisons, we ported the evaluation measures from the 2 

publications we derived our data sets from, i.e. those used to develop NetSurfP-2.0 [45] and 3 

DeepLoc [46]. All numbers reported constituted averages over all proteins in the final test sets. 4 

This work aimed at a proof-of-principle that the SeqVec embedding contain predictive 5 

information. In the absence of any claim for state-of-the-art performance, we did not calculate 6 

any significance values for the reported values. 7 

Per-residue performance: Toward this end, we used the standard three-state per-8 

residue accuracy (Q3=percentage correctly predicted in either helix, strand, other [1]) along 9 

with its eight-state analog (Q8). Predictions of intrinsic disorder were evaluated through the 10 

Matthew’s correlation coefficient (MCC [94]) and the False-Positive Rate (FPR) representative 11 

for tasks with high class imbalance. For completeness, we also provided the entire confusion 12 

matrices for both secondary structure prediction problems (Fig. SOM_2). Standard errors were 13 

calculated over the distribution of each performance measure for all proteins. 14 

 Per-protein performance: The predictions whether a protein was membrane-bound or 15 

water-soluble were evaluated by calculating the two-state per set accuracy (Q2: percentage of 16 

proteins correctly predicted), and the MCC. A generalized MCC using the Gorodkin measure 17 

[95] for K (=10) categories as well as accuracy (Q10), was used to evaluate localization 18 

predictions. Standard errors were calculated using 1000 bootstrap samples, each chosen 19 

randomly by selecting a sub-set of the predicted test set that had the same size (draw with 20 

replacement). 21 

 22 

Availability 23 

The pre-trained ELMo-like SeqVec model and a description on how to implement the 24 

embeddings into existing methods can be found here: https://github.com/Rostlab/SeqVec . 25 

Accessed 10th September 2019. 26 

Predictions on secondary structure, disorder and subcellular localization based on SeqVec can 27 

be accessed under: https://embed.protein.properties . Accessed 10th September 2019. 28 

The NetSurfP-2.0 data set [45] used for the evaluation of SeqVec on the task of secondary 29 

structure and disorder prediction are publicly available under: 30 

http://www.cbs.dtu.dk/services/NetSurfP/ . Accessed 10th September 2019. 31 

The DeepLoc data set [46] used for the evaluation of SeqVec on the task of subcellular 32 

localization prediction are publicly available under: 33 

http://www.cbs.dtu.dk/services/DeepLoc/data.php . Accessed 10th September 2019. 34 
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Cytoplasm
Endoplasmic reticulum
Golgi apparatus
Lysosome/Vacuole

Mitochondrion
Nucleus
Peroxisome
Plastid
Extracellular

Membrane

Soluble Membrane-bound

S
u
p
er
v
is
ed

Cell membrane
Cytoplasm
Endoplasmic reticulum
Golgi apparatus
Lysosome/Vacuole

Mitochondrion
Nucleus
Peroxisome
Plastid
Extracellular

Soluble Membrane-bound
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(a) Amino acids

A

R

N

D

C

EQ

G

H

I

L

K

M

F

P

S
T

W
Y

V

Hydrophobic (aromatic)
Hydrophobic (aliphatic)
Positive
Negative
Polar neutral

Special cases
Small (<130 Dalton)
Medium
Big (>150 Dalton)

(b) SCOPe

All alpha
All beta
Alpha & beta (a|b)
Alpha & beta (a+b)

Multi-domain
Membrane, cell surface
Small proteins

(c) Enzyme Commission number (E.C.)

Oxidoreductases
Transferases
Hydrolases
Lyases

Isomerases
Ligases
Translocases

(d) Kingdoms

Eukaryota
Bacteria

Archaea Viruses

1
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Input: 1024

Drop. 25% + ReLU

Batchnorm.

10 Locs.

Hidden-Layer: 32

Mem.

Input: Sequence with length LX

Conv. W=7X x32

32

W=732

3-Class 
DSSP

8-Class 
DSSP

Disorder

Dropout 25% + ReLU
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