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Abstract 

Autism spectrum disorder (ASD) has clinically and genetically heterogeneous characteristics. 

Here, we show a two-step genome-wide association study (GWAS). In the first step, we observed 

no significant associations in a GWAS including 597 cases and 370 controls. In the second step, 

we conducted a cluster analysis using k-means with 15 clusters based on Autism Diagnostic 

Interview-Revised (ADI-R) scores and history of vitamin treatment. We then conducted GWAS 

by each subgroup of cases vs all controls (cluster-based GWAS) and identified significant 

associations with 93 chromosomal loci that satisfied the genome-wide significance threshold of 

P<5.0×10−8. These loci included previously reported candidate genes for ASD: CDH9, MED13L, 

SOX5, CADM2, CADM1, DAB1, SEMA5A, RORA, MED13, COBL, EPHA7, HIF1AN, ICE1, 

PML, and WNT7B. We observed that clustering-based GWAS, even with a smaller sample size, 

revealed abundant significant associations. These findings suggest that clustering may 

successfully identify subgroups that are aetiologically more homogeneous. 
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Introduction 

Autism spectrum disorder (ASD) has heterogeneous characteristics, in terms of both phenotypic 

features and genetics. Clinically, ASD is mainly characterized by difficulties in communication 

and repetitive behaviours1, but ASD also shows many other symptoms2. Regarding genetics, 

previous studies have not consistently identify relatively common genetic variants that are 

associated with an increased risk of ASDs3, although several lines of evidence suggest strong 

genetic components contribute to the susceptibility to ASDs. There are higher concordance rates 

of ASDs in monozygotic twins (92%) than in dizygotic twins (10%)4. The sibling recurrence risk 

ratio (λs) is 22 for ASD5. The Human Gene module of the Simons Foundation Autism Research 

Initiative (SFARI) Gene serves as a comprehensive, up-to-date reference for all known human 

genes associated with ASD6 and currently demonstrates ~1,000 genes that have potential links to 

ASD, indicating the heterogeneity of ASD. In addition to the phenotype and genotype 

heterogeneities, ASD shows heterogeneous responses to interventions. Several kinds of 

pharmacological treatments are suggested but the effects of these treatments are controversial7. 

If the heterogeneous phenotypes and responses to treatment in some way correspond to 

differences in genotype, grouping persons with ASD according to phenotypic variables may 

increase the chances of identifying common genetic susceptibility factors. A simulation study 

demonstrated that analysis of case subsets could be a powerful strategy to uncover some of the 

hidden heritability of common complex disorders8. Several studies of ASD, Alzheimer’s disease, 

neuroticism, or asthma indicated that items or symptoms were in some degree useful to identify 

more genetically homogeneous subgroups of these diseases than broadly defined ones9-12. In 

recent years, ASD has been investigated using machine learning methods13,14. Machine learning 

employs artificial intelligence techniques to discover useful masked patterns. Clustering 
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algorithms of machine learning could make novel and potentially more homogeneous clusters, 

but these algorithms using phenotypic variables have not, to the best of our knowledge, been 

applied to subgrouping multifactorial diseases to date. 

In the present study, we explored whether grouping persons with ASD using clustering 

algorithms with phenotypic and responses to treatment variables can be used to discriminate 

more genetically homogeneous ASD persons. We applied machine learning k-means15 or affinity 

propagation (AP)16 algorithms to cluster analysis. Based on these clusters, we conducted 

genome-wide association studies (GWASs). We used genetic data to evaluate whether our 

clusters identify biologically homogeneous subgroups. 

 

Results 

Clustering 

We used phenotypic variables, history of treatment, and genome-wide genotypic data from the 

Simons Simplex Collection (SSC)17, the largest cohort of autism simplex families amassed to 

date. The SSC is a core project and resource of the SFARI6. 

To classify persons with ASD into more homogeneous subgroups, we conducted cluster 

analyses using phenotypic variables of Autism Diagnostic Interview-Revised (ADI-R)18 scores 

and history of vitamin treatment. We chose these variables because the ADI-R is one of the most 

reliable estimates of ASD and has the ability to evaluate substructure domains of ASD. Among 

the treatments19, we selected the variable history of vitamin treatment because we recently found 

that a cluster of persons with ASD is associated with potential responsiveness to vitamin B6 

treatment20,21. The history of treatment is not always compatible with responsiveness, but we 

considered that continuous treatment indicates responsiveness to some degree. The SSC dataset 
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includes history of treatment but not variables of responsiveness. 

We used k-means15 or AP16 algorithms. The k-means algorithm requires cluster numbers 

determined by researchers. AP algorithms do not need a priori cluster numbers; rather, the 

algorithm itself finds the appropriate one. When using k-means algorithms, we chose 2, 3, 4, 5, 

10, 15, and 20 clusters. Interestingly, we observed that the AP analysis classified the participants 

into 36 groups. 

 

Cluster-based genome-wide association study 

GWASs were applied to male ASD probands and their unaffected brothers. In the first step, we 

conducted GWAS for all 597 male probands vs all 370 unaffected brothers using the sib 

transmission/disequilibrium test (sib-TDT)22. We observed no significant associations (Fig. 1). 

In the second step, we conducted GWAS by each subgroup of the probands vs unaffected 

brothers as controls without the brothers of the members of the subgroup being analysed (cluster-

based GWAS) (Fig. 2) using k-means or AP algorithms. We applied the Cochran-Armitage trend 

test23,24 and Fisher’s exact test25 to both algorithms. Notably, we observed that the number of 

genome-wide significant loci increased as the number of clusters increased when the Cochran-

Armitage trend test was applied (Table 1). In contrast, when Fisher’s exact test was applied, zero 

to three significant loci were observed for numbers of clusters between two and 36. Two reasons 

may explain the difference in the results between the two tests. The first is the difference in 

analysis methods for the genetic case-control data. The Cochran-Armitage trend test examines 

the risk of disease in those who do not have the allele of interest, those who have a single copy, 

and those who are homozygous. Fisher’s exact test examines the allele frequency in cases and 

controls. The disease model and mode of inheritance may influence the difference, although 
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those of ASD are largely unknown26,27. Our data might indicate that a case-control study of ASD 

should be analysed by genotype. The second is the conservative nature of Fisher’s exact test. The 

quantile-quantile (Q-Q) plots of the cluster-based GWAS with 20 clusters by k-means using 

Fisher’s exact test demonstrated that almost all observed p-values were high compared to the 

expected distribution of p-values. In addition, genomic inflation factor (λ) values ranged from 

0.615 to 0.738, and the average was 0.683, which was very small compared to one (Table 1). We 

therefore regarded the Cochran-Armitage trend test to be a more appropriate method in the 

present cluster-based GWAS. 

Regarding appropriate cluster numbers, we compared the Q-Q plots and λ values among 

the analyses and observed that as the number of clusters increased, the observed p-values were 

lower than the expected distribution of p-values. For instance, the Q-Q plots for the cluster-based 

GWAS with 20 clusters by k-means using the Cochran-Armitage trend test demonstrated that the 

observed p-values were very low compared to the expected distribution of p-values. In addition, 

λ values ranged from 1.022 to 1.093, and the average was 1.054 (Table 1), indicating that the rate 

of false positives was relatively high. Several lines of evidence suggest that regarding an 

appropriate threshold of inflation factor λ, empirically, a value of less than 1.050 is deemed safe 

for avoiding false positives28-30. 

In contrast, inflation factor λ values of the cluster-based GWAS with 15 clusters by k-

means ranged from 1.018 to 1.065, and the average was 1.043, which was below 1.050 (Table 1 

and Fig. 3). 

According to the above results, we considered the cluster-based GWAS with 15 clusters 

by k-means using the Cochran-Armitage trend test to be the most appropriate approach to the 

present dataset. The characteristics of each cluster are presented in Table 2. 
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Our results indicate that clustering by specific phenotypic variables might be informative 

and provide the best model for identifying aetiologically similar cases of ASD. 

 

Gene interpretation 

Among the cluster-based GWASs, we mainly presented here the results using the Cochran-

Armitage trend test by k-means with 15 clusters. In this cluster-based GWAS, we identified 

significant associations with 93 chromosomal loci that satisfied the genome-wide significance 

threshold of P < 5.0 × 10−8 (Table 1 and Fig. 3), and this cluster-based GWAS demonstrates that 

a total of 93 single nucleotide polymorphisms (SNPs), including 45 intragenic and 48 intergenic 

SNPs, satisfied the genome-wide significance threshold (Table 3). Among them, 9 genes 

corresponded to the Human Gene module of the SFARI Gene scoring system6; CDH9 (score 4) 

in Cluster 3; MED13L (score 2, Rare Single Gene Mutation, Syndromic) in Clusters 7 and 13; 

SOX5 (Rare Single Gene Mutation, Syndromic, Genetic Association) in Cluster 9; CADM2 

(score 4) in Cluster 9; CADM1 (score 4, Rare Single Gene Mutation) in Cluster 10; DAB1 (score 

5) in Cluster 11; SEMA5A (score 3) in Cluster 12; RORA (Rare Single Gene Mutation, 

Syndromic, Genetic Association, Functional) in Cluster 13; and MED13 (score 2, syndromic) in 

Cluster 15. 

In the SFARI Gene scoring system, ranging from “Category 1”, which indicates “high 

confidence”, through “Category 6”, which denotes “evidence does not support a role”. Genes 

predisposing to autism in the context of a syndromic disorder (e.g., fragile X syndrome) are 

placed in a separate category. Rare single gene variants, disruptions/mutations, and sub-

microscopic deletions/duplications directly linked to ASD are placed in “Rare Single Gene 

Mutation”. The relatively high correspondence between our results in part and the SFARI Gene 
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scoring system indicates that the statistically significant loci we found may indeed be associated 

with ASD subgroups. 

In addition to genes in the Human Gene module of the SFARI Gene, several important 

genes associated with ASD or other related disorders31,32 from previous reports were included in 

our findings as follows: COBL in Cluster 12, EPHA7 in Cluster 3, HIF1AN in Cluster 4, ICE1 in 

Cluster 2, PML in Cluster 15, and WNT7B in Cluster 8 previously reported with ASD33-38; LHPP 

in Cluster 7 previously reported with depression39; KIDINS220 in Cluster 7 previously reported 

with intellectual disability40; ALPL in Cluster 6 previously reported with deleterious neurological 

outcome41; and PAX2 in Cluster 4 previously reported with development of the central nervous 

system42. These findings suggest that the statistically significant SNPs might explain autistic 

symptoms because these diseases are suggested to share common aetiology, even in part, with 

ASD31,32. Associations at the remaining significant loci that were not in the SFARI module or 

described above have not been previously reported, and to the best of our knowledge, some of 

them might be novel findings, although further confirmation is needed. 

 

Replication study 

To further validate the associations identified in the GWASs, we performed replication studies on 

another independent dataset from SSC, 1Mv3. In the first step, we conducted GWAS for all 712 

male probands vs all 354 unaffected brothers using the sib-TDT test, and we observed no 

significant associations. 

In the second step, we classified the male probands by k-means into 15 clusters and 

conducted GWAS for each subgroup vs the unaffected brothers as controls without the siblings 

of the members of the subgroup being analysed using the Cochran-Armitage trend test23,24. We 
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observed that the number of genome-wide significant loci slightly increased as the number of 

clusters increased (Supplementary Table S1), as observed with the Omni2.5 data set. In this 

cluster-based GWAS using the Cochran-Armitage trend test by k-means with 15 clusters, we 

identified significant associations at 8 chromosomal loci that satisfied the genome-wide 

significance threshold of P < 5.0 × 10−8. Furthermore, this cluster-based GWAS demonstrated 

that a total of 8 SNPs, including 5 intragenic and 3 intergenic SNPs, satisfied the genome-wide 

significance threshold (Supplementary Table S2). 

Between the results from the Omni2.5 and 1Mv3 datasets, we observed no consistent 

genes that displayed genome-wide significance, although a consistent increase in the number of 

genome-wide significant loci as the numbers of clusters increased was observed. One possible 

explanation might be the extremely heterogeneous features of the ASD genotype. If the genotype 

has more than 1,000 genes6, each analysis with a sample size of less than one hundred vs 

hundreds with 15 clusters could find different genes. 

 

Discussion 

To the best of our knowledge, this is the first study to demonstrate that grouping persons with 

ASD using clustering algorithms is useful to discriminate more genetically homogeneous ASD 

persons. We observed many statistically significant SNPs, which is consistent with the findings 

from previous studies, and significant high odds ratios and corresponding reasonable lambda 

values, indicating our results indeed have reasonable validity. 

Previous studies regarding ASD, Alzheimer’s disease, neuroticism, or asthma found that 

items or symptoms showed, to some degree, larger odds ratios of the odds among cases’ loci to 

the odds among controls’ loci compared to that from previous studies using broadly defined 
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disease diagnoses9-12. These findings may indicate that GWAS with a symptom or an item could 

identify genetically more homogeneous subgroups and let us hypothesize that relatively 

reasonable combination of symptoms or items could identify more genetically homogeneous 

subgroups. Clustering algorithms could make essentially homogeneous clusters. To the best of 

our knowledge, these algorithms using phenotypic variables have not been applied for 

subgrouping multifactorial diseases to date. The present study demonstrate that clustering is one 

of the successful approaches to identifying more homogeneous subgroups. 

Selection of variables is a critical issue in conducting clustering analysis. In this study, we 

focused on ADI-R variables and treatment, which have been indicated as candidates in previous 

studies18,20,21. We believe this protocol is an appropriate way of identifying subgroups of ASD. 

Nevertheless, further clustering utilizing other variables is warranted because ASD is highly 

heterogeneous and there are many variables for evaluating ASD symptoms. We can obtain many 

kinds of clusters from various views, and the ultimate cluster is the individuals themselves 

because every person has different genetic factors; however, we believe that one of the goals of 

clustering is the identification of subgroups based on treatment responsiveness, which may 

indicate the implementation of precision medicine for ASD. 

AP is a relatively recently developed unsupervised machine learning clustering algorithm 

that identifies clusters of similar points using a set of points and a set of similarity values 

between the points and provides a representative example, called an exemplar, for each cluster16. 

We identified 36 clusters and 1,253 significant loci using the AP analysis, but our data also 

showed that the lambda values ranged from 1.032 to 1.093, with an average lambda value of 

1.076 (Table 1). Although AP is a useful algorithm to identify clusters, the lambda values 

exceeded the appropriate threshold, i.e., less than 1.050, necessary to avoid false positives28-30. 
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Therefore, the observed significant loci might include both true positives and false positives and 

we selected here the Cochran-Armitage trend test. 

One of the most important findings of our study was that reasonably decreasing the 

sample size could increase the statistical power. A plausible explanation is that our clustering 

may have successfully identified subgroups that are aetiologically more homogeneous. To date, 

genetic studies have been conducted with huge sample sizes and have found modest to moderate 

impacts of genetic factors on multifactorial diseases, called missing heritability43. The present 

study indicates that the reason for the observed modest effects in previous genetic studies may be 

disease heterogeneity because we observed several significantly high odds ratios. Our approach 

using clustering algorithms in machine learning methods may be a breakthrough approach for 

dealing with the issue of missing heritability and for identifying disease architectures. GWAS 

with a larger sample size is useful, but our data indicate that another strategy, such as clustering 

by phenotype, may also be useful. 

Our data strongly highlights the relevance of cluster-based GWAS as a means to identify 

more homogeneous subgroups of ASD than broadly defined ASD. The present study may 

provide clues to discover the aetiologies of ASD as well as that of other multifactorial diseases. 

 

Methods 

We conducted the present study in accordance with the guidelines of the Declaration of 

Helsinki44 and all other applicable guidelines. The protocol was reviewed and approved by the 

institutional review board of Tohoku University Graduate School of Medicine, and written 

informed consent from all participants was obtained by the Simons Foundation Autism Research 

Initiative (SFARI)17. For participants under the age of 18 year, they obtained informed consent 
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from a parent and/or legal guardian. Additionally, for participants 10 to 17 years of age, they 

obtained informed assent from the individuals.  

 

Datasets 

We used phenotypic variables, history of treatment, and genome-wide genotypic data from the 

Simons Simplex Collection (SSC)17, the largest cohort of autism simplex families amassed to 

date. The SSC establishes a repository of genetic samples from simplex families. 

The SSC data were publicly released in October 2007 and are directly available from the 

SFARI. From the SSC dataset, we used data from 614 affected white male child or adult 

probands who have no missing information about ADI-R scores and vitamin treatment and 391 

unaffected brothers for whom Omni2.5 array data were available for subsequent clustering and 

genetic analyses. We excluded participants whose ancestries were estimated to be different from 

the other participants using principal component analyses (PCAs) performed by EIGENSOFT 

version 7.2.145,46. We also performed PCA for the genotype data in our study. Based on the PCA 

analyses, we excluded data beyond 4 standard deviations of principle components 1 or 2 

(Supplementary Fig. S1). Therefore, we used data from 597 probands and 370 unaffected 

siblings. 

In the replication study, we used the SSC 1Mv3 dataset. In the dataset, data from 735 

affected male child or adult probands with no missing information about ADI-R scores and 

vitamin treatment and 387 unaffected child or adult male siblings were available. After 

conducting PCA, we excluded data beyond 4 standard deviations of principal components 1 or 2 

as outliers. Therefore, we used data from 712 probands and 354 unaffected siblings in the 

replication study. 
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Cluster analysis 

In the cluster analysis, we used phenotypic variables of the Autism Diagnostic Interview-Revised 

(ADI-R) score and treatment18. Among ADI-R scores, “The total score for the Verbal 

Communication Domain on the ADI-R algorithm minus the total score for the Nonverbal 

Communication Domain on the ADI-R algorithm”, “The total score for the Nonverbal 

Communication Domain on the ADI-R algorithm”, “The total score for the Restricted, 

Repetitive, and Stereotyped Patterns of Behavior Domain on the ADI-R algorithms”, and “The 

total score for the Reciprocal Social Interaction Domain on the ADI-R algorithms” were included 

in the preprocessed dataset. Among the histories of treatments, the use of vitamins, though it 

does not guarantee effectiveness, was also included in the preprocessed dataset because we 

recently found that a cluster of persons with ASD is associated with potential responsiveness to 

vitamin B6 treatment21. 

We applied machine learning k-means15 or affinity propagation (AP)16 algorithms to 

conduct a cluster analysis to divide the dataset including data from ASD persons into subgroups 

using phenotype variables and history of treatment. The k-means algorithm requires cluster 

numbers determined by researchers. AP algorithms do not need a priori cluster numbers, as the 

algorithm itself finds the appropriate number. When using k-means algorithms, we chose 2, 3, 4, 

5, 10, 15, and 20 clusters. The ordinary k-means algorithm was first applied to the preprocessed 

dataset to divide the participants into more homogeneous subgroups15. Then, we used the 

relatively recently developed AP algorithm16. AP is an unsupervised clustering analysis using a 

message-passing-based algorithm. In the present study, AP was performed without diagonal 

components using a dumping factor of 0.9. These analyses were performed with the scikit-learn 
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toolkit in Python 2.7 (Supplementary Information S1, Supplementary Information S2 and 

Supplementary Information S3)47. 

The cluster analyses described above were performed in the replication study as well. 

 

Genotype data and quality control 

We used the SSC dataset, in which probands and unaffected siblings had already been genotyped 

in other previous studies17,48. In the discovery-stage genome-wide association study (GWAS), all 

members of each family were analysed on the same array version, the Illumina HumanOmni2.5, 

which has approximately 2,450,000 probes. We excluded SNPs with a minor allele frequency 

(MAF) < 0.01, call rate < 0.95, and Hardy-Weinberg equilibrium test P < 0.000001 and obtained 

genotype data for 1000 participants in SSC. 

In the replication study, we used genotyping data generated using the Illumina BeadChip 

in the SSC 1Mv3 datasets. We applied the same quality control criteria as those used in the 

discovery-stage GWAS. 

 

Statistical analysis 

In the discovery studies and in the replication studies, GWAS were applied to ASD probands and 

unaffected siblings. In the first step, we conducted a GWAS for all male probands vs all 

unaffected male siblings using sib-TDT analyses. The first step association test was the sib-TDT 

for all cases and controls. In the second step, we conducted a GWAS by each subgroup of the 

male probands vs unaffected male siblings without the siblings of the members of the subgroup 

being analysed (cluster-based GWAS) using k-means15 or AP16 algorithms. We applied the 

Cochran-Armitage trend test23,24 and Fisher’s exact test25 to both algorithms. Details of the study 
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design are also indicated in Fig. 2. 

Association analyses were performed in PLINK version 1.0749 and 1.950. The detected 

SNPs were subsequently annotated using ANNOVAR51. Manhattan plots and Q-Q plots were 

generated using the 'qqman' package in R version 3.0.2. 

 

Data availability 

All the data used in the study are available only to those granted access by the Simons 

Foundation. 
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Figure legends 

Fig. 1. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for all 

males’ probands vs all males’ unaffected siblings using the sib transmission/disequilibrium 

test. 

We conducted GWAS for all 597 male probands vs all 370 unaffected brothers using the sib 

transmission/disequilibrium test (sib-TDT). We observed no significant associations in this 

GWAS. The dotted line indicates the threshold for genome-wide significance (P < 5.0 × 10−8).  

 

Fig. 2. Methods of GWAS according to each subgroup of the probands vs the unaffected 

brothers as controls without the brothers of the members of the subgroup being analysed in 

the present study. 

We call GWAS according to each subgroup of the probands vs the unaffected brothers as controls 

without the brothers of the members of the subgroup as “Cluster-based GWAS”. This panel 

shows the detailed methods of Cluster-based GWAS in the present study. 

 

Fig. 3. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for 

cluster-based males’ probands and males’ unaffected siblings who did not include 

corresponding probands by k-means algorithms with 15 clusters using Cochran-Armitage 

trend test. 

We conducted GWAS according to each subgroup of the probands vs the unaffected brothers as 

controls without the brothers of the members of the subgroup being analysed (cluster-based 

GWAS) using the k-means with 15 clusters and the Cochran-Armitage trend test. Among 15 

clusters, significant associations were observed in 14 clusters. In total, we identified significant 
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associations in 93 chromosomal loci that satisfied the genome-wide significance threshold of P < 

5.0 × 10−8. The genetic loci that were previously reported candidate genes for ASD and satisfied 

the genome-wide significance threshold are labelled. The dotted line indicates the threshold for 

genome-wide significance (P < 5.0 × 10−8).  
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Tables 

Table 1. Number of genome-wide significant loci for each clustering algorithm and test method 

using the Omni2.5 dataset with MAF <0.01 deleted 

Clustering 
algorithm 

  k-means Affinity 
propagation 

No. of clusters 1 2 3 4 5 10 15 20 36 
Test method                   
Sibling-based 
transmission 
disequilibrium test 

0 - - - - - - - - 

λ value 1.025 - - - - - - - - 
Cochran-Armitage 
trend test 

- 0 0 1 5 24 93 267 1,253 

Mean λ value 
(min-max) 

- 1.055 
(1.048-
1.061) 

1.044 
(1.033-
1.058) 

1.039 
(1.035-
1.044) 

1.023 
(1.015-
1.030) 

1.020 
(1.005-
1.031) 

1.043 
(1.018-
1.065) 

1.054 
(1.022-
1.093) 

1.076 
(1.032-
1.093) 

Fisher’s exact test - 0 0 2 2 0 2 3 1 
Mean λ value  
(min-max) 

- 0.893 
(0.885-
0.900) 

0.871 
(0.854-
0.893) 

0.868 
(0.862-
0.875) 

0.840 
(0.828-
0.847) 

0.772 
(0.734-
0.806) 

0.720 
(0.681-
0.778) 

0.683 
(0.615-
0.738) 

0.601 
(0.474-
0.708) 
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Table 2. The characteristics of each of 15 clusters by k-means in the Omni2.5 dataset 
Cluster Verbal score from 

ADI-R 
Non-verbal score 

from ADI-R 
RRB score from 

ADI-R 
Social score from 

ADI-R 
Treat
ment 
with 

vitami
n B6 
(%) 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
75
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M
in

 
M

ax
 

M
ea
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M
ax

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
75

) 

M
in

 

M
ax

 

 

1 (n = 63) 8.0 
(1.5) 

8 
(7-9) 4 11 7.0 

(1.7) 
7 

(6-8) 1 10 8.6 
(1.6) 

8 
(7-10) 6 12 18.3 

(1.3) 
18 

(17-19) 15 21 61.9 

2 (n = 41) 7.9 
(1.5) 

8 
(7-9) 4 11 12.2 

(1.5) 
13 

(11-14) 9 14 4.5 
(1.3) 

4 
(4-6) 2 7 25.3 

(1.2) 
26 

(25-26) 23 28 65.9 

3 (n = 28) 5.1 
(1.9) 

5 
(4.5-6) 0 8 4.7 

(1.8) 
5 

(3-6) 1 8 4.2 
(1.9) 

4 
(3-5) 1 9 9.5 

(1.1) 
9 

(9-10) 8 12 53.6 

4 (n = 48) 7.3 
(1.8) 

7 
(6-8) 3 11 12.4 

(1.2) 
12.5 

(12-13) 10 14 6.3 
(1.4) 

6 
(6-7) 3 9 21.1 

(1.4) 
21 

(20-22) 18 23 54.2 

5 (n = 35) 7.1 
(1.5) 

7 
(6-8) 3 10 8.4 

(1.6) 
8 

(7-9) 6 13 6.0 
(2.2) 

6 
(5-7) 1 12 12.3 

(1.6) 
12 

(11-14) 9 15 62.9 

6 (n = 50) 9.2 
(1.3) 

9 
(8-10) 6 12 12.1 

(1.5) 
12.5 

(11-13) 9 14 9.5 
(1.3) 

10 
(8-10) 7 12 25.2 

(1.3) 
25 

(24-26) 23 27 62.0 

7 (n = 40) 6.0 
(1.5) 

6 
(5-7) 3 10 10.9 

(1.7) 
11 

(9.5-12) 8 14 5.6 
(1.7) 

6 
(5-6) 3 10 16.5 

(1.1) 
16.5 

(16-17) 14 19 67.5 

8 (n = 29) 5.4 
(1.8) 

5 
(4-7) 2 9 7.1 

(1.8) 
7 

(6-8) 4 11 4.1 
(1.4) 

4 
(3-5) 1 7 20.8 

(1.5) 
21 

(20-21) 18 24 44.8 

9 (n = 35) 9.3 
(1.4) 

9 
(8-10) 6 12 6.9 

(1.6) 
7 

(5-8) 4 9 9.6 
(1.7) 

10 
(8-11) 6 12 23.1 

(1.3) 
23 

(22-24) 21 27 60.0 

10 (n = 61) 7.6 
(1.7) 

8 
(6-9) 4 12 8.5 

(1.3) 
9 

(8-9) 6 10 6.2 
(1.5) 

6 
(6-7) 3 9 23.3 

(1.6) 
23 

(22-24) 21 27 49.2 

11 (n = 45) 9.2 
(1.4) 

9 
(8-10) 6 12 12.7 

(1.4) 
13 

(12-14) 9 14 7.6 
(1.5) 

7 
(7-8) 5 12 28.2 

(1.2) 
28 

(27-29) 26 30 75.6 

12 (n = 29) 4.7 
(1.5) 

5 
(4-6) 2 8 4.4 

(1.7) 
4 

(4-6) 1 7 6.0 
(1.9) 

6 
(5-7) 3 10 14.4 

(1.5) 
14 

(13-15) 12 17 69.0 

13 (n = 32) 8.9 
(1.6) 

9 
(8-10) 5 11 3.6 

(1.7) 
4 

(2-5) 0 6 7.4 
(2.1) 

7.5 
(6-8) 3 12 12.1 

(2.1) 
13 

(10.5-14) 8 15 59.4 

14 (n = 34) 8.1 
(1.5) 

8 
(7-9) 5 12 6.2 

(1.7) 
6 

(5-8) 3 10 3.6 
(1.2) 

3.5 
(3-4) 2 6 16.5 

(1.5) 
16 

(15-18) 14 20 41.2 

15 (n = 27) 9.5 
(1.6) 

10 
(9-11) 5 12 11.0 

(1.4) 
11 

(10-12) 9 14 10.5 
(1.2) 

10 
(10-12) 8 12 20.2 

(1.6) 
20 

(19-22) 17 22 66.7 

ADI-R, Autism Diagnostic Interview-Revised; RRB, repetitive and restricted behaviours; SD, standard 
deviation; p, percentile.   
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Table 3. Association table of the cluster-based GWASs in 15 clusters by k-means in the Omni2.5 

dataset 

Cluster 
no. 

ID Chr hg19 Minor/
Major 

MAF 
(%) 

RR 95% CI P GENESYMBOL Function 

1 rs55928054 13 113425260 A/G 4.18 5.46 2.87-10.41 1.75E-08 ATP11A Intronic 

1 rs75194052 14 88001041 A/G 1.83 15.1 4.89-46.68 2.09E-08 LINC01148, 
LINC02330 

Intergenic 

2 rs77656540 5 5496528 A/G 1.15 29.79 6.29-141.03 2.81E-11 ICE1, LINC02145 Intergenic 

2 rs74733575 8 77518812 A/G 3.21 7.86 3.71-16.64 2.67E-10 LINC01111, 
ZFHX4-AS1 

Intergenic 

2 rs16875609 5 5470026 G/A 1.28 19.86 5.24-75.32 5.19E-10 ICE1 Intronic 

2 rs3806873 5 5462607 G/A 1.28 19.86 5.24-75.32 5.19E-10 ICE1 Exonic 

2 rs16875597 5 5460434 A/G 1.29 19.8 5.22-75.11 5.52E-10 ICE1 Intronic 

2 rs3806874 5 5462620 A/G 1.29 19.8 5.22-75.11 5.52E-10 ICE1 Exonic 

2 rs4702269 5 5447607 G/A 1.17 17.15 4.37-67.25 2.39E-08 ICE1 Exonic 

2 rs74752669 3 88127756 A/C 1.16 16.98 4.33-66.6 2.89E-08 CGGBP1, ZNF654 Intronic 

3 rs76626536 16 80471427 A/G 4.64 6.43 3.4-12.16 2.04E-10 LOC102724084 ncRNA_ 
Intronic 

3 rs77884662 11 13911075 A/C 1.03 21.49 5.27-87.6 9.64E-10 FAR1, 
LOC101928132 

Intergenic 

3 rs62528479 8 104219144 C/A 2.96 8.29 3.75-18.3 1.01E-09 BAALC Intronic 

3 rs74384601 11 118449313 G/A 1.03 21.43 5.26-87.36 1.02E-09 ARCN1 Intronic 

3 rs78513244 1 2360342 A/G 3.11 7.67 3.52-16.74 3.66E-09 PEX10, PLCH2 Intergenic 

3 rs11023007 11 13928677 A/G 1.16 16.07 4.44-58.17 1.42E-08 FAR1, 
LOC101928132 

Intergenic 

3 rs16895575 5 26394185 G/A 1.16 16.07 4.44-58.17 1.42E-08 LINC02211, CDH9 Intergenic 

3 rs4707805 6 94294685 G/A 1.16 16.03 4.43-58.01 1.50E-08 EPHA7, TSG1 Intergenic 

3 rs10581 1 202910318 A/G 2.75 8.43 3.66-19.41 2.38E-08 ADIPOR1 UTR3 

3 rs11106191 12 78060912 A/G 1.67 11.05 3.84-31.77 3.25E-08 E2F7, NAV3 Intergenic 

3 rs58365105 8 110971624 A/G 3.08 7.74 3.54-16.88 4.65E-08 SYBU, KCNV1 Intergenic 

4 rs74785766 20 18706805 A/G 9.57 3.36 2.17-5.18 1.96E-08 DTD1 Intronic 

4 rs112633050 20 18718066 A/G 9.62 3.34 2.16-5.15 2.29E-08 DTD1 Intronic 

4 rs10882708 10 97764915 C/A 1.64 11.63 3.88-34.84 2.69E-08 ENTPD1-AS1 ncRNA_I
ntronic 

4 rs117112406 10 24240962 A/G 1.01 21.75 4.45-106.23 3.69E-08 KIAA1217 Intronic 

4 rs118085556 10 102407984 A/G 1.02 21.62 4.43-105.62 4.07E-08 HIF1AN, PAX2 Intergenic 

6 rs76324396 1 21841196 A/G 1.27 16.1 4.23-61.25 3.32E-08 ALPL Intronic 

6 rs9621415 22 32629026 A/G 1.27 16.1 4.23-61.25 3.32E-08 SLC5A4 Intronic 

7 rs75262399 2 8920178 C/A 1.14 17.75 4.53-69.61 1.29E-08 KIDINS220 Intronic 

7 rs77055713 2 8939140 C/G 1.14 17.7 4.51-69.41 1.36E-08 KIDINS220 Intronic 

7 rs1782772 10 126147677 A/G 1.89 10.17 3.79-27.31 1.47E-08 NKX1-2, LHPP Intergenic 

7 rs77507687 2 26939229 G/A 1.89 10.17 3.79-27.31 1.47E-08 KCNK3 Intronic 

7 rs11067544 12 115786013 A/G 5.82 4.73 2.7-8.29 1.84E-08 TBX3, MED13L Intergenic 

8 rs13437654 7 12360883 A/G 2.11 12.07 4.7-30.98 9.13E-10 TMEM106B, 
VWDE 

Intergenic 

8 rs10272812 7 12322548 A/G 2.11 12.07 4.7-30.98 9.13E-10 TMEM106B, 
VWDE 

Intergenic 

8 rs7788409 7 12300659 G/A 2.12 12.03 4.69-30.89 9.72E-10 TMEM106B, Intergenic 
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VWDE 

8 rs10227871 7 12366459 A/G 2.12 12.03 4.69-30.89 9.72E-10 TMEM106B, 
VWDE 

Intergenic 

8 rs10247702 7 12323757 C/A 2.12 12.03 4.69-30.89 9.72E-10 TMEM106B, 
VWDE 

Intergenic 

8 rs60756657 20 18569645 G/A 1.46 14.44 4.54-45.89 3.06E-09 DTD1 Intronic 

8 rs11905972 20 18514464 G/A 1.46 14.4 4.53-45.76 3.25E-09 SEC23B Intronic 

8 rs117859793 8 106870076 A/G 1.06 20.11 4.93-82.07 3.67E-09 ZFPM2-AS1 ncRNA_I
ntronic 

8 rs1079506 7 12342641 A/G 2.25 10.7 4.29-26.68 3.83E-09 TMEM106B, 
VWDE 

Intergenic 

8 rs17569054 12 58381546 A/T 3.05 7.71 3.49-17.06 5.25E-09 ATP23, 
LINC02403 

Intergenic 

8 rs72582233 7 12240705 G/A 2.37 9.66 3.96-23.52 1.24E-08 THSD7A, 
TMEM106B 

Intergenic 

8 rs72582242 7 12249139 G/A 2.37 9.66 3.96-23.52 1.24E-08 THSD7A, 
TMEM106B 

Intergenic 

8 rs78193076 7 12319434 A/C 2.37 9.66 3.96-23.52 1.24E-08 TMEM106B, 
VWDE 

Intergenic 

8 rs28459566 7 12260090 G/A 2.39 9.57 3.93-23.32 1.47E-08 TMEM106B Intronic 

8 rs28550800 22 46282759 A/C 9.1 3.95 2.45-6.36 2.41E-08 ATXN10, WNT7B Intergenic 

8 rs10251962 7 12398651 G/A 2.11 9.39 3.63-24.29 2.85E-08 VWDE Intronic 

8 rs10270435 7 12418602 G/A 2.11 9.39 3.63-24.29 2.85E-08 VWDE Intronic 

8 rs77271688 7 12461020 G/A 2.12 9.36 3.62-24.22 3.01E-08 VWDE, 
LOC102725191 

Intergenic 

8 rs10231277 7 12320020 C/A 2.52 8.73 3.65-20.84 4.23E-08 TMEM106B, 
VWDE 

Intergenic 

8 rs73807820 4 37572186 A/G 1.19 15.09 4.16-54.65 4.46E-08 C4orf19 Intronic 

9 rs12322120 12 24245580 A/C 27.98 2.35 1.86-2.97 1.02E-09 SOX5 Intronic 

9 rs11831634 12 24232157 A/G 26.63 2.35 1.83-3.01 1.66E-09 SOX5 Intronic 

9 rs115282974 3 85649418 G/A 2.08 10 3.87-25.82 6.09E-09 CADM2 Intronic 

10 rs72997986 11 115396003 A/G 4.46 5.03 2.69-9.4 4.35E-08 CADM1, 
LOC101928985 

Intergenic 

10 rs73000027 11 115433485 A/G 5.35 4.43 2.5-7.83 4.49E-08 CADM1, 
LOC101928985 

Intergenic 

11 rs74036338 16 84633030 G/A 1.52 15.56 4.78-50.62 9.34E-10 COTL1 Intronic 

11 rs72676911 1 57881845 G/A 2.15 9 3.56-22.72 2.03E-08 DAB1 Intronic 

11 rs9956246 18 54960100 G/A 2.52 7.82 3.35-18.28 2.18E-08 BOD1L2, ST8SIA3 Intergenic 

12 rs7724569 5 9457341 A/G 2.34 9.79 4.02-23.86 1.30E-09 SEMA5A Intronic 

12 rs76094962 11 28485359 G/A 2.49 9.19 3.86-21.93 2.43E-09 METTL15, 
MIR8068 

Intergenic 

12 rs76015064 7 51975132 A/C 1.04 20.4 5-83.24 2.78E-09 COBL, 
POM121L12 

Intergenic 

12 rs77285841 6 135142226 A/G 1.56 12.24 4.08-36.76 1.57E-08 LOC101928304, 
ALDH8A1 

Intergenic 

12 rs60004245 6 13432162 A/G 1.56 12.24 4.08-36.76 1.57E-08 GFOD1 Intronic 

12 rs57510388 6 6788339 G/A 3.65 6.8 3.29-14.04 1.66E-08 LY86, RREB1 Intergenic 

12 rs77201757 12 108614952 A/G 1.17 15.3 4.22-55.44 3.48E-08 WSCD2 Intronic 

12 rs114018272 3 177909410 G/A 1.17 15.3 4.22-55.44 3.48E-08 LINC02015, 
LINC01014 

Intergenic 

13 rs78771643 4 48729665 T/A 1.16 22.31 5.71-87.12 1.08E-10 FRYL Intronic 

13 rs114358580 8 75211161 A/G 2.71 8.34 3.65-19.05 3.06E-09 JPH1 Intronic 

13 rs1993471 15 61040025 A/C 1.79 11.19 4.05-30.9 6.50E-09 RORA Intronic 

13 rs9651906 12 116245161 A/G 2.95 7.19 3.24-15.96 2.53E-08 TBX3, MED13L Intergenic 

13 rs7312889 12 116245839 G/A 2.95 7.19 3.24-15.96 2.53E-08 TBX3, MED13L Intergenic 
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13 rs7304809 12 116244393 G/A 2.95 7.19 3.24-15.96 2.53E-08 TBX3, MED13L Intergenic 

13 rs7140271 14 101483629 C/A 4.5 5.82 3.04-11.14 2.96E-08 MEG8, MIR379 Intergenic 

14 rs16849132 1 201575549 G/A 1.18 20.41 5.22-79.79 7.78E-10 RPS10P7, NAV1 Intergenic 

14 rs117486297 11 23647862 G/A 1.57 14.29 4.66-43.8 1.06E-09 MIR8054, LUZP2 Intergenic 

15 rs117647850 8 79156756 A/G 2.86 11.02 4.99-24.33 4.11E-12 LOC102724874, 
PKIA 

Intergenic 

15 rs116747981 3 168859282 A/G 3.38 8.29 3.95-17.37 7.88E-11 MECOM Intronic 

15 rs6808748 3 122672821 A/G 1.04 22.1 5.43-90.01 5.28E-10 SEMA5B Intronic 

15 rs1930850 13 71023752 G/A 1.18 17.85 4.95-64.4 1.78E-09 ATXN8OS, 
LINC00348 

Intergenic 

15 rs12939556 17 60325665 G/A 8.46 4.32 2.64-7.06 2.32E-09 MED13, 
TBC1D3P2 

Intergenic 

15 rs117925398 8 78908718 C/A 1.83 13.15 4.79-36.12 2.53E-09 LOC102724874, 
PKIA 

Intergenic 

15 rs79758193 13 69880137 A/G 1.56 13.26 4.43-39.72 3.14E-09 LINC00383 ncRNA_I
ntronic 

15 rs12936559 17 60325222 A/G 8.59 4.23 2.59-6.91 3.58E-09 MED13, 
TBC1D3P2 

Intergenic 

15 rs78052401 4 159836336 A/G 1.17 16.57 4.58-59.93 7.90E-09 C4orf45 Exonic 

15 rs115132435 5 172928190 A/G 1.17 16.57 4.58-59.93 7.90E-09 MIR8056, 
LOC285593 

Intergenic 

15 rs2325297 13 71028791 G/A 1.17 16.57 4.58-59.93 7.90E-09 ATXN8OS, 
LINC00348 

Intergenic 

15 rs9564696 13 71031795 A/C 1.17 16.57 4.58-59.93 7.90E-09 ATXN8OS, 
LINC00348 

Intergenic 

15 rs79566457 4 159706995 G/A 1.17 16.53 4.57-59.76 8.33E-09 FNIP2 Intronic 

15 rs77930743 15 74288796 A/G 3.64 7.37 3.58-15.16 8.97E-09 PML Intronic 

15 rs76964192 15 74300156 A/G 3.64 7.37 3.58-15.16 8.97E-09 PML Intronic 

Association tests were carried out using Cochran-Armitage test. 
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Fig. 1. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for all males’ probands vs 
all males’ unaffected siblings using the sib transmission/disequilibrium test.
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Fig. 2. GWAS according to each subgroup of the probands vs the unaffected brothers as controls 
without the brothers of the members of the subgroup being analysed in the present study.
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Fig. 3. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for cluster-based males’ 
probands and males’ unaffected siblings who did not include corresponding probands by k-means algorithms with 
15 clusters using Cochran-Armitage trend test.
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