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Abstract 

Autism spectrum disorder (ASD) has phenotypically and genetically heterogeneous 

characteristics. Here, we show a two-step genome-wide association study (GWAS). We used two 

datasets: one genotyped with the Illumina Human Omni2.5 (Omni2.5) in the discovery stage, and 

the other genotyped with the Illumina BeadChip 1Mv3 (1Mv3) in the replication stage. In the 

first step in the discovery stage, we observed no significant associations in a GWAS of 597 

probands and 370 controls. In the second step in the discovery stage, we conducted cluster 

analyses in the combined dataset of male probands using Omni2.5 and 1Mv3 using k-means with 

a cluster number of 15 based on Autism Diagnostic Interview-Revised (ADI-R) scores and 

history of vitamin treatment, and redivided it for the discovery and replication stages. We then 

conducted GWAS in each subgroup of probands vs controls without the brothers of the probands 

belonging to the subgroup being analysed (cluster-based GWAS) and identified 65 chromosomal 

loci, which included 30 intragenic loci located in 21 genes and 35 intergenic ones, that satisfied 

the threshold of P<5.0×10−8. Some of these loci were located within or near previously reported 

candidate genes for ASD: CDH5, CNTN5, CNTNAP5, DNAH17, DPP10, DSCAM, FOXK1, 

GABBR2, GRIN2A5, ITPR1, NTM, SDK1, SNCA and SRRM4. Although we observed no 

consistent genes that displayed genome-wide significance between the results from the Omni2.5 

and 1Mv3 datasets, we observed that cluster-based GWAS, even with a small sample size, 

revealed abundant significant associations. These findings suggest that clustering may 

successfully identify subgroups with relatively homogeneous disease aetiologies. Further studies 

are warranted to validate clusters and to replicate our findings in larger cohorts. 
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Introduction 

Autism spectrum disorder (ASD) has heterogeneous characteristics, in terms of both phenotypic 

features and genetics. ASD is mainly characterized by difficulties in communication and 

repetitive behaviours1, but ASD also shows many other symptoms2. Regarding genetics, previous 

studies have not consistently identified relatively common genetic variants that are associated 

with an increased risk of ASD3, although several lines of evidence suggest that genetic factors 

strongly contribute to the increased risk of ASD. Monozygotic twins have higher coincidence 

rates of ASD (92%) than dizygotic twins (10%)4. The recurrence risk ratio is 22 for ASD among 

siblings5. The Human Gene module of the Simons Foundation Autism Research Initiative 

(SFARI) Gene provides a comprehensive reference for suggested human ASD-related genes in 

an up-to-date manner6 and currently demonstrates ~1,000 genes that may have links to ASD, 

potentially indicating the heterogeneity of ASD. In addition to the phenotype and genotype 

heterogeneities, ASD shows heterogeneous responses to interventions. Several kinds of 

pharmacological treatments are suggested, but the effects of these treatments are controversial7. 

  If the heterogeneous phenotypes and responses to treatment in some way correspond to 

differences in genotype, grouping persons with ASD according to phenotypic and responses to 

treatment variables may increase the chances of identifying genetic susceptibility factors. Traylor 

et al.8 demonstrated that attempts to subgroup patients of a complex disease into more 

homogeneous ones could have more power to elucidate the hidden heritability in a simulation 

study. Several studies of ASD, Alzheimer’s disease, neuroticism, or asthma indicated that items 

or symptoms were in some degree useful to identify more high-impact genetic factors compared 

to broadly defined diagnosis9-12. Additionally, medical researchers have begun to use machine 

learning methods13, which is an artificial intelligence technique that can reveal masked patterns 
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of data sets. In view of the above-mentioned circumstances, clustering algorithms of machine 

learning could be hypothesized to make novel and more genetically homogeneous clusters, but 

these algorithms using phenotypic variables have not, to the best of our knowledge, been applied 

to subgrouping multifactorial diseases to date. 

  We therefore explored whether grouping persons with ASD using a clustering algorithm 

with phenotypic and responses to treatment variables can be used to discriminate more 

genetically homogeneous persons with ASD. We adopted a machine learning k-means14 

algorithm for cluster analysis. Based on these clusters, we conducted genome-wide association 

studies (GWASs). We regarded the GWAS results as an indicator of successful clustering in the 

present study. 

 

Results 

Clustering 

We used phenotypic variables, history of treatment, and genotypic data from the Simons Simplex 

Collection (SSC)15. The SSC is a core project and resource of the SFARI6. We used two datasets 

from the SSC: one genotyped with the Illumina Human Omni2.5 (Omni2.5) dataset in the 

discovery stage, and the other genotyped with the Illumina BeadChip 1Mv3 (1Mv3) dataset in 

the replication stage. Although we used two datasets separately when conducting GWAS, we 

conducted cluster analyses in the combined dataset of male probands, and redivided it for the 

discovery and replication stages. 

We conducted cluster analyses using phenotypic variables of Autism Diagnostic 

Interview-Revised (ADI-R)16 scores and history of vitamin treatment. We chose these variables 

because the ADI-R is one of the most reliable estimates of ASD and has the ability to evaluate 
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substructure domains of ASD. Among the treatments17, we selected the variable of history of 

vitamin treatment because we recently found that a cluster of persons with ASD is associated 

with potential responsiveness to vitamin B6 treatment18,19. The history of treatment is not always 

compatible with responsiveness, but we considered that continuous treatment indicates 

responsiveness to some degree. The SSC dataset includes history of treatment but not variables 

of responsiveness. 

We used the k-means14 algorithm. The k-means algorithm requires cluster numbers 

determined by researchers. We set a priori the cluster numbers of 2, 3, 4, 5, 10, 15, and 20. 

 

Cluster-based genome-wide association study 

In the first step we conducted GWAS in the Omni2.5 dataset, a total of 597 male probands and 

370 unaffected brothers, using the sib transmission/disequilibrium test (sib-TDT)20. We observed 

no significant associations (Fig. 1). 

In the second step, we conducted GWAS in each subgroup of probands vs controls 

without the brothers of the probands belonging to the subgroup being analysed (cluster-based 

GWAS) (Fig. 2). We applied the Cochran-Armitage trend test21 and Fisher’s exact test22. Notably, 

we observed that the number of genome-wide significant loci almost increased as the number of 

clusters increased when the Cochran-Armitage trend test was applied (Table 1). In contrast, when 

Fisher’s exact test was applied, zero to five significant loci were observed for numbers of 

clusters between two and 20. Two reasons may explain the difference in the results between the 

two tests. The first is the difference in analysis methods for the genetic case-control data. The 

Cochran-Armitage trend test examines the risk of disease in those who do not have the allele of 

interest, those who have a single copy, and those who are homozygous. Fisher’s exact test 
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examines the allele frequency in cases and controls. The disease model and mode of inheritance 

may influence the difference, although those of ASD are largely unknown23. Our data might 

indicate that a case-control study of ASD should be analysed by genotype. The second is the 

conservative nature of Fisher’s exact test. Genomic inflation factor (λ) values ranged from 0.615 

to 0.738, and the average was 0.683, which was very small compared to one (Table 1). We 

therefore regarded the Cochran-Armitage trend test as a more appropriate method in the present 

cluster-based GWAS. 

In contrast to the many previous studies in which genetically unrelated controls were 

used, we used the brothers of probands as controls. We first conducted the Cochran–Armitage 

trend test and Fisher's exact test in the whole data set, and found that the negative logarithms of 

P-values (-logP) were distributed downward compared with the expected values, as shown in 

Supplementary Fig. S1. We thus conducted the sib-TDT, a family-based association test, to take 

into account familial relationships among the participants. 

We applied the sib-TDT to one subset of cluster 1 vs all the controls using k-means with 

15 clusters, and found the observed -logP values were lower than expected, also as shown in 

Supplementary Fig. S1. Since the sib-TDT may efficiently work in a population consisting of 

substantial number of sibs, limited number of brothers of the probands in all the controls 

probably contributed to serious loss of power. Thus, we excluded the brothers of the probands in 

each subset from the controls, so that each subset of probands has no genetic relations with the 

rest of the controls, and conducted the Cochran–Armitage trend test and Fisher's exact test, as in 

many other studies. We therefore believe that, in the case of the dataset we used in the present 

study, the sib-TDT in the whole datasets GWAS and the Cochran–Armitage trend test in the 

cluster-based GWAS are the best methods to account for the relationships between participants. 
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 Clustering is an exploratory data analysis technique, and the validity of the clustering 

results may be judged by external knowledge, such as the purpose of the segmentation24. 

Although there are measures to evaluate the quality of the clusters25, the number of clusters 

should also be determined according to the research purposes. We regarded the GWAS results as 

an indicator of successful clustering in the present study. 

 Regarding appropriate cluster numbers, in addition to the GWAS results, we compared λ 

values among the analyses. For instance, λ value for the cluster-based GWAS with 20 clusters by 

k-means using the Cochran-Armitage trend test demonstrated that λ values ranged from 1.015 to 

1.107, and the average was 1.053 (Table 1), indicating that the rate of false positives was 

relatively high. Several lines of evidence suggest that regarding an appropriate threshold of 

inflation factor λ, empirically, a value of less than 1.050 is deemed safe for avoiding false 

positives26-28. 

In contrast, the inflation factor λ values of the cluster-based GWAS with a cluster number 

of 15 ranged from 1.017 to 1.091, and the average was 1.038, which was below 1.050 (Table 1 

and Fig. 3). 

According to the above results, we considered the cluster-based GWAS using the 

Cochran-Armitage trend test, coupled with k-means cluster analysis with a cluster number of 15, 

to be the most appropriate approach to the present dataset. The characteristics of each cluster are 

presented in Table 2. We further evaluated the validity of the cluster numbers with existing 

measures of the elbow method25. The elbow criterion potentially indicates the optimal number of 

clusters by identifying the point where the within-group sums of squares abruptly decrease. In 

our dataset, the point seemed to be approximately three or more (Supplementary Fig. S2); thus, 

the cluster number of 15 was included in the suggested range provided by the method. 
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Regarding sample size, if the data set consists of multiple heterogeneous subgroups, even 

a subgroup, which includes a much smaller number of homogeneous individuals, could detect 

high-impact genetic factors. Hypothetical examples of the concept of cluster-based GWAS are 

shown in Supplementary Fig. S3. As shown in this figure, in the conventional design in which a 

whole data set is involved, an actual effect of a variant would be "diluted" to a modest odds ratio 

(OR) of, e.g., 1.5, and at least thousands or tens of thousands of individuals would be required to 

detect it as a significantly associated variant. In contrast, cluster-based GWAS would be more 

likely than the conventional design to detect associated variants, without their effects being 

diluted, and with much higher ORs. Only 30 aetiologically homogeneous probands and 300 

controls can have a statistical power of approximately 0.98, calculated using the method 

proposed by Breslow and Day29, to detect an associated variant with an OR of 29, and have a 

power of approximately 0.90 even for that with a lower OR of 20. 

Our results indicate that clustering by specific phenotypic variables might provide a 

candidate example for identifying aetiologically similar cases of ASD. 

 

Gene interpretation 

Among the cluster-based GWAS, we mainly presented here the results with a cluster number of 

15 and using the Cochran-Armitage trend test. In this cluster-based GWAS, we observed 65 

chromosomal loci that satisfied the threshold of P < 5.0 × 10−8 (Table 1 and Fig. 3), and 30 out of 

the 65 loci were located within 21 genes and the remaining 35 intergenic loci (Table 3). Among 

them, 8 out of the loci were located within or near the genes associated with the Human Gene 

module of the SFARI Gene scoring system6; GABBR2 (score 4, Rare Single Gene Mutation, 

Syndromic, Functional) in Cluster 1; CNTNAP5 (score 4, Rare Single Gene Mutation, Genetic 
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Association) in Cluster 3; ITPR1 (score 4, Rare Single Gene Mutation) in Cluster 5; DNAH17 

(score 4, Rare Single Gene Mutation) in Cluster 7; SDK1 (score none, Rare Single Gene 

Mutation, Genetic Association) in Cluster 13; SRRM4 (score 5, Rare Single Gene Mutation, 

Functional) in Cluster 13; CNTN5 (score 3, Rare Single Gene Mutation, Genetic Association) in 

Cluster 14; and DPP10 (score 3, Rare Single Gene Mutation) in Cluster 15. 

In the SFARI Gene scoring system, ranging from “Category 1”, which indicates “high 

confidence”, through “Category 6”, which denotes “evidence does not support a role”. Genes of 

a syndromic disorder (e.g., fragile X syndrome) related to ASD are categorised in a different 

category. Rare single gene variants, disruptions/mutations, and sub-microscopic 

deletions/duplications related to ASD are categorised as “Rare Single Gene Mutation”. The 

relatively high correspondence between our results in part and the SFARI Gene scoring system 

indicates that the statistically significant loci we found may indeed be associated with ASD 

subgroups. 

In addition to genes in the Human Gene module of the SFARI Gene, several important 

genes associated with ASD or other related disorders30-33 from previous reports were included in 

our findings as follows: CDH5 in Cluster 14, DSCAM in Cluster 8, FOXK1 in Cluster 13, 

GRIN2A in Cluster 5, NTM in Cluster 8, and SNCA in Cluster 11 previously reported with 

ASD34-39; PLCH2 in Cluster 11 previously reported with mental retardation40; ARHGAP18 in 

Cluster 18, CDC42BPA in Cluster 3, CXCL12 in Cluster 8, HS3ST2 in Cluster 5 previously 

reported with schizophrenia41-44; KCTD12 in Cluster 9, PSAT1 in Cluster 8 previously reported 

with depressive disorder45,46; ADAMTS1 in Cluster 10, DOCK2 in Cluster 10, HS3ST2 in Cluster 

5, NAMPT in Cluster 5, NAV in Cluster 5 previously reported with Alzheimer’s disease47-51; and 

PEX10 in Cluster 11 previously reported with Down syndrome52. These findings suggest that the 
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statistically significant SNPs might explain autistic symptoms because these diseases are 

suggested to have shared aetiology, even in part, with ASD30-33. Associations at the remaining 

significant loci that were not in the SFARI module or described above have not been previously 

reported, and to the best of our knowledge, some of them might be novel findings, although 

further confirmation is needed. 

In this study, as in many previous studies, the threshold for genome-wide significance 

was set at a P-value of 5.0 × 10−8. Since the probands were categorised into 15 clusters, we also 

applied a P-value of 3.3 × 10−9, which was obtained by dividing 5.0 × 10−8 by 15, and found that 

16 loci still survived the more stringent threshold (Table 3). 

 

Replication study 

We conducted replication studies in another independent dataset of 1Mv3, a total of 712 male 

probands and 354 unaffected brothers, which had been genotyped using the 1Mv3 array. In the 

first step, we conducted GWAS in the whole dataset using the sib-TDT, and we observed no 

significant associations. 

As mentioned before, we had previously carried out cluster analyses in the combined 

dataset genotyped with either Omni2.5 or 1Mv3, and then redivided it according to the SNP 

arrays used. The characteristics of each of 15 clusters in the 1Mv3 dataset are presented in 

Supplementary Table S1. In the second step, we conducted cluster-based GWAS in the 1Mv3 

dataset using the Cochran-Armitage trend test21. We observed that the number of genome-wide 

significant loci slightly increased as the number of clusters increased (Supplementary Table S2), 

as observed with the Omni2.5 dataset. In the cluster-based GWAS with a cluster number of 15, a 

total of 7 chromosomal loci, which included one intragenic locus located in THSD4 and 6 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/614958doi: bioRxiv preprint 

https://doi.org/10.1101/614958


Narita et al, (Revised version) 
Page 11 

 
 

intergenic loci, satisfied the threshold of P < 5.0 × 10−8 (Supplementary Table S3). 

Between the results from the Omni2.5 and 1Mv3 datasets, we observed no consistent 

genes that displayed genome-wide significance, although a consistent increase in the number of 

genome-wide significant loci as the number of clusters increased was observed. Several 

explanations may be possible: First, the loci that showed genome-wide significance in the 

Omni2.5 and the 1Mv3 datasets might be almost false positives. Second, substantial differences 

in the two genotyping platforms may have affected the results of the replication study. The 

Omni2.5 array includes 2,383,385 autosomal SNPs, whereas the 1Mv3 array includes 1,147,689 

SNPs, with 675,923 shared SNPs. Third, the replication study used different controls from those 

used in the discovery study; thus, the difference in characteristics in the two groups of controls 

may also have affected the results of the replication study. Finally, the extremely heterogeneous 

features of ASD might affect the results of the replication study. If ASD is actually associated 

with more than 1,000 genes6, the aetiological mechanism involving the substantial number of 

genes must be highly complex, making it unlikely that we would identify consistently associated 

loci among subgroups. 

 

Discussion 

To the best of our knowledge, this is the first study to demonstrate that grouping persons with 

ASD using clustering algorithms is useful to discriminate more genetically homogeneous ASD 

persons. We observed many statistically significant SNPs, which is consistent with the findings 

from previous studies, and significant high ORs and corresponding reasonable lambda values, 

indicating that our results indeed have reasonable validity. 

Previous studies regarding ASD, Alzheimer’s disease, neuroticism, or asthma found that 
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items or symptoms showed, to some degree, increased ORs between the cases’ loci and controls’ 

loci compared to those from previous studies using broadly defined disease diagnoses9-12. These 

findings may indicate that GWAS with a symptom or an item could identify genetically more 

homogeneous subgroups and let us hypothesize that a relatively reasonable combination of 

symptoms or items could identify more genetically homogeneous subgroups. Clustering 

algorithms could make essentially homogeneous clusters. To the best of our knowledge, these 

algorithms using phenotypic variables have not been applied for subgrouping multifactorial 

diseases to date. The present study demonstrates that clustering is one of the successful 

approaches to identifying more homogeneous subgroups. 

Selection of variables is a critical issue in conducting clustering analysis. In this study, we 

focused on ADI-R variables and treatment, which have been indicated as candidates in previous 

studies16,18,19. We believe this protocol is an appropriate way of identifying subgroups of ASD. 

Nevertheless, further clustering utilizing other variables is warranted because ASD is highly 

heterogeneous and there are many variables for evaluating ASD symptoms. We can obtain many 

types of clusters from various views, and the ultimate cluster is the individuals themselves 

because every person has different genetic factors; however, we believe that one of the goals of 

clustering is the identification of subgroups based on treatment responsiveness, which may 

indicate the implementation of precision medicine for ASD. 

One of the most important findings of our study was that reasonably decreasing the 

sample size could increase the statistical power. A plausible explanation is that our clustering 

may have successfully identified subgroups that are aetiologically more homogeneous 

(Supplementary fig. S3) To date, genetic studies have been conducted with very large sample 

sizes and have found modest to moderate impacts of genetic factors on multifactorial diseases, 
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called missing heritability53. The present study indicates that the reason for the observed modest 

effects in previous genetic studies may be disease heterogeneity because we observed several 

significantly high ORs. Our approach using clustering algorithms in machine learning methods 

might be a breakthrough approach for dealing with the issue of missing heritability. GWAS with 

a larger sample size is useful, but our data indicate that another strategy, such as clustering by 

phenotype, may also be useful. 

Our data highlights the relevance of cluster-based GWAS as a means to identify more 

homogeneous subgroups of ASD than broadly defined one. The present study may provide clues 

to elucidate the aetiologies of ASD as well as that of other multifactorial diseases. 

 

Methods 

We conducted the present study in accordance with the guidelines of the Declaration of 

Helsinki54 and all other applicable guidelines. The protocol was reviewed and approved by the 

institutional review board of Tohoku University Graduate School of Medicine, and written 

informed consent from all participants was obtained by the Simons Foundation Autism Research 

Initiative (SFARI)15. For participants under the age of 18 years, they obtained informed consent 

from a parent and/or legal guardian. Additionally, for participants 10 to 17 years of age, they 

obtained informed assent from the individuals.  

 

Datasets 

We used phenotypic variables, history of treatment, and genotypic data from the Simons Simplex 

Collection (SSC)15. The SSC establishes a repository of phenotypic data and genetic 

data/samples from mainly simplex families. 
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The SSC data were publicly released in October 2007 and are directly available from the 

SFARI. From the SSC dataset, we used data from 614 affected white male probands who had no 

missing information about ADI-R scores and vitamin treatment and 391 unaffected brothers for 

whom genotype data, generated by the Illumina Human Omni2.5 (Omni2.5) array, were 

available for subsequent clustering and genetic analyses. We excluded participants whose 

ancestries were estimated to be different from the other participants using principal component 

analyses (PCAs) performed by EIGENSOFT version 7.2.155,56 for the genotype data. Based on 

the PCA analyses, we excluded data beyond 4 standard deviations of principle components 1 or 2 

(Supplementary Fig. S4). Therefore, we used data from 597 probands and 370 unaffected 

brothers. 

In the replication study, we used another SSC dataset genotyped using the Illumina 1Mv3 

(1Mv3) array. In the dataset, data from 735 affected male probands with no missing information 

about ADI-R scores and vitamin treatment and 387 unaffected brothers were available. After 

conducting PCA, we excluded data beyond 4 standard deviations of principal components 1 or 2 

as outliers. Therefore, we used data from 712 probands and 354 unaffected brothers in the 

replication study. 

 

Clustering 

In the cluster analysis, we used phenotypic variables of the ADI-R score and treatment16. Among 

ADI-R scores, “the total score for the Verbal Communication Domain of the ADI-R minus the 

total score for the Nonverbal Communication Domain of the ADI-R”, “the total score for the 

Nonverbal Communication Domain of the ADI-R”, “the total score for the Restricted, Repetitive, 

and Stereotyped Patterns of Behavior Domain of the ADI-R”, and “the total score for the 
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Reciprocal Social Interaction Domain of the ADI-R” were included in the preprocessed dataset. 

Among the histories of treatments, the use of vitamins, though it does not guarantee effectiveness, 

was also included in the preprocessed dataset because we recently found that a cluster of persons 

with ASD is associated with potential responsiveness to vitamin B6 treatment19. 

We applied the machine learning k-means14 algorithm to conduct a cluster analysis to 

divide the dataset including data from ASD persons into subgroups using phenotype variables 

and history of treatment. The k-means algorithm requires cluster numbers determined by 

researchers. When using k-means algorithms, we set a priori the cluster numbers of 2, 3, 4, 5, 10, 

15, and 20. We performed the analyses using the scikit-learn toolkit in Python 2.7 

(Supplementary Information S1)57. 

When conducting clustering, we combined the two datasets of male probands, one 

genotyped using the Omni2.5 array and the other genotyped using the 1Mv3 array. After 

clustering, we redivided it according to the SNP arrays used. In the discovery stage, we used the 

Omni2.5 dataset, and the 1Mv3 dataset in the replication stage. 

 

Genotype data and quality control 

We used the SSC dataset, in which probands and unaffected brothers had already been genotyped 

in other previous studies15,58. In the discovery stage, we used the dataset genotyped by the 

Omni2.5 array, which has 2,383,385 probes. We excluded SNPs with a minor allele frequency 

(MAF) < 0.01, call rate < 0.95, and Hardy-Weinberg equilibrium test P < 0.000001. 

In the replication study, where we used the dataset genotyped using the 1Mv3 array, we 

applied the same cut-off values for quality control as those used in the discovery stage. The 

1Mv3 array includes 1,147,689 SNPs. The Omni2.5 array and the 1Mv3 array shored 675,923 
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SNPs. 

 

Statistical analysis 

In the discovery studies and in the replication studies, GWAS were applied to ASD probands and 

unaffected brothers. In the first step, we conducted a GWAS for all male probands vs all 

unaffected brothers using the sib-TDT analyses. The first step association test was the sib-TDT 

for all probands and controls. In the second step, we conducted a GWAS by each subgroup of the 

male probands vs unaffected brothers without the brothers of the members of the subgroup being 

analysed (cluster-based GWAS) using the k-means14 algorithm. We applied the 

Cochran-Armitage trend test21 and Fisher’s exact test22 to both algorithms. Fig. 2 details the 

study design. 

Association analyses were performed in the PLINK software package59. The detected 

SNPs were subsequently annotated using ANNOVAR60. Manhattan plots and the 

quantile-quantile (Q-Q) plots were generated using the 'qqman' package in R version 3.0.2. 

 

Data availability 

All the data used in the study are available only to those granted access by the Simons 

Foundation. 
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Figure legends 

Fig. 1. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for all 

male probands vs their unaffected brothers using the sib transmission/disequilibrium test. 

We conducted a GWAS in the SSC dataset of 597 male probands and 370 unaffected brothers, 

genotyped by the Illumina Human Omni2.5 array, using the sib transmission/disequilibrium test 

(sib-TDT). We observed no significant associations in this GWAS with the genome-wide 

threshold of P < 5.0 × 10−8. 

 

Fig. 2. Details of the cluster-based GWAS in the present study. 

In the present study, a GWAS using each subgroup of the probands vs the unaffected brothers as 

controls without the brothers of the members of the subgroup was designated a “cluster-based 

GWAS”. This panel shows the detailed methods of the cluster-based GWAS. 

 

Fig. 3. Manhattan plots (a) and corresponding quantile-quantile plots (b) for cluster-based 

GWASs with a cluster number of 15. 

We performed cluster analysis using the k-means with a cluster number of 15, and conducted 

cluster-based GWAS. Among 15 clusters, significant associations were observed in 14 clusters. 

In total, we observed 65 chromosomal loci, labelled in the figure, that satisfied the threshold of P 

< 5.0 × 10−8. The red lines indicate the threshold for genome-wide significance (P < 5.0 × 10−8). 
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Tables 

Table 1. Number of genome-wide significant loci according to number of clusters and test methods using k-means algorithm and the 
Omni2.5 dataset with MAF <0.01 deleted. 
 
Test methods No. of clusters 

1 2 3 4 5 10 15 20 

Sibling-based transmission 
disequilibrium test 

0 - - - - - - - 

λ value 1.032 - - - - - - - 
Cochran-Armitage trend test - 0 2 5 1 26 65 211 

Mean λ value (min-max) - 
1.057 

(1.052-1.0
62) 

1.036 
(1.027-1.0

45) 

1.035 
(1.029-1.0

41) 

1.021 
(1.012-1.0

33) 

1.024 
(1.000-1.0

42) 

1.038 
(1.017-1.0

91) 

1.053 
(1.015-1.1

07) 
Fisher's exact test - 0 2 5 0 0 0 4 

Mean λ value (min-max) - 
0.889 

(0.889-0.8
90) 

0.874 
(0.856-0.8

86) 

0.855 
(0.845-0.8

61) 

0.835 
(0.822-0.8

48) 

0.773 
(0.701-0.8

10) 

0.718 
(0.667-0.7

86) 

0.680 
(0.602-0.7

37) 
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Table 2. Characteristics of each of 15 k-means clusters in the Omni2.5 dataset. 
 
Cluster 
No. 

n Verbal score from ADI-R Nonverbal score from ADI-R Restricted and repetitive 
patterns of behavior score 

from ADI-R 

Social score from ADI-R Vitamin B6 
treatment 

(%) 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

M
ea

n 
(S

D
) 

M
ed

ia
n 

(p
25

-p
7

5)
 

M
in

 

M
ax

 

 

All 597 
7.7 

(2.1) 
8.0 

(6.0-9.0) 
0 12 

8.9 
(3.3) 

9.0 
(6.0-12.0) 

0 14 
6.8 

(2.5) 
7.0 

(5.0-8.0) 
1 12 

19.8 
(5.3) 

20.0 
(16.0-24.0) 

8 30 59.6 

                   

1 33 
7.4 

(2.2) 

7.0 
(6.0-10.

0) 
3 11 

4.4 
(1.6) 

4.0 (3.0-6.0) 1 7 
8.5 

(1.6) 
8.0 

(7.0-10.0) 
6 12 

14.0 
(1.5) 

14.0 
(13.0-15.0) 

11 17 60.6 

2 49 
8.9 

(1.3) 

9.0 
(8.0-10.

0) 
6 12 

12.3 
(1.5) 

12.0 
(11.0-14.0) 

9 14 
6.2 

(1.3) 
6.0 

(6.0-7.0) 
3 8 

27.1 
(1.3) 

27.0 
(26.0-28.0) 

24 30 79.6 

3 45 
6.0 

(1.9) 
6.0 

(5.0-7.0) 
2 10 

8.8 
(1.5) 

9.0 
(8.0-10.0) 

6 12 
5.0 

(1.5) 
5.0 

(4.0-6.0) 
2 7 

16.8 
(1.1) 

17.0 
(16.0-18.0) 

15 19 64.4 

4 59 
9.0 

(1.5) 

9.0 
(8.0-10.

0) 
6 12 

8.1 
(1.5) 

8.0 (7.0-9.0) 4 10 
8.8 

(1.9) 
8.0 

(8.0-10.0) 
5 12 

23.8 
(1.4) 

24.0 
(23.0-25.0) 

21 27 57.6 

5 28 
7.3 

(1.1) 
7.0 

(6.5-8.0) 
5 9 

9.1 
(1.7) 

9.0 
(8.0-10.0) 

7 13 
6.1 

(2.3) 
6.0 

(5.0-7.0) 
1 12 

12.7 
(1.7) 

13.0 
(12.0-14.0) 

9 15 60.7 

6 29 
7.7 

(1.9) 
8.0 

(7.0-9.0) 
2 12 

4.6 
(1.8) 

5.0 (4.0-6.0) 0 8 
4.0 

(1.1) 
4.0 

(3.0-5.0) 
2 6 

15.8 
(1.4) 

16.0 
(15.0-17.0) 

14 19 44.8 

7 37 
6.5 

(1.8) 
6.0 

(5.0-8.0) 
3 11 

12.5 
(1.3) 

12.0 
(12.0-14.0) 

10 14 
5.6 

(1.4) 
6.0 

(5.0-7.0) 
3 8 

19.4 
(1.8) 

20.0 
(18.0-21.0) 

15 22 56.8 

8 23 
8.3 

(1.6) 

8.0 
(7.0-10.

0) 
5 11 

4.2 
(2.1) 

4.0 (3.0-6.0) 0 8 
5.9 

(1.9) 
6.0 

(4.0-8.0) 
3 10 

9.7 
(1.1) 

10.0 
(9.0-11.0) 

8 12 60.9 

9 46 
9.0 

(1.3) 

9.0 
(8.0-10.

0) 
5 12 

12.4 
(1.3) 

13.0 
(11.0-13.0) 

10 14 
9.2 

(1.8) 
9.0 

(8.0-10.0) 
6 12 

22.7 
(1.4) 

22.5 
(22.0-24.0) 

20 25 69.6 

10 43 
6.6 

(1.4) 
7.0 

(6.0-7.0) 
4 9 

11.7 
(1.5) 

12.0 
(10.0-13.0) 

9 14 
5.0 

(1.5) 
5.0 

(4.0-6.0) 
2 8 

24.1 
(1.3) 

24.0 
(23.0-25.0) 

22 26 55.8 

11 34 
4.4 

(1.6) 
5.0 

(3.0-6.0) 
0 7 

4.9 
(1.8) 

5.0 (4.0-6.0) 1 9 
4.1 

(1.7) 
4.0 

(3.0-5.0) 
1 9 

10.9 
(1.9) 

10.5 
(9.0-13.0) 

8 14 55.9 
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12 38 
8.8 

(1.6) 

9.0 
(8.0-10.

0) 
5 12 

9.7 
(1.5) 

9.0 
(8.0-11.0) 

8 13 
9.2 

(1.3) 
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ADI-R: Autism Diagnostic Interview-Revised. 

SD: standard deviation. 
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Table 3. Association table of the cluster-based GWAS with 15 k-means clusters in the Omni2.5 dataset. 
 
Cluster 
No. 

ID Chr hg19 Minor/ 
major 

MAF 
(%) 

OR 95% CI P GENESYMBOL Function 

1 rs111629286 11 130,152,136 A/G 1.80 13.42 4.38-41.17 1.36 × 10-8 ZBTB44 Intronic 

1 rs115140946 6 37,891,923 C/A 1.03 21.07 4.79-92.77 2.87 × 10-8 ZFAND3 Intronic 

1 rs9462391 6 38,123,030 A/G 1.03 21.07 4.79-92.77 2.87 × 10-8 ZFAND3 Downstream 

1 rs10217283 9 101,423,675 A/G 1.42 15.51 4.45-54.12 2.95 × 10-8 GABBR2 Intronic 

1 rs114109395 6 38,005,546 A/G 1.03 21.01 4.77-92.51 3.02 × 10-8 ZFAND3 Intronic 

2 rs115621412 9 74,366,033 C/A 7.89 4.42 2.48-7.87 8.13 × 10-9 TMEM2 Intronic 

3 rs77507687 2 26,939,229 G/A 2.00 12.43 4.37-35.36 6.10 × 10-9 KCNK3 Intronic 

3 rs76880969 1 227,711,506 G/A 1.00 27.15 5.30-139.20 8.20 × 10-9 CDC42BPA, ZNF678 Intergenic 

3 rs115483919 2 125,010,267 A/G 1.00 27.15 5.30-139.20 8.20 × 10-9 CNTNAP5 Intronic 

5 rs16965293 16 9,551,490 A/G 2.31 14.04 5.00-39.45 3.83 × 10-10 LINC01195, GRIN2A Intergenic 

5 rs77489014 9 106,962,281 A/G 1.41 19.47 5.51-68.82 6.69 × 10-10 SMC2LOC105376194 Intergenic 

5 rs117473168 9 106,848,270 A/G 1.55 16.90 5.02-56.93 2.64 × 10-9 SMC2 ncRNA exonic 

5 rs7199670 16 22,875,238 A/G 11.28 5.28 2.76-10.10 4.98 × 10-9 HS3ST2 Intronic 

5 rs73142209 12 77,859,299 G/A 1.54 16.18 4.82-54.31 5.33 × 10-9 E2F7, NAV3 Intergenic 

5 rs118167078 15 65,723,796 A/G 1.54 16.18 4.82-54.31 5.33 × 10-9 IGDCC4, DPP8 Intergenic 

5 rs11919513 3 4,841,384 G/A 3.22 10.18 3.99-26.03 8.92 × 10-9 ITPR1 Intronic 

5 rs13332627 16 22,874,928 G/A 9.23 6.10 2.96-12.57 1.22 × 10-8 HS3ST2 Intronic 

5 rs111920363 7 143,656,906 A/G 1.15 19.46 4.89-77.39 1.29 × 10-8 OR2F1 Upstream 

5 rs9939816 16 22,876,408 A/C 9.25 6.08 2.95-12.53 1.30 × 10-8 HS3ST2 Intronic 

5 rs76096239 14 97,193,704 A/G 1.67 13.79 4.27-44.54 3.25 × 10-8 PAPOLA, LINC02299 Intergenic 

5 rs1054028 16 22,927,214 G/A 14.36 5.02 2.62-9.61 3.32 × 10-8 HS3ST2 UTR3 

5 rs78486970 7 106,127,612 G/A 6.87 5.46 2.67-11.18 3.68 × 10-8 NAMPT, CCDC71L Intergenic 

6 rs148617803 1 76,136,228 G/A 1.32 22.57 5.95-85.64 2.77 × 10-10 SLC44A5, ACADM Intergenic 

6 rs55985845 10 25,163,664 T/A 2.51 11.71 4.26-32.20 7.18 × 10-9 PRTFDC1 Intronic 
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6 rs73094424 12 39,840,397 A/G 2.11 12.09 4.12-35.52 2.70 × 10-8 KIF21A, ABCD2 Intergenic 

6 rs58845693 3 122,804,247 G/A 1.18 18.07 4.55-71.72 4.24 × 10-8 PDIA5 Intronic 

6 rs11709496 3 122,809,400 G/A 1.18 18.07 4.55-71.72 4.24 × 10-8 PDIA5 Intronic 

6 rs199531954 12 95,064,359 C/A 1.19 17.92 4.52-71.10 4.92 × 10-8 TMCC3, MIR492 Intergenic 

7 rs79033134 17 76,473,288 A/G 1.53 16.29 4.87-54.44 4.24 × 10-9 DNAH17 Intronic 

7 rs57127555 17 76,475,811 C/A 1.54 16.24 4.86-54.28 4.49 × 10-9 DNAH17 Intronic 

7 rs75382702 11 81,149,755 A/G 1.28 16.94 4.54-63.23 3.18 × 10-8 
LOC101928944, 

MIR4300HG 
Intergenic 

8 rs73149247 3 100,864,047 G/A 2.21 11.41 3.88-33.54 5.80 × 10-11 ABI3BP, IMPG2 Intergenic 

8 rs12418400 11 131,263,123 G/A 1.56 20.88 6.09-71.57 6.68 × 10-11 NTM Intronic 

8 rs78323783 10 45,084,432 A/G 1.17 24.79 6.13-100.30 2.28 × 10-10 CXCL12, TMEM72 Intergenic 

8 rs72991663 6 130,143,713 A/G 2.85 13.30 4.84-36.53 5.51 × 10-10 
ARHGAP18, 
TMEM244 

Intergenic 

8 rs74922057 21 41,595,011 A/G 1.31 19.67 5.22-74.14 3.13 × 10-9 DSCAM Intronic 

8 rs115035406 21 41,580,474 G/A 1.42 16.53 4.61-59.31 1.97 × 10-8 DSCAM Intronic 

8 rs114994877 4 136,731,494 A/G 1.42 16.53 4.61-59.31 1.97 × 10-8 
LINC02485, 
LINC00613 

Intergenic 

8 rs117008682 9 103,245,053 G/A 1.43 16.48 4.59-59.15 2.8 × 10-8 MSANTD3 Intronic 

8 rs117772706 9 81,338,445 G/A 1.43 16.44 4.58-58.98 2.19 × 10-8 
PSAT1, 

LOC101927450 
Intergenic 

9 rs4885429 13 77,400,673 G/A 2.14 13.69 4.91-38.16 4.67 × 10-10 LMO7DN, KCTD12 Intergenic 

9 rs45618836 7 73,480,258 G/A 2.26 11.94 4.43-32.18 2.30 × 10-9 ELN Intronic 

9 rs7299395 12 41,714,602 A/G 3.27 8.52 3.65-19.89 1.15 × 10-8 PDZRN4 Intronic 

9 rs55772967 7 73,448,499 G/A 2.89 8.91 3.66-21.66 2.9 × 10-8 ELN Intronic 

10 rs72799348 2 22,637,443 A/G 2.31 12.84 4.74-34.77 6.57 × 10-10 
LINC01822, 
LINC01884 

Intergenic 

10 rs76159464 5 169,446,509 A/G 1.02 28.05 5.47-144.00 5.03 × 10-9 DOCK2 Intronic 

10 rs12483301 21 28,070,591 G/A 1.92 11.89 3.94-35.92 6.74 × 10-9 CYYR1, ADAMTS1 Intergenic 

10 rs72883714 18 23,987,552 A/G 2.17 11.25 4.08-31.06 1.59 × 10-8 TAF4B, LINC01543 Intergenic 

10 rs1876769 2 22,678,191 A/G 2.17 11.25 4.08-31.06 1.59 × 10-8 
LINC01822, 
LINC01884 

Intergenic 
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10 rs17043765 2 22,656,804 A/G 2.17 11.25 4.08-31.06 1.59 × 10-8 
LINC01822, 
LINC01884 

Intergenic 

11 rs74645195 4 48,330,367 G/A 2.71 10.26 3.95-26.66 1.34 × 10-8 TEC, SLAIN2 Intergenic 

11 rs78513244 1 2,360,342 A/G 3.25 9.33 3.79-22.98 1.35 × 10-8 PEX10, PLCH2 Intergenic 

11 rs10027938 4 90,242,059 A/G 16.93 4.48 2.49-8.05 2.29 × 10-8 GPRIN3, SNCA Intergenic 

12 rs117647850 8 79,156,756 A/G 3.08 10.88 4.44-26.68 5.10 × 10-11 LOC102724874, PKIA Intergenic 

12 rs4131532 1 3,540,256 A/G 1.54 15.63 4.68-52.14 8.61 × 10-9 MEGF6, TPRG1L Intergenic 

12 rs77964987 4 183,685,432 G/A 4.77 7.06 3.21-15.53 4.97 × 10-8 TENM3 Intronic 

13 rs117954350 7 4,440,757 A/G 1.02 52.73 6.34-438.60 4.00 × 10-10 SDK1, FOXK1 Intergenic 

13 rs11064685 12 119,590,881 G/A 6.14 5.15 2.66-9.97 4.46 × 10-8 SRRM4 Intronic 

14 rs77983358 12 82,393,237 G/A 1.52 21.71 5.50-85.76 1.29 × 10-10 LINC02426, CCDC59 Intergenic 

14 rs7118821 11 96,876,267 C/A 1.01 26.18 5.11-134.00 1.50 × 10-8 LOC105369443 Intergenic 

14 rs7122015 11 96,950,548 G/A 1.01 26.18 5.11-134.00 1.50 × 10-8 
LOC105369443, 

CNTN5 
Intergenic 

14 rs7106102 11 96,885,969 A/G 1.01 26.10 5.10-133.70 1.58 × 10-8 LOC105369443 Intergenic 

14 rs7189512 16 66,324,048 A/G 3.28 7.26 3.13-16.88 4.62 × 10-8 LINC00922, CDH5 Intergenic 

15 rs77311527 2 5,516,750 G/A 2.45 11.87 4.44-31.79 2.19 × 10-9 
LINC01249, 
LINC01248 

Intergenic 

15 rs276833 2 114,769,078 A/G 1.29 18.00 4.81-67.43 1.25 × 10-8 LINC01191, DPP10 Intergenic 

OR; Odds ratio. 
CI: Confidence interval. 
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Fig. 1. Manhattan plots (a) and corresponding quantile-quantile plots (b) in GWAS for all male 
probands vs their unaffected brothers using the sib transmission/disequilibrium test.
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Fig. 2. Details of the cluster-based GWAS in the discovery stage.
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Fig. 3. Manhattan plots (a) and corresponding quantile-quantile plots (b) for cluster-based GWASs with a 
cluster number of 15.
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