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Abstract 
Identifying genetic variants that are associated with methylation variation – an 
analysis commonly referred to as methylation quantitative trait locus (mQTL) 
mapping -- is important for understanding the epigenetic mechanisms underlying 
genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL 
mapping in sequencing-based methylation studies. IMAGE properly accounts for the 
count nature of bisulfite sequencing data and incorporates allele-specific methylation 
patterns from heterozygous individuals to enable more powerful mQTL discovery. We 
compare IMAGE with existing approaches through extensive simulation. We also 
apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies 
more mQTL than existing approaches. 
 
 
 
 
 
Keywords: allelic specific methylation; ASM; methylation quantitative trait locus; 
mQTL; IMAGE; bisulfite sequencing; binomial mixed model; penalized quasi-
likelihood.  
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Introduction 
DNA methylation is a stable, covalent modification of cytosine residues that, in 
vertebrates, typically occurs at CpG dinucleotides. DNA methylation also functions as 
an important epigenetic regulatory mechanism, with known roles in genomic 
imprinting, X-inactivation, and suppression of transposable element activity [1, 2]. 
DNA methylation is thus thought to play a key role in responding to the environment 
and generating trait variation, including variation in disease susceptibility. In support 
of this idea, methylation levels have been associated with diabetes [3, 4], autoimmune 
diseases [5-7], metabolic disorders [8-10], neurological disorders [11, 12], and various 
forms of cancer [13-17]. 
 
Importantly, DNA methylation variation at individual CpG sites often has a strong 
genetic component [18-29]. Family-based and population-based studies have shown 
that DNA methylation levels are 34% heritable on average in adipose tissue and are 
18-20% heritable on average in whole blood, with heritability estimates reaching as 
high as 97% [21, 24, 26, 30]. Genetic effects on DNA methylation levels can be 
explained, at least in part, by cis-acting SNPs located close to target CpG sites, where 
CpG methylation level is associated with the identity of physically linked alleles [23, 
31-35]. Indeed, recent methylation quantitative trait loci (mQTL) mapping studies 
have shown that up to 28% of CpG sites in the human genome are associated with 
nearby SNPs [23, 26, 31, 32, 36]. Further, cis-mQTL often colocalize with disease-
associated loci and cis-expression QTL (cis-eQTL) [26], suggesting that genetic 
effects on gene expression may be mediated by DNA methylation. Therefore, 
identifying cis-mQTL is an important step towards understanding the genetic basis of 
gene regulatory variation and, ultimately, organism-level traits. 
 
Most mQTL mapping studies thus far rely on DNA methylation data generated using 
array-based platforms [36-38]. However, the falling cost of sequencing and the 
development of high-throughput sequencing-based approaches to measure DNA 
methylation levels makes mQTL mapping using sequencing data increasingly feasible. 
Sequencing-based approaches offer several advantages. They can extend the breadth 
of DNA methylation analysis to the full genome (e.g., via whole genome bisulfite 
sequencing [39]), increase the flexibility to target specific regions of interest (e.g., via 
capture methods [40]), improve the representation of genomic regions or regulatory 
elements that are poorly represented on current array platforms (e.g., via reduced 
representation bisulfite sequencing [41, 42]), and distinguish 5-hmc modifications 
from 5-mc modifications (e.g., via TET-assisted pyridine borane sequencing [43] or 
TAB-seq approaches [44]). Further, unlike arrays, which are largely limited to studies 
in humans, sequencing-based approaches can be applied to any species [45-48]. 
Therefore, sequencing-based approaches have become the workhorse of major 
initiatives like the 1001 Genomes Project in the plant model system Arabidopsis 
thaliana [49, 50]. Importantly, sequencing techniques also facilitate the estimation of 
allele-specific methylation levels, which should greatly improve the power of mQTL 
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mapping approaches (as allele-specific expression estimates have been shown to do 
for eQTL mapping: [51, 52]). Early attempts to perform mQTL mapping with bisulfite 
sequencing data have yielded promising results [35, 49, 53]. However, existing mQTL 
mapping methods are designed with array data in mind [37, 38]. To maximize power, 
mQTL mapping using sequencing data requires new statistical methods development 
that can properly account for two of its distinctive features.  
 
First, methylation data collected in sequencing studies are counts, not continuous 
representations like those produced by arrays. Specifically, methylation level 
estimates at a given cytosine base are based on both the total read count at the site and 
the subset of those reads that are unconverted by sodium bisulfite (or other processes 
[43]). Previous mQTL studies have dealt with these data by first computing a ratio 
between the methylated count and the total count, and then treating this ratio as an 
estimate of the true methylation level [35, 49]. However, the count nature of the raw 
data means that the mean and variance of the computed ratio are highly 
interdependent. This relationship is not captured by previously deployed linear 
regression methods, which likely leads to loss of power. Indeed, similar losses of 
power are well-documented for differential methylation analysis [40] and differential 
expression analysis of RNA-seq data [54-57]. To overcome this challenge, statistical 
methods for sequencing-based differential methylation analysis now adapt over-
dispersed count models, including beta-binomial models [58-62] and binomial mixed 
models [40, 63, 64], to properly model the mean-variance relationship and potential 
over-dispersion. In differential methylation analysis, these approaches can 
substantially improve power compared with normalization based approaches [30, 65, 
66]. Because mQTL mapping is conceptually similar and can be effectively viewed as 
genotype-based differential methylation analysis, extending over-dispersed binomial 
models to mQTL mapping is a promising approach.  
 
Second, sequencing-based techniques are capable of measuring DNA methylation 
levels in heterozygotes in an allele-specific fashion (i.e., allele-specific methylation, 
ASM). When ASM estimates support differences in methylation levels between the 
two alleles carried by heterozygotes, they can be used to increase the power of 
mapping analysis. Indeed, assuming that additive genetic effects dominate, true cis-
acting genetic differences in DNA methylation are expected to lead to both (i) 
differential methylation by genotype across all three genotypes at a biallelic site, and 
(ii) ASM in heterozygotes. These two types of evidence are only available in 
sequencing studies, since ASM is not generally detectable when DNA methylation is 
profiled using arrays. Notably, previous methods for detecting genotype-dependent 
ASM suggest that it is common across tissue types and species, is more often 
explained by cis-acting variants than trans-effects, and is enriched near genes that 
also display patterns of allele-specific expression [67-75]. Thus, integrating ASM 
analysis into mQTL mapping analyses should also contribute to understanding the 
basis of cis-regulatory effects on gene expression. There is strong precedent for such a 
combined strategy in other omics studies. For example, the methods implemented in 
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TreCASE and WASP can integrate allele-specific expression information to greatly 
enhance the power of eQTL mapping [51, 76-78], and the software RASQUAL 
integrates allele-specific patterns with individual-level differences to facilitate QTL 
mapping of chromatin accessibility and ChIP-seq data [79]. However, to our 
knowledge, no method currently exists for integrating ASM with mQTL mapping in 
sequencing-based studies of DNA methylation.  
 
Here, we develop a new statistical method for mQTL mapping in bisulfite sequencing 
studies that both accounts for the count-based nature of the data and takes advantage 
of ASM analysis to improve power. We refer to our method as IMAGE (Integrative 
Methylation Association with GEnotypes), which is implemented as an open source R 
package (www.xzlab.org/software.html). IMAGE jointly accounts for both allele-
specific methylation information from heterozygous individuals and non-allele-
specific methylation information across all individuals, enabling powerful ASM-
assisted mQTL mapping. In addition, IMAGE relies on an over-dispersed binomial 
mixed model to directly model count data, which naturally accounts for sample non-
independence resulting from individual relatedness, population stratification, or batch 
effects that are commonly observed in sequencing studies [40, 57]. We develop a 
penalized quasi-likelihood (PQL) approximation-based algorithm [64, 80, 81] to 
facilitate scalable model inference. We illustrate the effectiveness of IMAGE and 
compare it with existing approaches in simulations. We also apply IMAGE to map 
mQTLs in two bisulfite sequencing studies from wild baboons and wild wolves.  
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Results 

Method Overview and Simulation Design 
IMAGE is described in detail in the Materials and Methods, with additional 
information provided in the Additional file 1: Supplementary Text. Briefly, IMAGE 
combines the benefits of both standard mQTL mapping and ASM analysis by jointly 
modeling non-allele-specific (i.e. per-individual) methylation information across all 
individuals together with allele-specific methylation information (i.e. per-allele) from 
heterozygous individuals. This approach enables cis-mQTL mapping when the 
heterozygous SNP and the CpG site of interest are captured either on the same 
sequencing read or with known phasing information (Fig. 1). By combining both 
allele-specific and non-allele-specific information, IMAGE improves power over 
traditional mapping approaches that use non-allele-specific information alone. In 
addition, IMAGE relies on a binomial mixed model to directly model count data from 
bisulfite sequencing and naturally accounts for over-dispersion as well as sample non-
independence. IMAGE uses a penalized quasi-likelihood based algorithm for scalable 
inference and is implemented in an open-source R package, freely available at 
http://www.xzlab.org/software.html.  
 
We performed simulations to examine the effectiveness of IMAGE and compare it 
with other approaches. In each simulation, we started with real genotypes for � �50-
150 individuals [82] and examined power and accuracy over a range of parameters: 
the background heritability ��; the over-dispersion variance ��; the SNP minor allele 
frequency MAF; the expected per-site total read TR across individuals; the average 
methylation ratio ��; the SNP effect size PVE; the sample size �; and the proportion 
of total environmental variance that is shared between two alleles ρ  (a detailed 
explanation of these parameters is available in Materials and Methods). In the 
simulations, we examined the role of each of these eight modeling parameters in 
determining mQTL mapping power. To do so, we first created a baseline simulation 
scenario where we set the simulation parameters to typical values inferred from real 
data [40] (Materials and Methods). Afterwards, we changed one parameter at a time to 
create different simulation scenarios and examined the influence of each parameter on 
method performance. In each scenario, we simulated 10,000 SNP-CpG pairs. For 
9,000 pairs, the methylation level at the CpG site was independent of the SNP 
genotype, while for the remaining 1,000 pairs, CpG site methylation was associated 
with the SNP genotype, such that genotype explained a fixed proportion of 
methylation levels equivalent to the parameter PVE. After simulation, we discarded 
the methylation measurements for CpG sites on non-informative individuals (i.e., 
those with total read counts of zero). We then applied IMAGE and five other 
approaches to analyze each SNP-CpG pair separately.  
 
The five other approaches perform mQTL mapping using different information: (1) 
IMAGE-I, a special case of IMAGE, which uses only non-allele-specific, individual 
level information across all individuals; (2) IMAGE-A, another special case of 
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IMAGE, which uses only allele-specific information from heterozygous individuals; 
(3) MACAU [40, 57], which uses a binomial mixed model to perform mQTL 
mapping using only non-allele-specific information; (4) GEMMA [83-85], which uses 
a linear mixed model to perform mQTL mapping using only non-allele-specific  
information; and (5) BB, which implements a beta-binomial model [40] to perform 
mQTL mapping using only non-allele-specific information. Note that, with the 
exception of IMAGE and IMAGE-A, all methods perform mQTL mapping using only 
non-allele-specific information. In addition, with the sole exception of GEMMA, all 
methods model counts directly. For GEMMA, we used normalized data in the form of 
M-values for analysis, following the previous literature [40, 57]. We performed 10 
simulation replicates (each consisting of 10,000 SNP-CpG pairs) for each scenario 
and computed power based on a known false discovery rate (FDR) for each scenario 
by combining simulation replicates. 
 
 
 
Simulation Results 
 
Overall, the simulation results show that IMAGE outperforms all other methods 
across all tested parameters (Fig. 2 and Additional file 2: Fig. S1). For example, in the 
baseline simulation scenario, at an FDR of 0.05, IMAGE reaches a power of 57.15% 
in a sample size of 100 individuals. IMAGE-I, IMAGE-A, MACAU, GEMMA and 
BB reach a power of 7.55%, 10.27%, 7.49%, 2.25% and 6.79%, respectively. The 
ranking of different methods is not sensitive to different FDR cutoffs. For example, at 
an FDR of 0.1, the power of IMAGE is 68.78%; while the power of IMAGE-I, 
IMAGE-A, MACAU, GEMMA and BB is 14.98%, 24.35%, 13.64%, 2.84% and 
15.03%, respectively. The superior performance of IMAGE suggests that 
incorporating ASM information into mQTL mapping can greatly enhance power.  
   
Among the eight parameters we examined, six have similar effects on power across 
IMAGE and the five other models we compared. For example, the power of all 
methods increases with larger sample size n (Additional file 2: Fig. S1A), larger 
genetic effect size PVE (Additional file 2: Fig. S1B), larger minor allele frequency 
MAF (Additional file 2: Fig. S1C), larger read depth TR (Additional file 2: Fig. S1D), 
and larger over-dispersion variance ��, which implicitly increases the genetic effect 
size PVE (Additional file 2: Fig. S1E). In addition, the power of all methods is highest 
for CpG sites with intermediate methylation level �� , but reduced for both 
hypomethylated and hypermethylated sites (Additional file 2: Fig. S1F). The power 
dependence on �� is presumably because higher methylation variance in the middle 
range of ��  leads to higher power.  
 
Careful examination of the relative performance of different methods in different 
scenarios yields additional insights. First, among the mQTL mapping methods, we 
found that count-based approaches (IMAGE-I, MACAU, BB) often outperform a 
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normalized data-based approach (GEMMA). Such performance differences become 
more apparent when sample size n is small (Additional file 2: Fig. S1A), methylation 
level �� is either low or high (Additional file 2: Fig. S1F), or mean per-site read depth 
��  is low (Additional file 2: Fig. S1D). For example, when the mean total read 
�� � 10,  the power of IMAGE-I, MACAU and BB is 5.8%, 4.56% and 5.33%, 
respectively (n=100); while the power of GEMMA is only 1.01%. When �� increases 
to 30, the power of IMAGE-I, MACAU and BB becomes 15.25%, 15.32% and 
14.55%, respectively, while the power of GEMMA remains low, at 6.14%. The 
superior performance of count-based methods is consistent with previous observations 
[40, 57], suggesting that modeling sequencing data in the original count form has 
added benefits for mQTL mapping. For DNA methylation levels, this advantage may 
arise in part because uncertainty in DNA methylation level estimates is more 
accurately modeled in the count data than in normalized ratios. For example, a 
methylation level of one (completely hypermethylated) is strongly supported for a 
site-sample combination where read depth is very high, but weakly supported for 
combinations where read depth is low. The count-based methods effectively capture 
this distinction, which is lost in conversion to a single ratio.  
 
Second, ASM-based approaches (IMAGE and IMAGE-A) often outperform mQTL 
mapping approaches that only use non-allele-specific data. This result holds even for 
IMAGE-A, even though it only models data for heterozygotes at nearby SNPs (and 
hence, uses only a subset of the data: 42% of the full set of simulated individuals on 
average). The generally higher power of ASM analysis likely stems from the fact that 
ASM methods control for both environmental and trans-acting genetic background 
effects (for each heterozygote, both alleles reside in the same individual, providing a 
natural internal control). Our simulations suggest that there are two important 
parameters that influence the relative power of ASM analysis and mQTL mapping. 
The first important parameter is background heritability, �� . Increased background 
heritability can reduce the performance of mQTL mapping methods, as increased 
confounding from polygenic effects of other SNPs likely increases the difficulty of 
identifying individual SNP associations [40, 57]. For example, when �� � 0 , the 
power of IMAGE-I, MACAU, GEMMA and BB is 13.57%, 11.62%, 2.69% and 
13.88%, respectively. When ��  increases to 0.6, however, the power of IMAGE-I, 
MACAU, GEMMA and BB reduces to 6.48%, 7.05%, 1.50% and 5.92%, respectively. 
In contrast, ASM analysis relies on a model that explicitly accounts for the heritable 
component that arises from genetic background effects, and thus achieves relatively 
stable performance. For example, when  �� � 0, the power of IMAGE and IMAGE-A 
is 57.48% and 10.30%, respectively. When �� increases to 0.6, the power of IMAGE 
and IMAGE-A actually increases, to 63.07% and 23.09%, respectively. This 
observation is consistent with the fact that the two alleles modeled in ASM, for each 
individual, share an identical genetic background that becomes easier to control for as 
its contribution to DNA methylation increases (i.e., as h2 increases). Thus, IMAGE-I 
outperforms IMAGE-A when background heritability is zero (�� � 0�, but performs 
worse when background heritability is moderate or high (�� � 0.3 or 0.6; Fig. 2A).  
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The second important parameter is the ratio parameter ρ, which represents the relative 
contribution of shared/common environmental effects (i.e., the “trans” acting 
environment). also influences the relative power of ASM vs mQTL. For mQTL 
methods, increasing ρ  necessarily increases the contribution of common 
environmental noise shared between the two alleles. Common environmental noise is 
not explicitly accounted for by mQTL models, thus leading to a reduction in power. 
For example, when ρ � 0, IMAGE-I, MACAU, GEMMA and BB detect 7.55%, 
7.49%, 2.25% and 6.79% of true effects, respectively. When ρ increases to 0.9, the 
power of IMAGE-I, MACAU, GEMMA and BB reduces to 3.50%, 3.44%, 1.67% and 
3.57%, respectively. In contrast, ASM analysis explicitly accounts for both common 
and independent environmental background effects, again because it measures DNA 
methylation in the two alleles in the same individual. ASM methods thus achieve 
better, not worse, performance with higher values of ρ. For example, when  ρ � 0, the 
power of IMAGE and IMAGE-A is 57.15% and 10.27%, respectively. When ρ 
increases to 0.9, the power of IMAGE and IMAGE-A becomes 84.15% and 67.55%, 
respectively. Consequently, while mQTL methods have similar power as ASM when ρ 
is small, ASM can outperform mQTL when ρ is large (Fig. 2B).  
 
In addition, we note that IMAGE can estimate FDR reasonably accurately by 
constructing an empirical null via permutations. In particular, IMAGE produces either 
calibrated or slightly conservative FDR estimates regardless of the values of �� 
(Additional file 2: Fig. S2A), ρ (Additional file 2: Fig. S2B), n (Additional file 2: Fig.  
S2C), genetic effect size PVE (Additional file 2: Fig. S2D), MAF (Additional file 2: 
Fig. S2E), average read counts per site TR (Additional file 2: Fig. S2F), over-
dispersion variance  �� (Additional file 2: Fig. S2G), or average methylation ratio ��  
(Additional file 2: Fig. S2H). 
 
Finally, we note that while we set PVE=0.10 and �� � 0.30  in the baseline 
simulations to capture the realistic effect sizes and background heritability across all 
SNP-CpG pairs genome-wide, reasonable data filtering decisions will often increase 
mean PVE and ��  among SNP-CpG pairs tested in real data applications. For 
example, in the wolf and baboon data sets analyzed below the median PVE was 
approximately 0.15 and the median �� estimate was near 0.5. For direct comparability, 
we therefore also created a simulation scenario in which we set PVE to 0.15 and �� to 
0.50 (Additional file 2: Fig. S1G). Notably, the relative power of different methods in 
this setting largely recapitulates our observations in the real data applications (see 
below).  
 
mQTL mapping in wild baboons  
We applied our method to analyze a reduced representation bisulfite sequencing data 
collected on 67 baboons from the Amboseli ecosystem of Kenya [40, 45]. Detailed 
data description and processing steps are provided in Materials and Methods, with an 
illustrative processing diagram showing in Additional file 2: Fig. S3. Briefly, we 
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extracted 49,196 SNP-CpG pairs from the bisulfite sequencing data, which consists of 
13,753 unique SNPs and 45,210 unique CpG sites. We applied IMAGE together with 
the other five approaches described above to analyze each SNP-CpG pair individually. 
We performed permutations to estimate FDR for each method and we report results 
based on a fixed FDR cutoff.  
 
Consistent with our simulations, our method achieves higher power compared with 
other methods in the baboon data set (Fig. 3A). For example, at an empirical FDR of 
5%, IMAGE detected 7,043 associated SNP-CpG pairs, which is 45% more than that 
detected by the next best method (IMAGE-A, which detected 4,855 pairs at a 5% 
FDR). IMAGE-I, MACAU, GEMMA, and BB detected 3,585, 3,024, 2,629 and 3,259 
pairs, respectively. Also consistent with the simulations, the higher power of IMAGE 
compared to other methods is robust with respect to different FDR cutoffs (Fig. 3A). 
We illustrate a few example sites that were only detected by IMAGE in Additional file 
2: Fig. S4. For these sites, methylation levels measured in the heterozygotes are noisy 
and often indistinguishable from at least one type of homozygote (often because total 
read counts are unevenly distributed across alleles). However, by separating 
methylation levels in heterozygotes into the contribution from each individual allele 
and modeling ASM information together with non-allele-specific information, 
IMAGE remains capable of identifying mQTLs in these sites. In addition, consistent 
with simulations, we also observed that our method could detect more associated 
SNP-CpG pairs with increasing MAF (Additional file 2: Fig. S5A), increasing read 
depth TR (Additional file 2: Fig. S5B), increasing sample size (Additional file 2: Fig. 
S5C), or at intermediate methylation levels (Additional file 2: Fig. S5D). 
 
To validate the mQTLs we identified, we randomly split the sample into two 
approximately equal sized subsets (one with 34 individuals and the other with 33 
individuals) and examined the consistency of the SNP-CpG pairs detected in the two 
subsets. We removed IMAGE-A from this analysis as it requires at least five 
heterozygous individuals, which is no longer satisfied for many SNP-CpG pairs in 
each of the two subsets. For the remaining methods, we found that IMAGE detects 
more consistent SNP-CpG pairs between the two subsets than the other approaches 
(Fig. 3B). For example, among the top 5% (n=2,511) associated SNP-CpG pairs based 
on IMAGE, 53.8% of them were identified in both subsets. In contrast, among the top 
5% (n=2,511) associated SNP-CpG pairs based on IMAGE-I, MACAU, GEMMA and 
BB, 35.84%, 35.12%, 33.92% and 37.64% overlapped between the two subsets. The 
greater consistency of results from IMAGE thus provides convergent support for its 
increased power.  
  
Next, we assessed the set of detected SNP-CpG associations by performing functional 
enrichment analysis to compare our findings against published results (Fig. 3C). Here, 
we refer to the CpG sites with associated mQTL as mCpG sites. We examined 
whether the set of mCpG sites were enriched in CpG islands, CpG island shores, CpG 
island shelves, or in genomic “open sea”. To do so, we obtained functional genomic 
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annotation information from UCSC Genome Browser for the baboon genome, 
Panu2.0 and relied on the same criterion as [86] to annotate genomic regions (details 
in Materials and Methods). For each annotated category, we then computed the 
proportion of mCpG sites in the annotated regions and contrasted it to the proportion 
of non-mCpG sites analyzed in our original mQTL mapping analysis. We found that 
mCpG sites are significantly enriched in open seas compared to non-mCpG sites 
(69.74% vs 66.08%; Fisher’s exact test, p-value = 0.0106) but underrepresented in 
CpG islands (11.16% vs 14.33%; p-value =1.056 � 10��). The results are consistent 
with previous observations [87, 88], partly because CpG islands are often enriched in 
evolutionarily conserved promoter regions [89-91] that harbor fewer regulatory 
genetic variants, and partly because power to detect mQTL is lower in 
hypomethylated regions  [92]. The results are qualitatively consistent across sites with 
different mean CpG methylation levels, although do not reach statistical significance 
in all bins likely due to the smaller number of sites and the resulting lower power in 
each bin (Additional file 2: Fig. S6). Importantly, despite the higher number of mCpG 
sites detected by IMAGE, the evidence for both enrichment in open sea and 
underrepresentation in CpG islands is also stronger in the IMAGE analysis than for 
other methods (Additional file 3: Table S1).  
 
Finally, we counted the percentage of SNP-CpG pairs for which the SNP directly 
resides in the CpG sequence, abolishing the CpG site and therefore resulting in an 
entirely unmethylated alternate allele [69, 93]. These sites, by definition, should 
exhibit mQTL and ASM. 403 CpG sites in our data set were disrupted by SNPs, and 
59.6% of them (n=240) were indeed identified as significant mCpG sites. For 95.70% 
of those we did not detect (n=156), the non-disrupted CpG was also hypomethylated 
in our sample (<10% methylation level), which would make it impossible to detect an 
mQTL (i.e., because both disrupted and non-disrupted alleles are hypomethylated). 
CpG sites disrupted by SNPs accounted for 3.72% of significant mCpG sites 
(compared to the 0.89% expected by chance), but only 0.43% of non-mCpG sites, in 
support of the accuracy of our mQTL mapping approach (Fisher’s exact test p-value 
<2.2 � 10���). In addition, as expected, the percentage of significant mCpG sites 
accounted for by CpG sites disrupted by SNPs gradually decreases with less stringent 
FDR cutoffs (Fig.       3D). Importantly, IMAGE also outperforms the other five 
methods on this metric (Additional file 3: Table S2). 
 
mQTL analysis in wild wolves 
Finally, we applied IMAGE to analyze a second RRBS data set collected on 63 grey 
wolves from Yellowstone National Park [46, 94]. We applied the same data processing 
procedure described above for baboons, followed by mQTL mapping. In total, we 
extracted 279,223 SNP-CpG pairs from the bisulfite sequencing data, which consists 
of 77,039 unique SNPs and 242,784 unique CpG sites. IMAGE again achieved higher 
power compared with the other methods (Fig. 4A). At an empirical FDR of 5%, 
IMAGE detected 34,779 significantly associated SNP-CpG pairs, which is 50% more 
than that detected by the next best method (IMAGE-A), and 262% more than the 
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other four methods (Fig. 4A and Additional file 2: Fig. S7). As in the baboons, subset 
analysis confirmed that IMAGE detects more consistent SNP-CpG pairs than the 
other approaches (Fig. 4B). For example, among the top 5% (n=14,091) associated 
SNP-CpG pairs based on IMAGE analysis, 53.8% of them are consistent between the 
two subsets, compared to 20.5 – 30.7% for the other four methods tested. Consistent 
with results from simulations and the baboon data, we also observed that our method 
could detect more associated SNP-CpG pairs with intermediate methylation levels, 
increasing MAF, increasing read depth, and increasing sample size (Additional file 2: 
Fig. S5).  
 
Finally, consistent with the baboon results, mCpG sites in the wolves were 
significantly enriched in open sea compared to non-mCpG sites (31.77% vs 26.31%; 
p-value � 2.2 � 10���) and were underrepresented in CpG islands (30.17% vs 37.43%; 
p-value <2.2 � 10���) (Fig. 4C). In the wolves, we also observed significant (albeit 
much weaker) enrichment of mCpG sites in shelf regions (12.49% vs 11.63%; p-value 
=9.001 � 10��) and shore regions (25.57% vs 24.64%; p-value =5.890 � 10��). The 
higher frequency of mCpG sites in CpG island shelves and shores is consistent with 
previous studies [87, 88] and likely reflects greater power to detect enrichment in the 
wolf data set, which yields a larger number of analyzable SNP-CpG pairs than in the 
baboons (m = 242,784 in wolf vs m = 45,210 in baboon). The enrichment in open sea 
and underrepresentation of mCpG sites in CpG islands are robust regardless of 
whether we stratify sites based on mean methylation levels, although the shelf/shore 
results are noisier (Additional file 2: Fig. S8). Again, we found that enrichment results 
were stronger in the IMAGE analysis than when using other methods (Additional file 
3: Table S3); and that mCpG sites were more likely to be disrupted by their associated 
SNPs than non-mCpG sites (3.66% versus 0.18%; p-value <2.2 � 10���) (Fig. 4D; 
see also Additional file 3: Table S4).  
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Discussion 

Here, we present IMAGE, a new statistical method with a scalable computational 
algorithm, for mQTL mapping in bisulfite sequencing studies. IMAGE relies on a 
binomial mixed model to account for the count nature of over-dispersed bisulfite 
sequencing data, models multiple sources of methylation level variance, and 
incorporates allelic-specific methylation patterns from heterozygous individuals into 
mQTL mapping. Both simulations and two real data sets support its increased power 
over other commonly used methods. 
 
A key feature of our method is its ability to incorporate allele-specific methylation 
information into mQTL mapping. In RNA sequencing studies, it has been well 
documented that incorporating ASE information can greatly improve the power of 
eQTL mapping [51, 76-78]. Our results confirm that this observation generalizes to 
mQTL mapping and provides substantial benefits over approaches that cannot or do 
not use allele-specific data. Notably, these benefits are not limited to the RRBS data 
we examined here: IMAGE can also be applied to analyze data generated via whole 
genome bisulfite sequencing (WGBS) [39] or by newer approaches that distinguish 5-
hmc modifications from 5-mc modifications  [43, 44]. Doing so would greatly 
facilitate detection of methylation-associated genetic variants genome-wide, including 
variants associated with different types of methylation marks. 
 
Notably, although secondary to the methods advance itself, our real data applications 
show that mQTL mapping can be successfully executed using bisulfite sequencing 
data alone, in the absence of independently generated genotype data. Specifically, we 
used the same bisulfite sequencing data set to both extract methylation measurements 
and call SNP genotypes. Our approach dovetails with previous observations that 
accurate genotyping data can be obtained from RNA sequencing data [95], bisulfite 
sequencing data [78], or ChIP sequencing data [96], which simultaneously reduces 
experimental cost and increases the utility of different sequencing data types. Because 
of these benefits, molecular QTL mapping without separate DNA sequencing or 
genotyping is gaining popularity [97]. For example, a recent study performed eQTL 
mapping and ASE analysis using RNA sequencing alone and demonstrated that this 
strategy achieves approximately 50% power compared to traditional eQTL mapping 
strategies that rely on independently derived genotype data, even though it only uses 
the 12.66% of SNPs represented in blood-derived RNAseq reads [45]. Here, we also 
show that genotyping and phenotyping from the same data set can facilitate well-
powered mQTL mapping. Notably, unlike RNA-seq data, because allele-specific 
methylation information is represented as the ratio between methylated reads and total 
reads mapped to the same allele, our approach is also less likely to be affected by 
allele-specific mapping biases (mitigating another argument for generating 
independent genotype data). Thus, our mQTL mapping approach has the potential to 
both increase the utility and applicability of functional genomic data types and 
improve accessibility of this type of analysis across species.  
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Our method is not without limitations. For example, to enable ASM-assisted mQTL 
mapping, our method makes a key modeling assumption: that the allelic effect size 
estimated from heterozygotes is equivalent to the genotype effect size estimated from 
mQTL mapping across all genotype classes. This assumption is generally satisfied for 
cis genetic effects when the SNP is close to the CpG site [98], and is shared, for gene 
expression phenotypes, with ASE-assisted eQTL mapping methods (e.g. TreCASE 
and WASP [51, 52]). However, in rare occasions, the equal effect size assumption 
may be violated. For example, if ASM arises because of genomic imprinting instead 
of sequence variation, the allelic effect size may be much smaller than the mQTL 
effect size obtained across all individuals. Such a violation would lead IMAGE to lose 
power relative to classical mQTL mapping approaches. Notably, imprinted regions are 
quite rare in vertebrate genomes (less than 1% of genes are imprinted) [99]. However, 
excluding imprinted loci prior to IMAGE mapping or substituting the IMAGE-I 
approach for these loci may slightly improve performance. Additionally, in unphased 
data, an important limitation of IMAGE is that it can only be used to analyze adjacent 
SNP-CpG pairs that are covered by the same sequencing reads. Analyzing only 
adjacent SNP-CpG pairs can limit the discovery of mQTLs. Therefore, it would be 
important to extend IMAGE to analyze distant SNP-CpG pairs in unphased data, 
using, for example, strategies presented in [100]. Certainly, if SNP data can be phased, 
IMAGE can also be applied to analyze SNP-CpG pairs that are separated by longer 
distances. In principle, using phased data could improve mQTL mapping power even 
further, if physically linked CpG sites display consistent ASM. Because the baboon 
and wolf data we analyzed here are not associated with an extensive genetic reference 
panel, we did not attempt to extend our analysis to phased data. Nevertheless, 
exploring the benefits of phased data or extending IMAGE to analyzing distant SNP-
CpG pairs in unphased data is an important future direction.   
 
Another limitation of IMAGE is that type I error may not be well controlled when 
methylation background heritability is high (>0.6, Additional file 3: Table S5), when 
the sample size is small (<100, Additional file 3: Table S6), or when the genotype 
minor allele frequency is low (<0.1, Additional file 3: Table S7). As a result, we 
recommend calibrating the false discovery rate against a permutation-derived 
empirical null, as we have done here (we note that calibrating against permutations 
has become an increasingly common approach in functional genomic mapping studies 
in any case [101, 102]). Finally, while our method is reasonably efficient and can be 
readily applied to analyze hundreds of individuals and tens of thousands of SNP-CpG 
pairs (Table 1), new algorithms will be needed to adapt IMAGE to data sets that are 
orders of magnitude larger.  
 
Nevertheless, in its current form, IMAGE is well-suited to analyzing sequencing-
based DNA methylation data sets of the size and scale typically generated in recent 
studies [103]. Thus, it can be flexibly deployed to investigate the genetic architecture 
of gene regulatory variation, the relative role of genes and the environment in shaping 
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the epigenome, or the mediating role of DNA methylation in linking environmental 
conditions to downstream phenotypes, including human disease (e.g., via Mendelian 
randomization or related approaches [104, 105]).   
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Materials and Methods 
Method Overview 
Both mQTL mapping and ASM analysis examine one CpG site-SNP pair at a time to 
identify SNPs associated with DNA methylation levels. However, these two 
approaches rely on different information to model the genotype-DNA methylation 
level relationship. Specifically, mQTL mapping focuses on modeling the methylated 
read counts and total read counts at the individual level across all samples, without 
differentiating between the contributions from the two alleles contained within each 
individual. In contrast, ASM analysis focuses on modeling methylated read counts 
and total read counts in an allele-specific fashion, restricting it to heterozygotes for 
the SNP of interest (otherwise, the contributions of each allele cannot be decoupled). 
mQTL mapping has the benefit of using the entire sample, not just heterozygotes. In 
contrast, ASM has the benefit of internal control, since both alleles within each 
heterozygote experience the same genetic and environmental background.  
 
To take advantage of both approaches, IMAGE independently models each CpG-SNP 
site pair. For each individual measured at a CpG-SNP pair, we denote ��  and �� as the 
methylated read count and total read count for the ith individual (combined across 
alleles), for � � 1, � , � . We denote the corresponding methylated and total read 
counts mapped to each of the two alleles of the ith individual as ���  and ���, for � � 1 
or 2. Thus, �� � ��� � ��� and �� � ��� � ���. Note that ���  and ��� are only observed in 
heterozygotes, so are treated as missing data in homozygotes (more details below). 
We then model the methylated read counts for each allele as a function of the total 
read counts for the same allele using a binomial model: 
 
 ���~������� , ����, (1) 
 
where ���  is the true methylation level for the lth allele in the ith individual. We further 
model the logit-transformed methylation proportion ���  as a function of allele 
genotype: 
 
 ��� � ���� ����� � ! � "��# � �� � $� � %�� , (2) 
 
where ! is the intercept; "�� is the lth allele type for the ith individual for the SNP of 
interest ("�� � 0  or 1, corresponding to the reference allele and alternative allele, 
respectively); and # is the corresponding allele/genotype effect size. In addition to 
these fixed effects, we model three random effects to account for different sources of 
over-dispersion. Specifically, ��  represents the genetic background/polygenic effect 
on DNA methylation for the ith individual and can be used to account for kinship or 
other population structure in the sample. We assume 

& � ���, � , �	�
~'()�0, ��
�*�, where *  is a known n by n genetic relatedness 

matrix that can be estimated either from genotype or pedigree data. $�  represents 
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individual-level environmental effects that we assume are independent across 
individuals but shared between the two alleles within the same individual. We assume 
$�~)�0, ��

�� . Finally, %��  represents the residual error and is used to account for 
independent noise that varies across both individuals and alleles (e.g. stochastic 
events). We assume %��~)�0, �


��. We standardize the genetic relatedness matrix * to 

ensure that the mean of the diagonal elements of * equals 1, or 
�����

	
� 1. When this 

is the case, �� �
��
�

��
����

��
�

�
��
�
, and can be interpreted as the approximate background 

heritability of DNA methylation levels (details in the Additional file 1: Supplementary 
Text). Here, the background heritability represents the proportion of variance in the 
latent parameter � explained by the genetic effects from all SNPs other than the SNP 
of focus (i.e. x). Therefore, the background heritability is the usual heritability minus 
the genetic effect of x. Our primary goal is to test the null hypothesis that genotype is 
not associated with methylation levels, or equivalently, +�: # � 0. 
 
While the above model is fully specified for heterozygous individuals, it is not fully 
specified in homozygotes, where ���  and ��� are not observed. For homozygotes, only 
the sums of the reads across both alleles, �� � ��� � ���  and �� � ��� � ��� , are 
observed. Therefore, for homozygotes, we derive a model for ��  and ��  based on 
equation (1) by summing over all possible values of ���  and ���: 
 
 

��
�|��, ���, ���� � � � ��
��|���, ������
� �
��|�� � ���, ���������|���
��

���	


��
 ����,���

���	


. 
 

(3) 

 
In equation (3), we assume that the model specified in equation (1) for the two alleles 
are independent of each other; thus 
-���� , ���|���, ���, ��� , ���� � -����|���, ����-��� / ���|�� / ���, ���� . We further 
assume that -����|��� follows a binomial distribution ���~������ , 0.5�, which reflects 
the assumption that both alleles are equally likely to be represented in the sequencing 
data. Even with these two assumptions, the probability ��
�|��, ���, ���� in equation (3) 
does not have an analytic form and can only be evaluated numerically, which is highly 
computationally inefficient for parameter estimation and inference. To enable scalable 
computation, we therefore approximate the distribution in equation (3) using a 
binomial distribution (details in the Additional file 1: Supplementary Text). Numerical 
simulations demonstrate the accuracy of this approximation across a range of settings 
(Additional file 2: Fig. S9).  
 
The model defined in equations (1), (2) (for heterozygous individuals) and (3) (for 
homozygous individuals) allows us to perform ASM-assisted mQTL mapping to 
identify SNPs associated with DNA methylation levels. Due to the random effects 
terms in the model, the joint likelihood based on these equations consists of a high-
dimensional integration that cannot be solved analytically. Here, we rely on the 
penalized quasilikelihood (PQL) algorithm that is commonly used for fitting 
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generalized linear mixed models [64, 80, 81] to perform parameter estimation. Based 
on the parameter estimates, we further calculate a Wald statistic for testing the null 
hypothesis that +�: # � 0 and obtaining a corresponding p-value.  
 
We refer to the above model as IMAGE, which is implemented as a freely available R 
software package at www.xzlab.org/software.html.  
 
Simulations 
We performed simulations to examine the effectiveness of our method and compare it 
with other approaches. To do so, we first randomly selected 150 individuals from the 
1958 birth cohort study, which is a part of the control samples that were used in the 
Wellcome Trust Case Control Consortium Study (WTCCC) [82]. We then obtained 
genotypes for 394,117 SNPs on chromosome 1 for these selected individuals. In the 
simulations, we examined the influence of sample size on power by choosing three 
different sample sizes: � � 50, 100 or 150. For � � 150, we used all 150 samples; for 
� 0 150, we randomly selected the corresponding number of individuals from the 
150 samples. For each simulation replicate, we computed the genetic relatedness 
matrix 1 from the SNP data using GEMMA [83-85]. We examined the influence of 
SNP minor allele frequency (MAF) on power by dividing the 394,117 SNPs into three 
different MAF bins: an MAF bin centered on 0.1, which contains SNPs with an MAF 
between 0.05 and 0.15 (p=100,631); an MAF bin centered on 0.3, which contains 
SNPs with an MAF between 0.25 and 0.35 (p=51,800); and an MAF bin including 0.5 
which contains SNPs with an MAF between 0.45 and 0.50 (p=23,619). To simulate 
SNP-CpG site pairs, given a combination of sample size and MAF bin, we randomly 
selected one SNP from the appropriate MAF bin and simulated methylation counts 
and total read counts based on the following procedure. 
 
For the total read counts, we first used a negative binomial distribution )����, 2� to 
simulate the total read count �� for each individual. Here, �� is the mean parameter 
and 2 is the dispersion parameter. We set �� � 10, 20, or 30, close to the median 
estimate across all CpG sites from the baboon data (details of the data are described in 
the next section; median estimate in the real data = 23). We set 2 � 3, which is close 
to the median estimates obtained from the baboon data (median estimate in the real 
data = 2.80). To obtain the total read count mapped to each of the two alleles, we 
further simulated a proportion parameter 3� , which represents the proportion of reads 
mapped to one allele out of the two alleles. Specifically, 3�  was simulated from a beta 
distribution �% 4�4, 5�, where we set the shape parameters a and b to both be 10, so 
that the simulated 3�  is symmetric around 0.5 and is within the range of (0.3, 0.7) in 
93.6% of cases. With �� and 3� , we simulated the total read count mapped to one of 
the two alleles from ���~������ , 3�� and set the total read count mapped to the other 
allele as ��� � �� / ���.  
 
For the methylated read counts, we performed simulations using a combination of five 
parameters. These five parameters include the intercept !, which characterizes the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/615039doi: bioRxiv preprint 

https://doi.org/10.1101/615039
http://creativecommons.org/licenses/by-nc-nd/4.0/


baseline methylation level (interpretable as the mean methylation level within a given 
population); �� , which represents background heritability; �� , which is the over-
dispersion variance; �, which characterizes the proportion of common environmental 
variance (i.e., for those effects that are shared between the two alleles in each 
individual) with respect to both the common environmental variance and the 
independent environmental variance that are independent between both individuals 
and alleles within individuals; and PVE, which represents genotype effect size in 
terms of proportion of phenotypic variance explained (PVE) by genotype. With these 
four parameters, we first simulated the genetic random effects � � ���, 	 , ��
� (an 
n-vector) across all individuals from a multivariate normal distribution with 

covariance 
�����	�

����
��	�
���  to guarantee that the background heritability for our 

population of simulated individuals is ��  (details in the Additional file 1: 
Supplementary Text). For each individual at a time, we then simulated the 
environmental random effects ���� , ���
  and 
�  together as a bivariate vector �
� �
��� , 
� � ���
�  from a bivariate normal distribution with a covariance Σ , where  

Σ � � �1 � ��� � ��
�� ��1 � ��� � ��
��

��1 � ��� � ��
�� �1 � ��� � ��
�� �.  

 
For sites where methylation level was not associated with genotype, the SNP effect � 
was set to zero and the background genetic effects, environmental effects, and an 
intercept (� ) were then summed together to yield the latent variable ���  through 
logit����
 � � �!"��

 � �� � 
� � ��� for the lth allele in ith individual. For sites with 
true mQTL, we used logit����
 � � �!"��

 � #�� � � �� � 
� � ��� to yield the latent 
variable ��� , where #��  is the allele genotype for the lth allele in the ith individual. We 
randomly draw � ~ %�0, ��

�
 for each CpG site in turn, where ��
� is set to ensure that 

genetic effects explain a fixed PVE in logit����
, on average. We set PVE to be 5%, 
10%, or 15% to represent different mean mQTL effect sizes and we derive ��

� �
��� ��

��
��������
, where the function '(•) denotes the sample variance computed across 

individuals with (  being a genotype vector of size n. Finally, we simulated the 
methylated read counts for each allele based on a binomial distribution with a rate 
parameter determined by the total read counts )� and the methylation proportion ���; 
that is, *��~+!,�)�� , ���
  for the  � th allele in ! th individual. For heterozygotes we 
retained the allele-level data �*�� , *��
 and �)��, )��
. For homozygotes we collapsed 
the allele-level data into individual-level data, *� � *�� � *�� and )� � )�� � )��. 
 
Using the procedure described above, we first simulated data under a baseline 
simulation scenario of n = 100, �� � 0.3，�
 � 0.5，/01 � 0.3, ρ � 0, 45 � 20,
�� � 0.7, and PVE = 0.1 for mQTL sites. We then varied one parameter at a time to 
generate different simulation scenarios to examine the influence of each parameter, 
following [40]. Here, we varied the baseline methylation level �
 to be either 0.1, 0.5, 
or 0.9 to represent low, moderate, or high levels of DNA methylation. We varied �� � 
0.0, 0.3, or 0.6 to represent no, medium, or high background heritability. We varied 
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�� � 0.3, 0.5, or 0.7, to represent different levels of over-dispersion. We varied � � 0, 
0.3, or 0.9 to represent different levels of common environment influence. For each 
simulated combination of parameters, we performed 10 simulation replicates 
consisting of 10,000 CpG sites each. Among these sites, DNA methylation levels at 
1,000 of them were associated with the SNP genotype ( � 7 0 ) while DNA 
methylation levels for the remaining 9,000 were not (� � 0).  
 
Baboon RRBS data  
 
We applied our method to a bisulfite sequencing data set from 69 wild baboons from 
the Amboseli ecosystem in Kenya [40, 45]. These data were generated using RRBS 
on the Illumina HiSeq 2000 platform, with 100 bp single-end sequencing reads. We 
obtained the raw fastq files from NCBI (accession number PRJNA283632), removed 
adaptor contamination and low-quality bases using the program Trim Galore (version 
0.4.3) [106], and then mapped reads to the baboon reference genome (Panu2.0) using 
BSseeker2 [107] (Additional file 2: Fig. S3; more details in Additional file 1: 
Supplementary Text). After removing two samples that had extremely low sequencing 
read depths (57,734 and 58,070 reads, respectively), sequencing read depth ranged 
from 5.00 to 79.78 million reads (median = 24.48 million reads; sd = 13.69 million).  
 
We performed SNP calling in the bisulfite sequencing data using CGmaptools, a SNP 
calling program specifically designed for bisulfite sequencing data. CGmaptools 
examines one individual at a time using the BayesWC SNP calling strategy [78]. 
Following the authors’ recommendations, we used a conservative error rate of 0.01 
and a dynamic p-value to account for different read depth per site. Further, we 
modified the source code to make CGmaptools output homozygous reference 
genotypes as well. After SNP calling, we indexed and merged variant call files (VCFs) 
using VCFtools [108]. We then obtained a common set of SNPs where the position 
was called in at least 50% individuals (including homozygous reference calls). For 
each individual, we filtered out SNPs that were called using less than three reads. For 
each SNP, we filtered out variants that had an estimated MAF < 0.05. Finally, we 
filtered out 989 multiallelic SNPs to obtain a final call set of 289,103 analysis-ready 
SNPs (mean = 203,864 SNPs typed per sample; median = 204,554; sd = 34,768). We 
computed the genetic relatedness matrix � in GEMMA, using this SNP data set. 
 
To validate the SNP genotype data, we compared the variants identified from the 
bisulfite sequencing data to a set of previously identified SNP variants in baboons 
[109]. These previously identified SNPs were obtained from 44 different wild 
baboons from East Africa, including members of the baboon population from which 
the RRBS data were generated but also members of baboon populations outside 
Amboseli, via low-coverage DNA sequencing (range: 0.6x to 4.35x; median = 1.91x; 
sd = 0.77x). This data set identified a total of 24,770,393 SNPs, with an average of 
17,725,780 SNPs genotyped per individual (median = 18,139,340; sd = 4,315,590). 
Because of the low sequencing depth in the DNA sequencing data set, we expected 
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that variants called from the bisulfite sequencing data would not completely overlap 
with variants identified from the DNA sequencing data. Indeed, we found that 50.9% 
of our called variants are located at a known variant from the DNA sequencing study, 
with the remaining SNPs being novel. Importantly, among overlapping variants, 99.5% 
have the same alternate allele, in support of the accuracy of SNP calling from bisulfite 
sequencing data. Additionally, we observe more overlap in called variants with higher 
alternate allele frequency, reaching 72.5% for variants with an alternate allele 
frequency > 0.5 in the RRBS data (Additional file 2: Fig. S10A). The allele frequency 
estimates from the two data sets for overlapping variants are reasonably well 
correlated (Spearman correlation ) � 0.551; p-value < 2.2 8 10
��; Additional file 2: 
Fig. S10B).  
 
In addition to genotyping, we used CGmaptools to obtain CpG-SNP pairs where the 
SNP and CpG site were profiled on the same sequencing read. The distance between 
the SNP-CpG site pairs ranges from 1 bp to 104 bp, with a median distance of 37 bp 
(mean = 39.75 bp; sd = 26.15 bp; Additional file 2: Fig. S10C). We extracted the 
methylation level estimates for each CpG site in the form of the number of methylated 
read counts and the number of total read counts, at the individual level for 
homozygotes and for each allele separately for heterozygotes. We obtained a total of 
522,965 SNP-CpG pairs, with 82,217 unique SNPs and 391,137 unique CpG sites. 
Following [49], we excluded CpG sites (i) that were measured in less than 20 
individuals; (ii) where methylation levels fell below 10% or above 90% in at least 90% 
of measured individuals; (iii) that had a mean read depth less than 5; or (iv) that were 
paired with a SNP with MAF<0.05 across individuals for whom DNA methylation 
estimates were available. To avoid potential mapping bias, we also excluded CpG 
sites with apparent differences in methylation levels between reference and alternate 
alleles that were larger than 0.6. Note that excluding these sites is a conservative 
strategy and may remove truly associated SNP-CpG pairs where mQTL are unusually 
large effect size. After filtering, our final data consisted of 49,196 SNP-CpG pairs, 
with 13,753 unique SNPs and 45,210 unique CpG sites, and an average of 33,539 
SNP-CpG pairs measured per individual.  
 
For these SNP-CpG pairs, the median number of reads per SNP across all individuals 
was 23 (mean = 31.21; sd = 30.08), and the median number of reads per allele was 13 
in heterozygous individuals (mean = 18.75; sd = 19.75). To check the quality of DNA 
methylation estimates for these CpG sites, we examined their distribution across 
individuals. Similar to other RRBS data sets [110], we observed a bimodal 
distribution pattern of methylation levels, including a large number of 
hypomethylated and hypermethylated CpG sites (Additional file 2: Fig. S10D). Next, 
we examined the accuracy of methylation measurements obtained from our pipeline 
by comparing the mean methylation at each CpG site obtained here to those estimated 
in a previous study that focused on a subset of 61 individuals but used a different 
mapping and DNA methylation estimation pipeline [111]. As expected, the overall 
distribution of DNA methylation levels is almost identical between our pipeline and 
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the previous study for the 15,605 overlapping sites (Additional file 2: Fig. S10E). In 
addition, site-specific DNA methylation level estimates are highly correlated 
(Spearman correlation ) � 0.855 , p-value : 2.2 8 10
�� ; Additional file 2: Fig. 
S10E). Finally, we checked whether our data suggest mapping bias in favor of the 
reference allele. Among the CpG sites we analyzed, we observed no bias in 
methylation level estimates between the reference and the alternate alleles (Additional 
file 2: Fig. S10F).  
 
We applied five different approaches (details in the Results), together with our 
primary IMAGE method, to analyze the baboon DNA methylation data. Most of these 
methods are count based, and algorithms for count based models can be 
computationally unstable in the presence of covariates. To control for confounding 
effects from covariates, for each SNP in turn, we removed the effects of age, sex and 
the top two methylation principal components based on M-values [112] and used the 
genotype residuals for analysis. One method, IMAGE-A, requires a relatively large 
number of heterozygous individuals and was thus only applied to analyze sites for 
which we identified at least 5 heterozygotes (38,250 SNP-CpG pairs). All other 
methods were applied to all 49,196 SNP-CpG pairs. Because different methods have 
different type I error control and one method (IMAGE-A) analyzes a different number 
of SNP-CpG pairs, to ensure fair comparison, we performed permutations to construct 
empirical null distributions. Specifically, we combined the count data from the 
heterozygotes �*��, *��
,�)��, )��
 with the count data from the homozygotes �*� , )�
, 
treated the two alleles of each heterozygote as two samples and treated each 
homozygote as one sample, permuted the sample label 10 times to create null 
permutations, and applied each method to analyze the permuted data. We note that an 
alternative permutation strategy would be to permute (*� , )�) along with covariates 
across individuals. In this strategy, the number of methylated reads for each allele (out 
of total reads for each allele) in heterozygotes could then be sampled from a binomial 
distribution with probability 0.5, conditional on *�  and )� � *�  respectively. This 
alternative strategy is not ideal for small sample sizes, but is likely to work well for 
large samples (approximately n>150). Therefore, we have also implemented this 
alternative permutation strategy in the software and recommend users to explore both 
strategies and select one that performs the best for their data. Regardless of which 
permutation strategy one uses, the statistics from the permuted data allowed us to 
construct an empirical null distribution. With the empirical null distribution, we 
estimated the empirical false discovery rate (FDR) for different methods at different 
p-value thresholds. We then compared the number of associations detected by 
different methods at a fixed FDR cutoff.  
 
Finally, following [86], we annotated CpG sites into four categories based on genomic 
locations obtained from the UCSC Genome Browser: island, shore, shelf and open sea. 
CpG islands are defined as short (approximately 1 kb) regions of high CpG density in 
an otherwise CpG-sparse genome [113]. A large proportion of CpG islands have been 
shown to be associated with gene promoters [114, 115]. The methylation level at the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/615039doi: bioRxiv preprint 

https://doi.org/10.1101/615039
http://creativecommons.org/licenses/by-nc-nd/4.0/


CpG islands is often associated with transcription repression [116, 117]. CpG shores 
are defined as the 2 kb of sequence flanking a CpG island and CpG shelfs are defined 
as the 2 kb of sequence further flanking CpG shores. Both CpG shores and shelfs have 
been reported to be more dynamic than the CpG island itself [90, 118, 119]. The 
methylation variation at shores and shelfs have been associated with various diseases. 
Finally, the remaining regions outside of CpG island/shore/shelf are denoted as open 
seas [120]. We downloaded the CpG island annotations for Panu2.0 directly from 
UCSC; annotated the 2 kb region upstream and downstream of the CpG island 
boundaries as the shore; annotated the 2 kb regions upstream and downstream of the 
CpG shores as the CpG shelves; and annotated the remaining regions as open sea 
(Figure 3E).  
 
Wolf RRBS data  
 
We also applied our method to analyze a second bisulfite sequencing data set, from  
63 grey wolves from Yellowstone National Park in the United States [46, 94]. The 
wolf data are RRBS data collected on the Illumina HiSeq 2500 platform using 100 bp 
single end sequencing reads. We obtained bam files for 35 individuals from NCBI 
(accession number PRJNA299792) [46] and the fastq files for the remaining 
individuals from accession number PRJNA488382 [94]. We processed all files using 
the same procedure described in the previous section, using Trim Galore and 
BSseeker2, with the dog genome canFam 3.1 [121] as the reference genome. Per-
individual sequencing read depth ranges from 9.53 to 75.18 million reads per 
individual (median = 31.36 million reads; sd = 12.91 million). We used the same SNP 
calling procedure described for baboons and applied the same filtering criteria to 
obtain a final call set of 518,774 SNPs, with an average of 360,063 SNPs genotyped 
per individual (median = 440,898; sd = 103,522). We also computed the genetic 
relatedness matrix � with these SNPs using GEMMA. 
 
To validate variants identified in the wolf data set, we compared the called variants 
from the bisulfite sequencing data to an existing SNV data base from the current 
Ensembl release for the dog genome canFam 3.1. We found that 17.9% of variants 
overlapped with known variants from Ensembl. Importantly, among overlapping 
variants, 99.1% of them have the same alternative allele as reported in Ensembl. In 
addition, the proportion of overlapping variants increases with increasing alternate 
allele frequency and reaches 41.3% when we focus on variants that have an alternate 
allele frequency > 0.5 in the RRBS data (Additional file 2: Fig. S11A).  
 
We followed the same procedure described for baboons to extract methylation 
measurements on SNP-CpG pairs. In the wolves, the distance between SNP-CpG site 
in each pair ranges from 1 bp to 103 bp, with a median of 35 bp (mean = 38.41bp; sd 
= 25.63bp; Additional file 2: Fig. S11B). We obtained a total of 861,474 SNP-CpG 
pairs, representing 144,670 unique SNPs and 684,681 unique CpG sites. Following 
quality control filtering, we obtained a final set of 279,223 SNP-CpG pairs, 
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representing 77,039 unique SNPs and 242,784 unique CpG sites, with an average of 
179,412 SNP-CpG pairs measured per individual. In this set, the median number of 
reads per SNP across all individuals is 25 (mean = 31.16; sd = 29.33) and the median 
number of reads per allele is 14 in heterozygotes (mean = 17.45; sd = 18.90). 
Methylation levels across sites display the expected bimodal distribution pattern 
(Additional file 2: Fig. S11C), and we observed no bias in methylation level estimates 
between the reference and the alternate alleles (Additional file 2: Fig. S11D).  
 
We applied the same analysis procedure to analyze the wolf data as we did for the 
baboon data set. IMAGE-A was used to analyze 236,092 SNP-CpG pairs where the 
data set included at least 5 heterozygotes while the other methods were applied to all 
279,223 SNP-CpG pairs. We used permutation to construct empirical null 
distributions for FDR control and controlled for the effects of sex and the top two 
methylation principal components in the same procedure described in the baboon data. 
Finally, we annotated CpG sites into island, shore, shelf and open sea categories as 
described above, based on the canFam3.1 genome. 
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Availability of data and materials 

Baboon RRBS fastq files are available in the Sequence Read Archive (SRA) of NCBI 

under accession PRJNA283632 [40, 45]. Wolf RRBS bam files for 35 wolves are 

available under accession PRJNA299792 [46] and the fastq files for the other 27 

wolves are available under accession PRJNA488382 [94]. The Trim Galore! Software 

is available from https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ 
[106]. The BS Seeker 2 software is available from http://pellegrini-

legacy.mcdb.ucla.edu/bs_seeker2/[107]. The VCFtools software is available from 
http://vcftools.sourceforge.net/[108]. The CGmaptools software is available from 

https://cgmaptools.github.io/[78]. The GEMMA[83-85], MACAU[40, 57], BB[40], 

and PQLseq[64] software packages are available from 

http://www.xzlab.org/software.html.  

IMAGE is an open source R package that is freely available from GitHub [122] 
https://github.com/fanyue322/IMAGE, CRAN ( 
https://cran.r-project.org/web/packages/IMAGE/index.html) and 
http://www.xzlab.org/software.html.  Source code for the software release used in the 
paper has been placed into a DOI-assigning repository[123] 
(https://doi.org/10.5281/zenodo.3334384). The code to reproduce all the analyses 
presented in the paper are available on GitHub[124] 
(https://github.com/fanyue322/IMAGEreproduce) and deposited on Zenodo[125] 
(https://doi.org/10.5281/zenodo.3334388). 
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Table 1: Computational time for analyzing differently sized data sets, for count-based mQTL mapping 

methods. Computing time is based on analysis of 100,000 SNP-CpG pairs with baseline simulation 

parameters and varying sample size, using a single thread on a Xeon E5-2683 2.00GHz processor. 

 

Method Sample Size Time (min) 
IMAGE 50 295.87 

 100 410.10 
 150 543.48 

IMAGE-I 50 81.10 
 100 63.93 
 150 108.27 

IMAGE-A 50 16.63 
 100 36.51 
 150 69.25 

MACAU 50 214.85 
 100 476.58 
 150 883.60 

BB 50 417.63 
 100 2029.44 
 150 3967.03 
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Figure legend 

 

Fig. 1: Schematic of ASM-assisted mQTL mapping. The top three panels show bisulfite sequencing 

data mapped to a CpG site where methylation level is associated with a nearby SNP, in an AA 

homozygote (left), an AT heterozygote (middle), and a TT homozygote (right). Note that, while 

illustrated in the panels, the allele-level methylation information in the two homozygotes is not 

observed. The bottom three panels depict three methods to detect SNP-CpG association: the standard 

mQTL mapping approach (left) uses non-allele-specific information from all three individuals to detect 

an association; the standard ASM analysis (middle) uses allele-level information from the 

heterozygotes only; and the joint analysis approach (right) presented here uses both types of 

information to achieve a gain in power. mQTL: methylation quantitative trait loci; ASM: allelic specific 

methylation.  

 

Fig. 2: IMAGE achieves higher power to detect mQTL across various simulation settings. Power is 

measured by number of true mQTL detected at a false discovery rate (FDR) of 0.05. Each simulation 

setting is based on 10 simulation replicates, each including 10,000 simulated SNP-CpG pairs, 10% of 

which represent true mQTL. (A) We vary ��, the background heritability, to be either 0, 0.3, or 0.6, 

while maintaining other parameters at baseline. (B) We vary ρ , the proportion of common 

environmental variance, to be either 0, 0.3 or 0.9, while maintaining other parameters at baseline. The 

middle panel in (A) and the left panel in (B) correspond to the baseline simulation setting. Increasing 

both ��  and ρ, which capture genetic and common environmental background effects, respectively, 

results in increased power for methods that use ASM information (IMAGE and IMAGE-A), but losses 

in power for methods that do not use ASM information (IMAGE-I, MACAU, GEMMA, BB). FDR: 

false discovery rate.  

  

Fig. 3: mQTL mapping results in the baboon RRBS data. (A) IMAGE identified more mQTL than the 

other five methods across a range of empirical FDR thresholds. (B) IMAGE identifies more consistent 

associations than the other methods in the subset analysis. Here, we randomly split individuals into two 

approximately equal sized subsets and analyzed the two subsets separately using each method. We then 

counted the number of overlapping mQTL identified in both subsets. The overlap ratio (y-axis) is 

plotted against the percentage of top mQTL ranked by statistical evidence for a SNP-CpG methylation 

association in each method (x-axis). (C) Upper panel: log2 odds ratio of detecting associated SNP-CpG 

pairs, together with the 95% CI, is computed for CpG sites residing in different annotated genomic 

regions. CpG sites with IMAGE-identified mQTL are enriched in open sea regions (p-value=0.0106) 

and depleted in CpG islands (p-value = 1.056 � 10��). Bottom panel: all analyzed CpG sites have 

been annotated to genomic regions based on their relation to the nearest CpG island. CpG islands were 

annotated based on UCSC Genome Browser (average length = 672 bp in the data; min = 201 bp; max = 

15,960 bp). Shore is the flanking region of CpG islands covering 0-2000bp distant from the CpG island. 

Shelf is the regions flanking island shores covering 2000-4000 bp distant from the CpG island.  (D) A 

higher percentage of CpG sites are directly disrupted by the SNP in mQTL pairs compared to by 

chance alone (horizontal dashed line), and more so than in non-mQTL pairs (p-value <2.2 � 10���). 

Such enrichment decays with increased FDR thresholds. *P<0.05 **P<0.01.  
 

Fig. 4: mQTL mapping results in the wolf RRBS data. Methods for analysis include: IMAGE (red), 
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IMAGE-I (orange), IMAGE-A (green), MACAU (pink), GEMMA (brown), BB (blue). (A) IMAGE 

identified more associated SNP-CpG pairs than the other five methods across a range of empirical 

FDRs constructed by permutation. (B) IMAGE identifies more consistent associations than the other 

methods in the subset analysis. Here, we randomly split individuals into two approximately equal sized 

subsets and applied methods to analyze the two subsets separately. We count the number of overlapping 

associations between the top SNP-CpG pairs in the two subsets. The overlap ratio (y-axis) is plotted 

against the percentage of top SNP-CpG pairs (x-axis). (C) Upper panel: log2 odds ratio of detecting 

associated SNP-CpG pairs, together with the 95% CI, is computed for CpG sites residing in different 

annotated genomic regions. CpG sites associated with SNPs identified by IMAGE are enriched in open 

sea regions (p-value <2.2 � 10���) and depleted in CpG island regions (p-value <2.2 � 10���). Shores 

are defined as the 2000 bp regions flanking CpG islands; shelves are defined as the 2000 bp regions 

flanking the island shores (2000-4000 bp from CpG islands). Bottom panel: all analyzed CpG sites 

have been annotated to genomic regions based on their relation to the nearest CpG island. CpG islands 

were annotated based on UCSC Genome Browser (average length = 830 bp in the data; min = 201 bp; 

max = 322,257 bp). Shore is the flanking region of CpG islands covering 0-2000bp distant from the 

CpG island. Shelf is the regions flanking island shores covering 2000-4000 bp distant from the CpG 

island.  (D) A higher percentage of CpG sites are directly disrupted by the SNP in the mQTL pairs 

compared to by chance alone (horizontal dashed line), and more so than in non-mQTL pairs (p-value 

<2.2 � 10���). Such enrichment decays with increased FDR thresholds. *P<0.05. **P<0.01.  
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