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Abstract: 25 

Mammalian tissues are composed of highly specialized cell types defined by distinct gene 26 

expression patterns. Identification of cis-regulatory elements responsible for cell-type 27 

specific gene expression is essential for understanding the origin of the cellular diversity. 28 

Conventional assays to map cis-elements via open chromatin analysis of primary tissues 29 

fail to resolve their cell type specificity and lack the sensitivity to identify cis-elements in 30 

rare cell types. Single nucleus analysis of transposase-accessible chromatin (ATAC-seq) 31 

can overcome this limitation, but current analysis methods begin with pre-defined 32 

genomic regions of accessibility and are therefore biased toward the dominant population 33 

of a tissue. Here we report a method, Single Nucleus Analysis Pipeline for ATAC-seq 34 

(SnapATAC), that can efficiently dissect cellular heterogeneity in an unbiased manner 35 

using single nucleus ATAC-seq datasets and identify candidate regulatory sequences in 36 

constituent cell types. We demonstrate that SnapATAC outperforms existing methods in 37 

both accuracy and scalability. We further analyze 64,795 single cell chromatin profiles 38 

from the secondary motor cortex of mouse brain, creating a chromatin landscape atlas 39 

with unprecedent resolution, including over 300,000 candidate cis-regulatory elements 40 

in nearly 50 distinct cell populations. These results demonstrate a systematic approach 41 

for comprehensive analysis of cis-regulatory sequences in the mammalian genomes. 42 

  43 

  44 
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 3 

Introduction 45 

Mammalian tissues comprise of various cell types highly specialized to carry out distinct 46 

functions. Cellular identity and function are established and maintained through 47 

programs of gene expression that are specific to each cell type and state1. Gene regulation 48 

is carried out by sequence-specific transcription factors that interact with cis-regulatory 49 

sequences, such as promoters, enhancers and insulators2. Identifying cis-regulatory 50 

elements in the genome is an essential step towards understanding the cell type specific 51 

gene regulatory programs in mammalian tissues. 52 

  53 

Since the activity of cis-elements often arises from the binding of transcription factors to 54 

accessible chromatin, approaches such as ATAC-seq (Assay for Transposase-55 

Accessible Chromatin using sequencing)3 and DNase-seq (DNase I hypersensitive sites 56 

sequencing)4 that identify regions of open chromatin have been widely used to map 57 

candidate regulatory sequences in the genomes. However, these conventional assays have 58 

limited ability to resolve the diverse cell type-specific chromatin landscapes present in 59 

heterogeneous tissues, providing only an average map dominated by signals from the 60 

most common cell populations.  61 

 62 

Recently, a number of methods have been developed for measuring chromatin 63 

accessibility in single cells. One approach involves combinatorial indexing to 64 

simultaneously process tens of thousands of cells5. This strategy has been successfully 65 

applied to embryonic tissues in D. melanogaster6, developing mouse forebrains7 and 66 

multiple adult mouse tissues8. A related method, called scTHS-seq (single-cell 67 

transposome hypersensitive site sequencing), has also been developed and used to 68 

study chromatin landscapes at single cell resolution in the adult human brains9. 69 

Another approach relies on isolation of single cell using microfluidic devices (Fluidigm, 70 

C1)10 or within individually indexable wells of a nano-well array (Takara Bio, ICELL8)11. 71 

Whereas fewer cells are processed per experiment compared to the combinatorial 72 

indexing approach, the library complexity per single cell is considerably higher with 73 

this method12. Recently, 10X Genomics and Bio-Rad Laboratories have enabled single 74 

cell ATAC-seq on droplet-based microfluidic platform, producing data of similar 75 

quality to that of nano-well capture technique12. Despite these experimental advances, 76 
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data from single cell chromatin accessibility experiments still presents unique 77 

computational challenges largely due to the sparsity and high-level noise of the data from 78 

single cells.  79 

 80 

Existing computational methods rely on pre-defined regions of transposase accessibility 81 

identified from the aggregate signals. For instance, chromVAR13 estimates similarity 82 

between cells based on transcription factor occurrence frequency in the peak regions. 83 

Alternatively, techniques developed for natural language processing have been applied to 84 

scATAC-Seq data by treating each single cell profile as a document, composed of regions 85 

of chromatin accessibility which play the role of words. In this framework, Latent 86 

Semantic Analysis (LSA)8 and Latent Dirichlet Allocation (Cis-Topic)14 infer the 87 

relationships between cells. A third approach, Cicero, clusters cells based on the gene 88 

activity scores predicted by linking distal or proximal peaks to the gene15. Relying on gene 89 

activity scores predicted by Cicero, a recent approach attempts to classify individual 90 

nuclei from a scATAC-seq dataset based on a reference of transcriptomic states16.  91 

 92 

The use of pre-defined accessibility peaks based on bulk data has at least three key 93 

limitations. First, it requires sufficient number of single cell profiles to create robust 94 

aggregate signal for peak calling. Second, the cell type identification is biased toward the 95 

most abundant cell types in the tissues. Finally, these techniques lack the ability to reveal 96 

regulatory elements in the rare cell populations which are underrepresented in the 97 

aggregate signal. This concern is critical, for example, in brain tissue, where key neuron 98 

types may represent less than 1% of all cells while still playing a critical role in the neural 99 

circuit17. 100 

 101 

To overcome these limitations, we developed a bioinformatic package, Single Nucleus 102 

Analysis Pipeline for ATAC-seq (SnapATAC), for analyzing single cell ATAC-seq (scATAC-103 

seq) datasets. SnapATAC does not require population-level peak annotation, and instead 104 

assembles chromatin landscapes by directly clustering cells based on the similarity of 105 

their genome-wide accessibility profile. Using a regression-based normalization 106 

procedure, SnapATAC adjusts for differing read depth between cells. With a fast 107 

dimensionality reduction technique, it can easily process data from millions of cells. In a 108 
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battery of tests using simulated and published datasets, SnapATAC outperforms existing 109 

tools in both clustering accuracy and scalability. To demonstrate the utility of SnapATAC, 110 

we apply it to a dataset of over 60,000 single cell ATAC-seq profiles from the mouse 111 

secondary motor cortex that we generated. We detect nearly 50 subtypes including some 112 

rare types that account for less than 0.1% of the total population.  We also uncover 113 

337,932 candidate cis-elements in these different cell types, more than twice as many as 114 

were identified from bulk analysis. These results suggest that SnapATAC, together with 115 

scATAC-seq, can greatly enhance our ability to annotate and characterize the cis-116 

regulatory elements in the mammalian genomes. 117 

   118 

Results 119 

SnapATAC achieves a new standard for scATAC-seq analysis 120 

A schematic diagram of SnapATAC is shown in Fig. 1. Briefly, after pre-processing 121 

(Methods), the chromatin accessibility profile of each single cell is represented as a 122 

binary vector, the length of which corresponds to the number of uniform-sized bins that 123 

segmented the genome.  A bin with value “1” indicates that one or more reads fall within 124 

that bin, and the value “0” indicates otherwise. Next, the set of binary vectors from all the 125 

cells is converted into a Jaccard index matrix, with the value of each element calculated 126 

from fraction of overlapping bins between every two cells. Since the number of cells is 127 

usually far smaller than the number of bins, this operation effectively reduces the 128 

dimensions of the matrix therefore significantly improves the scalability of the pipeline 129 

(Methods). Because the value of Jaccard Index can be influenced by differing sequencing 130 

depth between cells (Supplementary Fig. 1), therefore, a normalization method is 131 

developed to remove such confounding factor (Methods; Supplementary Fig. 1-2). 132 

Next, the normalized matrix is subject to Principal Component Analysis (PCA) and the 133 

significant components are selected to create a K-nearest neighbor (KNN) graph, with 134 

edges drawn between cells with similar ATAC-seq profiles. The highly interconnected 135 

‘communities’ (or ‘clusters’) of cells in the resulting graph are identified using Louvain 136 

algorithm18. Cells belonging to each cluster are pooled to assemble a consensus chromatin 137 

landscape for identification of regulatory elements de novo. Finally, using candidate 138 

regulatory elements in each cluster, the master regulators for each cell cluster are inferred 139 

by motif analysis19 and the potential function of the cluster is predicted with Genomic 140 
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Regions Enrichment of Annotation Tool (GREAT) analysis20.  Thus, SnapATAC provides 141 

an end-to-end solution for analysis of single cell ATAC-seq datasets.   142 

 143 

  144 
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 145 
Figure 1. Overview of SnapATAC workflow. (a) Pre-processing: SnapATAC takes 146 

raw sequencing reads as input and aligns them to the reference genome followed by 147 

filtration of low-quality cells. (b) Cell-by-Bin Binary Matrix: the genome is segmented 148 

into uniform-sized bins and single cell profiles are represented as a binary matrix with 149 

“1” indicating a specific bin is accessible in a given cell and “0” denoting inaccessible 150 
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chromatin or missing data. (c) Feature Selection & Jaccard Index Matrix: after filtering 151 

undesirable bins, the genome-wide cell-by-bin matrix is converted into a Jaccard index 152 

matrix by estimating similarity between cells in the basis of profile overlaps. (d) 153 

Normalization: Jaccard similarity matrix is normalized using a regression-based 154 

method to eliminate the read depth effect. (e) Clustering: using normalized matrix, cells 155 

of similar accessibility profiles are clustered together and visualized using t-SNE (t-156 

Distributed Stochastic Neighbor Embedding) or UMAP (Uniform Manifold 157 

Approximation and Projection for Dimensionality Reduction). (f) Peak Calling: cells 158 

belonging to the same cluster are aggregated to create a representation of cell-type 159 

specific regulatory landscape for identification of candidate cis-regulatory elements de 160 

novo. (g)  Peak Occurrence Frequency Matrix: the frequency (number of cells out of the 161 

total) of a peak occurring in each cluster is calculated. (h) Differential Analysis: 162 

differential analysis performed to identify cell-type specific regulatory elements. (i) 163 

GREAT & Motif Analysis: using cell-type specific regulatory elements, GREAT (Genomic 164 

Region Enrichment of Annotation Tool) analysis performed to predict the potential 165 

function of each cluster and motif analysis to reveal candidate master regulators that 166 

controls gene expression in each cell type.  167 

 168 

The performance of SnapATAC is benchmarked against a variety of published scATAC-169 

seq analysis methods, including chromVAR13, LSA8, Cicero15 and Cis-Topic14. To allow for 170 

evaluation of the clustering performance as a function of data sparsity, a set of simulated 171 

single-cell ATAC-seq datasets were generated by down sampling from 10 previously 172 

published bulk ATAC-seq datasets21 (Supplementary Table 1) with varying coverages, 173 

from 10,000 reads per cell (high coverage), to 1,000 reads per cell (low coverage) 174 

(Methods). The performance of each method in identifying the original cell types was 175 

measured by the normalized mutual index (NMI), which ranges from 0 for a level of 176 

similarity expected by chance to 1 for perfect clustering. This analysis shows that 177 

SnapATAC is the most robust and accurate method across all ranges of data sparsity (Fig. 178 

2) (Wilcoxon signed-rank test, P < 0.01; Supplementary Fig. 3; Supplementary 179 

Table 2). 180 

  181 
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 182 
Figure 2. Validation of SnapATAC performance relative to alternative 183 

methods on simulated datasets. Method comparison on 2,000 simulated single cell 184 

ATAC-seq data down sampled from 10 bulk ATAC-seq datasets with varying coverages. 185 

Mono: monocyte; Mega: megakaryocyte; GMPC: granulocyte monocyte progenitor cell; 186 

MPC: megakaryocyte progenitor cell; NPT: neutrophil; G1E: G1E; T cell: regulatory T cell; 187 

MEPC: megakaryocyte-erythroid progenitor cell; HSC: hematopoietic stem cell. 188 
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The superior performance of SnapATAC likely results from the fact that it considers all 189 

reads from each cell, not just a small fraction of reads that fall within peaks identified 190 

from aggregate signals. To test this hypothesis, the above analysis was repeated but only 191 

using off-peak reads. Consistent with this hypothesis, all cells were clustered perfectly 192 

(nmi=1.0; Supplementary Fig. 4). It is likely that these off-peak reads 1) overlap with 193 

“weak” elements that are not identified from the aggregate signals; 2) may be enriched for 194 

the euchromatin, which strongly correlate with active genes22 and vary considerably 195 

between cell types23. Supporting this hypothesis, the density of 70% off-peak reads 196 

correlates strongly with compartment A defined in the particular cell types through 197 

genome-wide chromatin conformation capture analysis (i.e. Hi-C) (Supplementary Fig. 198 

5). These observations suggest that the superior performance of SnapATAC with low-199 

coverage datasets is, at least in part, due to that the off-peak sequencing reads in the 200 

scATAC-seq library contribute significantly for cell clustering. 201 

  202 

To further assess the performance of SnapATAC, it is used to analyze a series of published 203 

single cell chromatin accessibility datasets representing a variety of sample types, and the 204 

results are compared to the original analysis. When applied to a set of 1,452 human cells 205 

corresponding to 10 distinct cell types13, SnapATAC successfully uncovered distinct cell 206 

populations with an accuracy of 0.95 (normalized mutual index) according to the cell 207 

labels, while the original method (chromVAR) failed to fully distinguish several blood cell 208 

subtypes (HL60, Blast, LMPP, LSC and Mono) (Fig. 3a; Supplementary Fig. 6a). 209 

Interestingly, SnapATAC divided K562 cells into two sub-clusters (Fig. 3a) (labeled as 210 

K562.2015, K562.2017), corresponding to the years (2015 and 2017, respectively) when 211 

the cells were grown and profiled (Supplementary Fig. 6b-c). In addition, GM12878 212 

cells were also split into two separate clusters (GM12878.a and GM12878.b) 213 

(Supplementary Fig. 6b) that represent previously identified subtypes associated with 214 

differential NF-kB activity and B cell signaling5 (Supplementary Fig. 6d). Taken 215 

together, these results indicate that SnapATAC is a sensitive and accurate method to 216 

distinguish different cell types.  217 

 218 

When applied to datasets from more complex tissues, SnapATAC also exhibits much 219 

improved performance over previous methods. Reanalyzing single-cell open chromatin 220 
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profiles (scTHS-seq) from 6,008 human Occipital Lobe9, SnapATAC uncovered two 221 

additional inhibitory neuron subpopulations and four more excitatory subtypes 222 

corresponding to different layers (Fig. 3b) that were previously undetectable without 223 

incorporating single cell RNA sequencing data9. Similarly, when applied to a sci-ATAC-224 

seq dataset comprising ~100,000 single cells from 13 adult mouse tissues8, SnapATAC 225 

revealed almost twice as many additional cell clusters as originally reported (Fig. 3c, 226 

Supplementary Fig. 7-10). For example, when applied to prefrontal cortex, SnapATAC 227 

identified 22 different populations including 12 excitatory neurons representing layer-228 

specific subtypes, 5 inhibitory neuronal clusters including Sst, Vip, Pvalb, Sncg and 229 

Lamp5 subtypes, 1 oligodendrocyte cluster, 1 oligodendrocyte precursor cluster, 1 230 

astrocyte cluster, 1 microglia cluster, 1 endothelial cell cluster (Fig. 3c, Supplementary 231 

Fig. 7-8). This improved cell-type resolution also holds true for other tissue samples 232 

tested (Supplementary Fig. 9-10). These results indicate that SnapATAC outperforms 233 

existing methods on complex single cell accessibility datasets.  234 

 235 

 236 
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Figure 3. Validation of SnapATAC performance relative to alternative 237 

methods on published single cell ATAC-seq datasets. (a) ChromVAR (top) versus 238 

SnapATAC (bottom) on scATAC-seq data from 11 human cell lines. Points are colored by 239 

cell types. Blast: acute myeloid leukemia blast cells; LSC: acute myeloid leukemia 240 

leukemic stem cells; LMPP: lymphoid-primed multipotent progenitors; Mono: monocyte; 241 

HL60: HL-60 promyeloblast cell line; TF1: TF-1 erythroblast cell line; GM: GM12878 242 

lymphoblastoid cell line; BJ: human fibroblast cell line; H1: H1 human embryonic stem 243 

cell line. (b) POGODA2 (top) versus SnapATAC (bottom) on human Occipital Lobe 244 

scTHS-seq. Points are colored by identified cell types. (c) LSA (top) versus SnapATAC 245 

(bottom) on mouse prefrontal cortex sci-ATAC-seq dataset. Exc: excitatory neuron cells; 246 

Inc: inhibitory neuron cells; Opc: Oligodendrocyte precursor cells; Asc: astrocyte cells; 247 

Ogc: oligodendrocyte cells; Mgc: microglia cells. End: endothelial cells. 248 

 249 

In addition to the clustering performance, SnapATAC also demonstrates high 250 

computational efficiency and scalability. Benchmarked using simulated scATAC-seq data 251 

sets from 1,000 to 100,000 cells, the CPU-time of SnapATAC scales linearly and at a 252 

significantly lower slope than other methods. This difference is especially pronounced 253 

relative to topic modeling methods such as Cis-Topic, a probabilistic method that requires 254 

extensive parameter optimization for large dataset. Using the same computing resource, 255 

when applied to 100,000 cells, SnapATAC is nearly 160 times faster than Cis-Topic, 256 

reducing the time from 30 hours to 10 minutes (Table 1; Supplementary Fig. 11). 257 

 258 

 259 
 260 

 261 
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A high-resolution cis-regulatory atlas of the secondary mouse motor cortex 262 

The mammalian brain is composed of myriad highly specialized cell types and 263 

subtypes17,24–27, which presents a unique challenge for single cell chromatin accessibility 264 

analysis. As part of the BRAIN Initiative Cell Census Consortium28, we have generated 265 

single nucleus ATAC-seq profiles from >60,000 individual cells from the secondary 266 

motor cortex (MOs) in the adult mouse brain (Fig. 4a). To our knowledge, this represents 267 

the largest single cell chromatin accessibility dataset yet published from a single tissue 268 

type. This dataset includes 2 biological replicates (Fig. 4b; Supplementary Table 3), 269 

each generated from pooled tissue of at least 15 mice to prevent potential artifacts such as 270 

dissection or batch effect. The aggregate signal showed high reproducibility between 271 

biological replicates (R > 0.95; Fig. 4b-c, Supplementary Fig. 12a-c) and significant 272 

enrichment for transcription start sites (TSS) indicating a high signal-to-noise ratio 273 

(Supplementary Fig. 12d-e). After filtering out the poor-quality nuclei using stringent 274 

criteria (Supplementary Fig. 13-14), we obtained a total of 64,795 nuclear profiles with 275 

an average of ~5,000 sequencing fragments per nucleus (Supplementary Table 4). 276 

  277 

SnapATAC identified and annotated the same 20 major clusters (Fig. 4d) from each 278 

biological replicate (Supplementary Fig. 15), indicating the robustness of the method. 279 

Based on gene body accessibility levels at canonical marker genes (Fig. 4e; 280 

Supplementary Fig. 16-17), the 20 clusters were classified into eight excitatory 281 

neuronal subpopulations (Snap25+, Slc17a7+, Gad1-; 50% of total nuclei), four inhibitory 282 

neuronal subpopulations (Snap25+, Slc17a7-, Gad2+; 10% of total nuclei), one 283 

oligodendrocyte subpopulation (Mog+; 9% of total nuclei), one oligodendrocyte 284 

precursor subpopulation (Pdgfra+; 5% of total nuclei), one microglia subpopulation 285 

(C1qb+; 7% of total nuclei), one astrocyte subpopulation (Apoe+; 13% of total nuclei), and 286 

additional populations of endothelial, somatic, and somatic muscle cells accounting for 287 

6% of total nuclei. 288 

  289 

The accuracy of these cell-type classification is supported by several lines of evidence. 290 

First, measurements of neuronal vs non-neuronal cell type abundance by Fluorescence-291 

activated cell sorting (FACS) from the same samples are highly consistent with estimates 292 

from SnapATAC analysis (Fig. 4f-g; Supplementary Fig. 28). Second, the excitatory 293 
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neuron subpopulations we identify show specificity for known cortical layer-specific 294 

marker genes and gradient transition between layers (Fig. 4h). Third, neuronal 295 

classification for each of the major cell population based on snATAC-seq data was in 296 

excellent agreement with previous annotations based on scRNA-seq26 (Fig. 5a). All the 297 

major neuronal subpopulations identified from snATAC-seq can be matched to the 298 

scRNA-seq based classification of cell types in the mouse visual cortex. In addition, gene 299 

body accessibility for marker genes in each cluster correlated well with expression levels 300 

for corresponding genes and clusters (Fig. 5b and Supplementary Fig. 18). Taken 301 

together, these data show that snATAC-seq can dissect the cellular heterogeneity of 302 

mouse brain and classify cells in a way consistent with previous knowledge. 303 

  304 

Notably, one rare Sst neuronal subtype previously identified from scRNA-seq (Sst-Chodl 305 

in Fig. 5b) was not initially detected from snATAC-seq dataset. To examine whether 306 

iterative analysis could help tease out this rare population, SnapATAC was applied to 307 

1,577 Sst nuclei, finding 9 distinct sub-populations including the Sst subtype (Sst.9), 308 

which accounts for less than 0.1% (52/64,795) of the total population profiled 309 

(Supplementary Fig. 19a-b). Based on gene accessibility and analysis of enriched 310 

transcription factor motifs (Supplementary Fig. 19d), Sst.9 most likely corresponds to 311 

Nos1 type I neurons (also known as Sst-Chodl). Applying SnapATAC to each of the other 312 

major neuronal cell types identified a total of 41 subtypes (Supplementary Fig. 20). To 313 

our knowledge, this represents the highest resolution of scATAC-seq analysis of a 314 

mammalian brain region.  While the identity and function of these subtypes require 315 

further experimental validation, our results demonstrate the exquisite sensitivity of 316 

SnapATAC in resolving distinct neuronal subtypes with only subtle differences in 317 

chromatin landscape and gene expression patterns.  318 

  319 

  320 
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 321 
Figure 4. A high-resolution cis-regulatory atlas of the mouse motor cortex. 322 

(a) Illustration of secondary motor cortex (MOs) in the adult mouse brain. (b) Genome 323 

browser view of snATAC-seq aggregated signals for two biological replicates. (c) 324 

Reproducibility of aggregate signals for two biological replicates (rho=0.96, P < 1e-10). 325 
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(d) Two-dimensional visualization of SnapATAC clustering result. (e) Genome browser 326 

view of aggregate signal for each cluster at canonical marker genes. Mog is expressed in 327 

Oligodendrocyte cells; Apoe is expressed in Astrocyte cells; Pdgfra is expressed in 328 

Oligodendrocyte precursor cells; C1qb is expressed in Microglia cells; Slc17a7 is expressed 329 

in excitatory cells; Gad2 is expressed in inhibitory cells; Pvalb is strongly expressed in 330 

inhibitory Pvalb subtype; Vip is primarily expressed in inhibitory Vip subtype; Sst is 331 

expressed in inhibitory Sst subtype cells. Npy is expressed in inhibitory Lamp5 cells. (f) 332 

Cellular composition of cell types according to the SnapATAC clustering results. (g) 333 

Neuron versus non-neuron cell composition based on FACS sorting. (h) Imputed gene 334 

body accessibility level at marker genes for layer-specific excitatory neurons. (i) 335 

Dendrogram describing the taxonomy of neuronal subtypes. 336 

 337 

 338 

 339 
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Figure 5. Comparison of neuron clusters with single cell RNA-seq. (a) Two-340 

dimensional visualization of single-nucleus ATAC-seq clusters of mouse secondary motor 341 

cortex. (b) Two-dimensional visualization of single neuron clusters from mouse frontal 342 

visual cortex using SMART-seq V4. (c) Comparison of imputed gene body accessibility 343 

and gene expression level at canonical marker genes. Gad2 is highly expressed in 344 

inhibitory neurons; Lamp5 is expressed in inhibitory Lamp5 subtype, excitatory L2/3 IT, 345 

L4 and L5 PT neurons; Sst is expressed in inhibitory Sst subtype; Pvalb is expressed in 346 

inhibitory Pvalb subtype.  347 

 348 

SnapATAC uncovers candidate cis-elements active in rare cell populations  349 

A key utility of single cell chromatin accessibility analysis is to identify regulatory 350 

sequences in the genome. By pooling reads from nuclei in each cluster, cell-type specific 351 

chromatin landscapes can be obtained (Fig. 6a). Focusing on the major cell types 352 

described in Figure 4d, peaks of chromatin accessibility signals were determined in each 353 

cell cluster containing at least 500 cells, resulting in a combined total of 316,257 unique 354 

candidate cis-elements (Supplementary Table 5). Most notably, 56% 355 

(190,818/337,932) of these open chromatin regions are not detected in the analysis of 356 

bulk ATAC-seq data of the same brain region (Methods; Fig. 6b; Supplementary 357 

Table 6). We hypothesized that these open chromatin regions not detected in the bulk 358 

ATAC-seq analysis may represent those that are only accessible in minor cell populations. 359 

Supporting this hypothesis, nearly 80% of these elements were detected from only one 360 

cell cluster (Fig. 6c).  361 

 362 

Several lines of evidence support that these additional open chromatin regions are 363 

functional elements, rather than technical noises. First, these sequences showed 364 

significantly higher conservation than randomly selected genomic sequences with 365 

comparable mappability scores (Fig. 6d). Second, these open chromatin regions display 366 

enrichment for transcription factor binding motifs corresponding to transcription factors 367 

(TFs) that play important regulatory roles in the corresponding cell types 368 

(Supplementary Table 7). For example, the binding motif for Mef2c is highly enriched 369 

in novel candidate cis-elements identified from Pvalb neuronal subtype (P-value = 1e-363; 370 

Fig. 7e-f), consistent with previous report that Mef2c is upregulated in embryonic 371 
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precursors of Pv interneurons29. Similarly, the binding motif for ETS-factor PU.1, a known 372 

transcription regulator of microglia30, was highly enriched in the novel elements detected 373 

from microglia (P-value = 1e-2250) (Supplementary Table 7). Finally, the new open 374 

chromatin regions tend to test positive in transgenic reporter assays.  Comparison to the 375 

VISTA enhancer database31 shows that enhancer activities of 256 of the newly identified 376 

open chromatin regions have been previously tested using transgenic reporter assays in 377 

e11.5 mouse embryos (Supplementary Table 8). 65% (167/256) of them drive 378 

reproducible reporter expression in at least one embryonic tissue, substantially higher 379 

than background rates (9.7%) estimated from regions in the VISTA database that lack 380 

canonical enhancer mark (manuscript under review)32. Here, we displayed four examples 381 

where elements were only present in rare population are tested positive in the brain 382 

function associating regions (Fig. 6g). It is important to note that this comparison only 383 

considers the in vivo enhancer function but does not validate the exact tissue-specificity 384 

because the current data cannot exclude the possibility of a regulatory element being an 385 

enhancer in other tissues.  386 
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 387 
Figure 6. SnapATAC uncovers novel candidate cis-regulatory elements in 388 

rare cell types. (a) Genome browser view of 20Mb region flanking gene Vip. Dash line 389 

highlighting five regulatory elements specific to Vip subtypes that are under-represented 390 

in the conventional bulk ATAC-seq signal. (b) Over fifty percent of the regulatory 391 

elements identified from 20 major cell populations are new compared to that of bulk 392 

ATAC-seq. (c) Eighty percent of new elements present in only one cell type. (d) Sequence 393 

conservation comparison between new elements and randomly chosen genomic regions. 394 

(e) 5,391 Pv-specific new elements are highly enriched in Pv subtypes. (f) Top seven 395 
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motifs enriched in Pv-specific new elements. (g) Four new elements are tested positive 396 

using transgenic mouse assay according to VISTA database. 397 

 398 

 399 

Extension of SnapATAC to other single cell epigenomics datasets 400 

Although SnapATAC was designed to analyze single cell ATAC-seq data, it is also 401 

applicable to other sparse single cell datasets. To demonstrate this, SnapATAC was used 402 

to reanalyze a variety of published single cell epigenomics and transcriptomics datasets. 403 

When applied to a set of 14,963 sparse single nucleus RNA-seq (sNuc-seq) datasets from 404 

adult post-mortem human brain tissue33, SnapATAC uncovered distinct clusters 405 

corresponding to all known major cell types (Methods; Fig. 7a; Supplementary Fig. 406 

21-22). Sub-clustering of GABAergic neurons further identified 11 subtypes with 407 

distinct gene expression patterns (Supplementary Fig. 23), including two Sst, three 408 

Pv, three Vip subtypes and three clusters enriched for Lamp5 gene expression. Similarly, 409 

analyzing a dataset of 2,784 methylomes form single neuronal nuclei in the human frontal 410 

cortex27, SnapATAC identified all the major and subtypes in excellent agreement with the 411 

previous classification (Fig. 7b; Supplementary Fig. 24). When applied to single cell 412 

H3k4me2 ChIP-seq data34, SnapATAC correctly distinguished mouse embryonic stem 413 

cells (ESCs) from mouse embryonic fibroblasts (MEFs) cells (Methods; Fig. 7c). Finally, 414 

when used to analyze multiplexing single cell Hi-C35, SnapATAC separates HeLa S3 from 415 

HAP1 cells (Methods; Fig. 7d). Taken together, these results show that SnapATAC can 416 

be used to process other single cell epigenomics datasets. 417 

 418 

 419 
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 420 
Figure 7. Applying SnapATAC to other single cell modalities. (a) A two-421 

dimensional visualization plot of 14,963 DroNc-seq single-nucleus RNA-seq from adult 422 

frozen human hippocampus and prefrontal cortex. Nuclei are color-coded by cluster 423 

membership. exPFC: glutamatergic neurons from the PFC; GABA: GABAergic 424 

interneurons; exCA1/3: pyramidal neurons from the hip CA region; exDG: granule 425 

neurons from the hip dentate gyrus region; ASC: astrocytes; MGC: microglia; OGC, 426 

oligodendrocytes; OPC, oligodendrocyte precursor cells; NSC: neuronal stem cells; 427 

SMC: smooth muscle cells; END: endothelial cells. (b) A two-dimensional visualization 428 

plot of 2,784 methylomes form single neuronal nuclei in the human frontal cortex. (c) A 429 

two-dimensional visualization of single-cell Hi-C from HeLa S3 and HAP1 cells. (d) A 430 

two-dimensional visualization plot of H3K4me2 single cell ChIP-seq from ESCs and 431 

MEFs. 432 

 433 

Conclusion & Discussion 434 

In summary, SnapATAC is a comprehensive bioinformatic solution for single cell ATAC-435 

seq analysis. The open-source software runs on commonly available and inexpensive 436 

hardware, making it accessible to any researcher using single-cell ATAC-seq data. 437 

Through extensive benchmarking using a variety of single cell chromatin datasets, 438 

SnapATAC outperforms existing methods substantially in both clustering accuracy and 439 

scalability. Although designed for analyzing single cell ATAC-seq datasets, SnapATAC can 440 

also be used to analyze a broad range of sparse single cell epigenomics data, such as single 441 

cell Hi-C, single cell ChIP-seq and single cell methylomes.  442 

 443 
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Applying SnapATAC to a new in-house dataset including >60,000 high quality single cell 444 

ATAC-seq profiles from mouse secondary motor cortex, led to a single cell atlas of 445 

candidate cis regulatory elements for this mouse brain region. The cellular diversity 446 

identified by chromatin accessibility is at an unprecedented resolution and is consistent 447 

with mouse neurogenesis and taxonomy revealed by single cell transcriptome data. 448 

Besides characterizing cell types, SnapATAC identifies candidate cis-regulatory 449 

sequences in each of the major cell types and infers transcription factors that control cell-450 

type specific gene expression programs. Although this study primarily focused on the 451 

major cell types, additional neuronal subtypes can be identified through sub-clustering. 452 

To obtain a robust signal for each of the subtypes, would require substantially more cells 453 

and, more importantly, further anatomical, physiological, and functional experimental 454 

validation. 455 

  456 

One of the most exciting features of SnapATAC is its ability to identify candidate cis 457 

regulatory elements active only in rare cell population.  A large fraction (56%) of the 458 

candidate cis-elements identified using SnapATAC analysis of the mouse secondary 459 

motor cortex are not detected in bulk analysis. Most of these elements appear to be active 460 

in individual cell types that account for 1% or less of the total cell population. While 461 

further experiments to thoroughly validate the function of these additional open 462 

chromatin regions is still needed, the ability for SnapATAC to uncover cis-elements from 463 

minor cell types of a complex tissue will certainly greatly expand the catalog of cis 464 

regulatory sequences in the genome.  465 

 466 

Data availability 467 

Raw and processed data to support the findings of this study have been deposited to 468 

NCBI Gene Expression Omnibus with the accession number GSExxxxxx. 469 

 470 

Code availability 471 

The scripts and pipeline for the analysis can be found at 472 

https://github.com/r3fang/SnapATAC. 473 
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Methods 488 

1. SnapATAC Pipeline 489 

1.1 Barcode Demultiplexing  490 

Using a custom python script, we first de-multicomplexed FASTQ files by integrating the 491 

cell barcode into the read name in the following format: "@" + "barcode" + ":" + 492 

"original_read_name".  493 

 494 

1.2 Alignment & Sorting  495 

De-multicomplexed reads were aligned to the corresponding reference genome (i.e. 496 

mm10 or hg19) using bwa36 (0.7.13-r1126) in pair-end mode with default parameter 497 

settings. Alignments were then sorted based on the read name using samtools37 (v1.9). 498 

 499 

1.3 Fragmentation & Filtration  500 

Pair-end reads were converted into fragments and only those that are 1) properly paired 501 

(according to SAM flag value); 2) uniquely mapped (MAPQ > 30); 3) with length less than 502 

1000bp were kept.  503 

 504 

1.4 Duplicates Removal  505 

Sorted by barcode, fragments belonging to the same cell (or barcode) were automatically 506 

grouped together which allowed for removing PCR duplicates for each cell separately.  507 

 508 

1.5 Snap File Generation 509 

Next, using filtered and sorted bam file, we generated a snap-format (Single-Nucleus 510 

Accessibility Profiles) file which is hierarchically structured hdf5 file that contains the 511 

following sessions: header (HD), cell-by-bin accessibility matrix (AM), cell-by-peak 512 

matrix (PM), cell-by-gene matrix (GM), barcode (BD) and fragment (FM). HD session 513 

contains snap-file version, date, alignment and reference genome information. BD 514 

session contains all unique barcodes and corresponding meta data. AM session contains 515 

multiple cell-by-bin matrices of different resolutions (or bin sizes). PM session contains 516 

cell-by-peak count matrix. GM session contains cell-by-gene count matrix. FM session 517 

contains all usable fragments for each cell. Fragments are indexed for fast search which 518 
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allows for generation of cell-type specific chromatin landscapes after clustering. Detailed 519 

information about snap file can be found in Supplementary Note 1. 520 

 521 

1.6 Cell-by-Bin Count Matrix Generation 522 

Using snap file, we next created cell-by-bin count matrices of different resolutions. The 523 

genome was segmented into uniform-sized bins and single cell ATAC-seq profiles were 524 

represented as cell-by-bin matrix with each element indicating number of open 525 

chromatin fragments overlapping with a given bin in a certain cell. A snap file allows for 526 

storing multiple cell-by-bin count matrices with different resolutions. For MOs snATAC-527 

seq, we created snap file with 1kb, 5kb and 10kb resolution. 528 

 529 

1.7 Barcode Selection  530 

We next identified the high-quality barcodes based on the following criteria. 1) Total 531 

Sequencing Fragments (>1,000); 2) Mapping Ratio (>0.8); 3) Properly Paired Ratio 532 

(>0.9); 4) Duplicate Ratio (<0.5); 5) Mitochondrial Ratio (<0.1). We abandoned the use 533 

of reads in peak ratio as a metric for cell selection for two reasons. First, we found the 534 

reads-in-peak ratio is highly cell type specific. For instance, according to published single 535 

cell ATAC-seq, human fibroblast (BJ) cells have significantly higher reads in peak ratio 536 

(40-60%) versus 20-40% for GM12878 cells. Similarly, we found Glia cells overall have 537 

very different reads in peak ratio distribution compared to neuronal cells. We suspect this 538 

may reflect the nucleus size or global chromatin accessibility. Second, population-defined 539 

set of accessibility peaks are incomplete and are biased to the dominant populations. As 540 

shown in this study, for a complex tissue such as mammalian brain, we found over 50% 541 

of the peaks present in the rare populations are not identified from the aggregate signal 542 

of snATAC-seq. Therefore, we abandoned the use of reads in peak ratio for cell selection.  543 

 544 

1.8 Bin Size Selection 545 

Using the remaining cells, we sought to determine the optimal bin size based on the 546 

correlation between replicates. We recommend choosing the smallest bin size (or highest 547 

resolution) whose Pearson correlation between replicates is greater than 0.95. If there are 548 

no biological replicates available, we recommend splitting the cells into pseudo-replicates. 549 

In this study, we use 5kb unless noted.   550 
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 551 

1.9 Matrix Binarization  552 

After choosing the optimal bin size, we found the vast majority of the items in the cell-by-553 

bin count matrix is “0”, indicating either inaccessible (closed chromatin) or missing data. 554 

Among the non-zero elements, some items have abnormally high coverage (often > 200) 555 

perhaps due to alignment error. Therefore, we first removed the top 0.1% items of the 556 

highest coverage in the matrix before converting it into a binary matrix. 557 

 558 

1.10 Feature Selection 559 

We next filtered any bins overlapping with the ENCODE blacklist 560 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/) to prevent from any 561 

potential artifacts. Bins of exceedingly high coverage which likely represent the genomic 562 

regions that are invariable between cells such as housekeeping gene promoters were 563 

removed. We noticed that filtering bins of extremely low coverage perhaps due to random 564 

noise can also improve the robustness of the downstream clustering analysis. In detail, 565 

we calculated the coverage of each bin using the binary matrix and normalized the 566 

coverage by log10(count + 1). We found the log-scaled coverage obey approximately a 567 

gaussian distribution (Supplementary Fig. 25) which is then converted into zscore. 568 

Bins with zscore beyond ±2 were filtered before further analysis.  569 

 570 

1.11 Jaccard Index Matrix 571 

Next, we converted the genome-wide cell-by-bin matrix into a cell-by-cell similarity 572 

matrix by calculating the Jaccard index between every two cells in the basis of genome-573 

wide profile overlaps. Usually, the number of cells is far smaller than number of bins, 574 

therefore, it immediately reduces the dimensionality and increase the scalability of the 575 

pipeline. However, the time for computing Jaccard matrix increases exponentially with 576 

cell number growth. To solve the problem of big data, 1) we first divided the cells into 577 

groups and calculated a sub Jaccard index matrix separately in parallel. For instance, 578 

given that there are 50,000 cells in total, we first split the cells into 10 chunks with each 579 

chunk containing 5,000 cells. Then we calculated the pairwise sub jaccard index matrix 580 

between every two chunks. Finally, we created the entire Jaccard index matrix by 581 
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combining all sub Jaccard matrices. This allows for in-parallel computing. 2) To further 582 

speed up this process, instead of calculating a full Jaccard matrix by comparing every two 583 

cells, we calculated a partial Jaccard matrix by estimating the similarity between N cells 584 

with a subset of randomly chosen K cells (K << N) (k=2000 used in this study unless 585 

noted). We found that, without sacrificing the performance (supplementary Fig. 26), 586 

this can substantially improve the scalability of the pipeline, making it possible for 587 

processing millions of cells in the future. 588 

 589 

6.12 Normalization 590 

Theoretically, the entries of the Jaccard matrix Mij, would reflect the true similarity 591 

between cell i and j. However, due to the differing coverage between cells, this becomes 592 

not the case. If there is a high sequencing depth of cell i, then Mij will tend to have higher 593 

Jaccard index, regardless whether i and j is actually similar or not (Supplementary Fig. 594 

1-2).  595 

 596 

This can also be proved as below. Given 2 cells i and j and let 𝑋$ and 𝑋% be the binary vector. 597 

The coverage of i and j is 𝐶$ = 𝑠𝑢𝑚(𝑋$)  and 𝐶% = 𝑠𝑢𝑚(𝑋%)  (𝐶$>0, 𝐶%>0), then let 𝑃$ =598 

𝐶$/|𝑋$|  and 𝑃% = 𝐶%/|𝑋%|  where |𝑋$|  and |𝑋%|  is the number of bins. Then the expected 599 

Jaccard index between cell i and j is: 600 

 601 

𝐸$% = (𝑃$ ∗ 𝑃%)/(𝑃$ + 𝑃% − 𝑃$𝑃%) 602 

 603 

Because 𝑃$ ∗ 	𝑃% > 0, then 604 

 605 

𝐸$% = 1/(1/𝑃$ + 1/𝑃% − 1). 606 

 607 

Now it is obvious to see that the increase of either 𝑃$ or 𝑃% will result in an increase of 𝐸$%.  608 

 609 

Here, we propose three different approaches to normalize Jaccard matrix, namely 610 

observed over expected (OVE), observed over neighbor (OVN) and iterative matrix 611 

balancing (ICE).  612 
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 613 

1.12.1 OVE: we first estimated the expected Jaccard index Eij as described above, assuming 614 

cells have random profiles. We noticed that Eij usually underestimates similarity for high-615 

coverage cells, to adjust for this, we performed linear regression between expected E and 616 

observed M and used residuals as normalized matrix N. Residuals matrix N was then 617 

standardized for each cell.  618 

 619 

1.12.2 OVN: the second approach estimated the expected cell-by-cell similarity using 620 

neighboring cells. In detail, for every pair of cells i and j, according to the coverage, we 621 

selected two groups of cells 𝐺$9 and 𝐺%9  representing the k nearest neighboring cells for i 622 

and j with closest coverage. After removing common cells shared by 𝐺$9  and 𝐺%9, we next 623 

calculated the Jaccard matrix Jaccad(𝐺$9 , 𝐺%9 ) between these two groups of cells, the 624 

average value of which was used as expected value to correct the bias in Mij. 625 

 626 

1.12.3 ICE: we also borrowed the idea of matrix balancing which is a technique commonly 627 

used in Hi-C matrix normalization. We adapted “normICE” function in HiTC R package 628 

which normalizes Hi-C matrix using matrix balancing algorithm that consists of 629 

iteratively estimating the matrix bias using the l1 norm.  630 

 631 

To compare the performance of different normalization methods, we performed principle 632 

component analysis (PCA) against the normalized matrix and examined the degree of 633 

association between the first principle component and sequencing depth. Overall, a 634 

higher correlation indicates the dominate variance between cells is the read depth rather 635 

than the meaningful biological variance. For all the data sets we have tested, OVN and 636 

OVE overall shows a comparable performance (Supplementary Fig. 2), however, as 637 

OVE is substantially faster at least according to our implementation, therefore, we choose 638 

it as our final normalization method as used in this study. All the analysis is using OVE 639 

unless noted. But all three methods are implemented in SnapATAC package.  640 

 641 

To further demonstrate the performance of the normalization, we applied it to previously 642 

published human scATAC-seq data from 10 cell lines13. The effect of normalization is 643 
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clearly evident from inspecting the heatmap. Cell types that are difficult to distinguished 644 

in the original matrix become visibly distinct in the normalized matrix (Supplementary 645 

Fig. 2a-b).  Further applying linear dimensionality reduction against both matrices, we 646 

found the first principal component of the raw matrix is strongly correlated with the 647 

coverage (rho=-0.90, P < 1e-10; Supplementary Fig. 2c), whereas the first dimension 648 

of the normalized matrix successfully distinguished BJ, TF from other cell types (rho=-649 

0.04; Supplementary Fig. 2d). 650 

  651 

We next tested it against other published datasets. When applied to human Occipital Lobe 652 

scTHS-seq9, the first principal component of normalized matrix separates neuronal from 653 

non-neuronal cells (Supplementary Fig. 2e). Similarly, when applied to the drosophila 654 

embryo sci-ATAC-seq data6, the first dimension now distinguished 4 major cell clades 655 

(Supplementary Fig. 2f). Together, all suggest that SnapATAC is able to adjust for the 656 

coverage bias. 657 

 658 

6.13 Dimensionality Reduction  659 

Like any other type of single-cell analysis, scATAC-seq contains extensive technical noise. 660 

To overcome this challenge, we performed Principle Component Analysis (PCA) to 661 

combine information across a correlated feature set hereby creating a mega-feature and 662 

exclude the variance potential resulting from technical noise.  663 

 664 

1.14 Determining Significant Principle Components 665 

It is both critical and challenging to decide how many principle components (PCs) to 666 

include for the downstream analysis. A variety of methods have been developed to identify 667 

optimal number of PCs. For instance, JackStraw38 can specify significant components for 668 

PCA through permutation-based statistical test, however, this gets extensively time-669 

consuming when cell number is large. Instead, we recommend using an ad hoc approach 670 

for choosing the optimal number of components. One approach as proposed by Sauret39 671 

to simplify look at the variance plot and find the “elbow” point. The other heuristic 672 

approach, we found also useful, is to plot every two pairs of PCs and simply look at the 673 

plot and choose number of PCs that stop separating cells.  674 

 675 
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1.15 Clustering.  676 

Using the selected significant PCs, we next calculated pairwise Euclidean distance 677 

between every two cells, using this distance, we created a k-nearest neighbor graph in 678 

which every cell is represented as a node and edges are drawn between cells within k 679 

nearest neighbors. Edge weight between any two cells are refined by shared overlap in 680 

their local neighborhoods using Jaccard similarity. Finally, we applied community finding 681 

algorithm Louvain to identify the ‘communities’ in the resulting graph which represents 682 

groups of cells sharing similar profiles, potentially originating from the same cell type. 683 

This method is also known as ‘Louvain-Jaccard’40.  684 

 685 

1.16 Visualization.  686 

We next project the high-dimension data into a 2D space using BH t-SNE41 implemented 687 

by Rtnse package or FI-tsne42 or UMAP43 to visualize and explore the data. All three 688 

methods are integrated into SnapATAC package. 689 

 690 

1.17 Cluster Annotation.  691 

To annotate the identified clusters, we next calculated the gene-body accessibility level 692 

for every cell and annotated the cluster based on the marker genes identified from 693 

previous single cell RNA sequencing. Note that clustering is unsupervised while 694 

annotation is a supervised procedure that requires expert knowledge. Recently, a method 695 

called Garnett44 is developed to automatically annotate ATAC-seq clusters using single 696 

cell RNA-seq. To further enhance the structure of data and remove the noise, we adopted 697 

MAGIC45 to smooth the gene accessibility signal.  698 

  699 

1.18 Identification of Cis-Elements.  700 

Cells belonging to the same cluster are pooled to create ensemble signal for each of the 701 

cell type. This allows for identifying Cis-elements de novo from each of the clusters. 702 

MACS246 (version 2.1.2) was used for generating signal tracks and peak calling with the 703 

following parameters: --nomodel --qval 1e-2 -B --SPMR --call-summits.  704 

  705 

1.19 Cell-by-Peak Accessible Matrix.  706 
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Merging peaks identified from each cluster, we create a reference list of regulatory 707 

elements. Using this reference map, we next create a cell-by-peak count matrix. 708 

 709 

1.20 Motif Analysis.  710 

We performed motif discovery using homer to infer the potential master regulator that 711 

control for gene expression in each of the cell types. 712 

 713 

1.21 GREAT Analysis.  714 

We next performed Genomic Region Enrichment Analysis (GREAT) to predict the 715 

function of each cluster. 716 

 717 

2. Analysis of simulated single cell ATAC-seq 718 

First, we downloaded the alignment files (bam files) for ten bulk ATAC-seq experiment 719 

from ENCODE (Supplementary Table 1). From each bam file, we simulated 200 single 720 

cell ATAC-seq datasets by randomly down sampling to a variety of coverages ranging from 721 

1,000 to 10,000 reads per cells. Using simulated single cell ATAC-seq datasets, we created 722 

a cell-by-bin matrix with 5kb bin size for SnapATAC clustering. Merging peaks 723 

downloaded from ENCODE for each experiment, we created a cell-by-peak matrix for LSA, 724 

Cis-Topic, Cicero and chromVAR clustering. Code used in this study can be found in 725 

Supplementary Note 2. 726 

 727 

3. Analysis of published single cell ATAC-seq datasets 728 

3.1 Analysis of scATAC-seq datasets from human cell lines.   729 

We obtained scATAC-seq count matrix from GEO (GSE99172). Analysis code used in this 730 

study is available in Supplementary Note 3. 731 

 732 

3.2 Analysis of scTHS-seq datasets from human Occipital Lobe.   733 

The cell-by-peak matrix was generated and shared by Aerts Lab 734 

(http://scenic.aertslab.org/cisTopic/counts_Lake.Rds). Analysis code used in this study 735 

is available in Supplementary Note 4. 736 

 737 

3.3 Analysis of sci-ATAC-seq datasets from mouse atlas.   738 
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We downloaded processed data for each tissue from GEO (GSE111586) and generated the 739 

snap file with cell-by-bin matrix at 5kb bin resolution.  Analysis code used in this study is 740 

available in Supplementary Note 5. 741 

 742 

4. Tissue collection & Nuclei Perspiration 743 

Adult C57BL/6J male mice were purchased from Jackson Laboratories. Brains were 744 

extracted from P56-63 old mice and immediately sectioned into 0.6 mm coronal 745 

sections, starting at the frontal pole, in ice-cold dissection media. The secondary motor 746 

cortex (MOs) region was dissected from the first three slices along the anterior-posterior 747 

axis according to the Allen Brain reference Atlas (http://mouse.brain-map.org/, see 748 

Supplementary S27 for depiction of posterior view of each coronal slice; dashed line 749 

highlights the MOs regions on each slice). Slices were kept in ice-cold dissection media 750 

during dissection and immediately frozen in dry ice for posterior pooling and nuclei 751 

production. For nuclei isolation, the MOs dissected regions from 15-23 animals were 752 

pooled, and two biological replicas were processed for each slice. Nuclei were isolated as 753 

described in previous studies27,47, except no sucrose gradient purification was 754 

performed. Flow cytometry analysis of brain nuclei was performed as described in Luo 755 

et al27.  756 

  757 

5. Tn5 transposase purification & loading 758 

Tn5 transposase was expressed as an intein chitin-binding domain fusion and purified 759 

using an improved version of the method first described by Picelli et al48. T7 Express 760 

lysY/I (C3013I, NEB) cells were transformed with the plasmid pTXB1-ecTn5 E54K L372P 761 

(#60240, Addgene)48. An LB Ampicillin culture was inoculated with three colonies and 762 

grown overnight at 37°C. The starter culture was diluted to an OD of 0.02 with fresh 763 

media and shaken at 37°C until it reached an OD of 0.9. The culture was then immediately 764 

chilled on ice to 10°C and expression was induced by adding 250 µM IPTG (Dioxane Free, 765 

CI8280-13, Denville Scientific). The culture was shaken for 4 hours at 23°C after which 766 

cells were harvested in  2 L batches by centrifugation, flash frozen in liquid nitrogen and 767 

stored at -80°C. Cell pellets were resuspended in 20 ml of ice cold lysis buffer (20 mM 768 

HEPES 7.2-KOH, 0.8 M NaCl, 1 mM EDTA, 10% Glycerol, 0.2% Triton X-100) with 769 

protease inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail Tablets, 770 
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11873580001, Roche Diagnostics) and passed three times through a Microfluidizer (lining 771 

covered with ice water, Model 110L, Microfluidics) with a 5 minute cool down interval in 772 

between each pass. Any remaining sample was purged from the Microfluidizer with an 773 

additional 25 ml of ice-cold lysis buffer with protease inhibitors (total lysate volume 774 

~50ml). Samples were spun down for 20 min in an ultracentrifuge at 40K rpm (L-80XP, 775 

45 Ti Rotor, Beckman Coulter) at 4°C. ~45 ml of supernatant was combined with 115 ml 776 

ice cold lysis buffer with protease inhibitors in a cold beaker (total volume = 160 ml) and 777 

stirred at 4°C. 4.2ml of 10% neutralized polyethyleneimine-HCl (pH 7.0) was then added 778 

dropwise. Samples were spun down again for 20 min in an ultracentrifuge at 40K rpm (L-779 

80XP, 45 Ti Rotor, Beckman Coulter) at 4°C. The pooled supernatant was loaded onto 780 

~10ml of fresh Chitin resin (S6651L, NEB) in a chromatography column (Econo-Column 781 

(1.5 × 15 cm), Flow Adapter: 7380015, Bio-Rad). The column was then washed with 50-782 

100 ml lysis buffer. Cleavage of the fusion protein was initiated by flowing ~20ml of 783 

freshly made elution buffer (20 mM HEPES 7.2-KOH, 0.5 M NaCl, 1 mM EDTA, 10% 784 

glycerol, 0.02% Triton X-100, 100mM DTT) onto the column at a speed of 0.8ml/min for 785 

25 min. After the column was incubated for 63 hrs at 4°C, the protein was recovered from 786 

the initial elution volume and a subsequent 30 ml wash with elution buffer. Protein-787 

containing fractions were pooled and diluted 1:1 with buffer [20 mM HEPES 7.2-KOH,1 788 

mM EDTA, 10% glycerol, 0.5mM TCEP) to reduce the NaCl concentration to 250mM. For 789 

cation exchange, the sample was loaded onto a 1ml column HiTrap S HP (17115101, GE), 790 

washed with Buffer A (10mM Tris 7.5, 280 mM NaCl, 10% glycerol, 0.5mM TCEP) and 791 

then eluted using a gradient formed using Buffer A and Buffer B (10mM Tris 7.5, 1M NaCl, 792 

10% glycerol, 0.5mM TCEP) (0% Buffer B over 5 column volumes, 0-100% Buffer B over 793 

50 column volumes, 100% Buffer B over 10 column volumes). Next, the protein-794 

containing fractions were combined, concentrated via ultrafiltration to ~1.5 mg/mL and 795 

further purified via gel filtration (HiLoad 16/600 Superdex 75 pg column (28989333, 796 

GE)) in Buffer GF (100mM HEPES-KOH at pH 7.2, 0.5 M NaCl, 0.2 mM EDTA, 2mM 797 

DTT, 20% glycerol). The purest Tn5 transposase-containing fractions were pooled and 1 798 

volume 100% glycerol was added to the preparation. Tn5 transposase was stored at -20°C.  799 

 800 

To generate Tn5 transposomes for combinatorial barcoding assisted single nuclei 801 

ATAC-seq, barcoded oligos were first annealed to pMENTs oligos (95 °C for 5 min, 802 
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cooled to 14 °C at a cooling rate of 0.1 °C/s) separately. Next, 1 µl barcoded transposon 803 

(50 µM) was mixed with 7 ul Tn5 (~7 µM). The mixture was incubated on the lab bench 804 

at room temperature for 30 min. Finally, T5 and T7 transposomes were mixed in a 1:1 805 

ratio and diluted 1:10 with dilution buffer (50 % Glycerol, 50 mM Tris-HCl (pH=7.5), 806 

100 mM NaCl, 0.1 mM EDTA, 0.1 % Triton X-100, 1 mM DTT). For combinatorial 807 

barcoding, we used eight different T5 transposomes and 12 distinct T7 transposomes, 808 

which eventually resulted in 96 Tn5 barcode combinations per sample7 809 

(Supplementary Table 9).  810 

 811 

6.  Single-nucleus ATAC-seq data generation 812 

Combinatorial ATAC-seq was performed as described previously with modifications5,7. 813 

For each sample two biological replicates were processed. Nuclei were pelleted with a 814 

swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). Nuclei pellets were 815 

resuspended in 1 ml nuclei permeabilization buffer (5 % BSA, 0.2 % IGEPAL-CA630, 1mM 816 

DTT and cOmpleteTM, EDTA-free protease inhibitor cocktail (Roche) in PBS) and 817 

pelleted again (500 x g, 5 min, 4°C; 5920R, Eppendorf). Nuclei were resuspended in 818 

500 µL high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM 819 

potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a hemocytometer. 820 

Concentration was adjusted to 4500 nuclei/9 µl, and 4,500 nuclei were dispensed into 821 

each well of a 96-well plate. Glycerol was added to the leftover nuclei suspension for a 822 

final concentration of 25 % and nuclei were stored at -80°C. For tagmentation, 1 µL 823 

barcoded Tn5 transposomes7,48 (Supplementary Table 9) were added using a 824 

BenchSmart™ 96 (Mettler Toledo), mixed five times and incubated for 60 min at 37 °C 825 

with shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA were added 826 

to each well with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 827 

°C for 15 min with shaking (500 rpm). Next, 20 µL 2 x sort buffer (2 % BSA, 2 mM EDTA 828 

in PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells were combined 829 

into a FACS tube and stained with 3 µM Draq7 (Cell Signaling). Using a SH800 (Sony), 830 

20 nuclei were sorted per well into eight 96-well plates (total of 768 wells) containing 831 

10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma)7. Preparation of 832 

sort plates and all downstream pipetting steps were performed on a Biomek i7 Automated 833 

Workstation (Beckman Coulter). After addition of 1 µL 0.2% SDS, samples were 834 
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incubated at 55 °C for 7 min with shaking (500 rpm). We added 1 µL 12.5% Triton-X to 835 

each well to quench the SDS and 12.5 µL NEBNext High-Fidelity 2× PCR Master Mix 836 

(NEB). Samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72 837 

°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. Libraries were 838 

purified according to the MinElute PCR Purification Kit manual (Qiagen) using a vacuum 839 

manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRI Beads 840 

(Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with SPRI 841 

Beads (Beckmann Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter (Life 842 

technologies) and the nucleosomal pattern was verified using a Tapestation (High 843 

Sensitivity D1000, Agilent). The library was sequenced on a HiSeq2500 sequencer 844 

(Illumina) using custom sequencing primers, 25% spike-in library and following read 845 

lengths: 50 + 43 + 40 + 50 (Read1 + Index1 + Index2 + Read2)7.  846 

 847 

7. Bulk ATAC-seq data generation 848 

ATAC-seq was performed on 30,000-50,000 nuclei as described previously with 849 

modifications3. Nuclei were thawed on ice and pelleted for 5 min at 500 x g at 4 °C. Nuclei 850 

pellets were resuspended in 30 µl tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 851 

72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 % DMF) and counted on a hemocytometer.  852 

30,000-50,000 nuclei were used for tagmentation and the reaction volume was adjusted 853 

to 19 µl using tagmentation buffer. After addition of 1 µl TDE1 (Illumina FC-121-1030), 854 

tagmentation was performed at 37°C for 60 min with shaking (500 rpm). Tagmented 855 

DNA was purified using MinElute columns (Qiagen), PCR-amplified for 8 cycles with 856 

NEBNext® High-Fidelity 2X PCR Master Mix (NEB, 72°C 5 min, 98°C 30 s, [98°C 10 s, 857 

63°C 30 s, 72°C 60 s] x 8 cycles, 12°C held). Amplified libraries were purified using 858 

MinElute columns (Qiagen) and SPRI Beads (Beckmann Coulter). Sequencing was 859 

carried out on a NextSeq500 using a 150-cycle kit (75 bp PE, Illumina). 860 

 861 

8. Bulk ATAC-seq data analysis 862 

ATAC-seq reads were mapped to reference genome mm10 using bowtie version 2.2.6 and 863 

samtools version 1.2 to eliminate PCR duplicates and mitochondrial reads. The paired-864 

end read ends were converted to fragments. Using fragments, MACS246 version 2.1.2was 865 

used for generating signal tracks and peak calling with the following parameters: -q 0.01 866 
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--nomodel -B --SPMR --keep-dup all.  Library quality control for bulk ATAC-seq can be 867 

found in Supplementary Table 1o. 868 

 869 

9. Analysis of other single cell datasets 870 

9.1 Analysis of single nucleus RNA-seq.   871 

We downloaded gene table from dbGaP under accession code phs000424.v8.p1. 872 

Analysis code can be found in Supplementary Note 6. 873 

 874 

9.2 Analysis of multiplexing single cell Hi-C.   875 

The processed data is obtained from GEO with accession code GSE84920. Analysis code 876 

used in this study can be found in Supplementary Note 7. 877 

 878 

9.3 Analysis of single cell ChIP-seq.   879 

We downloaded single cell matrix from https://pubs.broadinstitute.org/drop-chip/. 880 

Analysis code used in this study can be found in Supplementary Note 8. 881 

 882 

9.4 Analysis of single nucleus methylome-seq.   883 

100kb-bin single nucleus methylome datasets were shared by Mukamel lab. We binarized 884 

the data by converting the methylation level into z-score and then set the bins with z-score 885 

less than -1.5 to 1.   886 
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