- 1 Resistance to aztreonam in combination with non-β-lactam β-lactamase inhibitors
- 2 due to the layering of mechanisms in *Escherichia coli* identified following mixed
- 3 culture selection.
- 4
- 5 Ching Hei Phoebe Cheung¹, Punyawee Dulyayangkul¹, Kate J. Heesom² & Matthew B.
- 6 Avison¹
- 7
- ¹School of Cellular & Molecular Medicine, University of Bristol. UK
- ⁹ ²Bristol University Proteomics Facility, University of Bristol. UK.
- 10
- 11
- 12 Running Head: aztreonam/β-lactamase inhibitor resistance

13 Abstract

- 14 Using mixed culture selection, we show how reduced envelope permeability, reduced
- 15 target-site affinity, and increased β -lactamase production layer to confer
- 16 aztreonam/β-lactamase inhibitor resistance in *Escherichia coli*. We report a clinical
- isolate producing CTX-M-15 and CMY-4, lacking OmpF, and carrying a PBP3
- 18 mutation. It is resistant to aztreonam plus the inhibitors avibactam, relebactam and
- 19 vaborbactam. Mobilisation of *bla*_{SHV-12} into this isolate generated a derivative
- additionally resistant to aztreonam plus the bicyclic boronate inhibitors **2** and
- 21 taniborbactam.

Text

23	The β -lactam-based class A β -lactamase inhibitors clavulanic acid and tazobactam
24	are widely administered with penicillin derivatives and have had decades of clinical
25	success (1, 2). However, class C and D β -lactamases are not affected by these
26	inhibitors, and nor are class B, metallo- β -lactamases, which provide resistance to a
27	wide range of β -lactams including carbapenems (2). Non- β -lactam based β -
28	lactamase inhibitors recently introduced into clinical practice are avibactam,
29	relebactam and vaborbactam, and these have a wider spectrum of activity than
30	clavulanic acid or tazobactam, including many class C and some class D enzymes,
31	but they do not inhibit class B enzymes (2). Brem et al. showed that bicyclic
32	boronates are potent inhibitors of both serine- β -lactamases (classes A, C and D) and
33	the most common subclass of metallo- β -lactamases, subclass B1 (3). Another
34	bicyclic boronate "cross-class" β -lactamase inhibitor, VNRX-5133 is in phase 3
35	clinical trials and known as taniborbactam (4).
36	Metallo- β -lactamase producers are usually susceptible to aztreonam, because
37	monobactams are very poor substrates for these enzymes (1). However, aztreonam
38	is broken down by class A ESBLs and class C β -lactamases, so isolates carrying a
39	metallo- β -lactamase and one of these serine enzymes are typically aztreonam
40	resistant. Therefore, a combination of aztreonam with a serine- β -lactamase inhibitor
41	has been proposed to kill bacteria carrying a metallo- β -lactamase and a serine
42	enzyme that hydrolyses aztreonam. The combination currently receiving most
43	attention, and undergoing clinical trials is aztreonam/avibactam (3).
44	A study of 328 Escherichia coli resistant to third generation cephalosporins showed
45	an aztreonam/avibactam MIC of \leq 0.25/4 µg.ml ⁻¹ in all except one isolate that carried
46	CTX-M-15 (class A ESBL) and hyper-produced the chromosomal AmpC (class C

47	enzyme) against which the aztreonam/avibactam MIC was 1/4 μ g.ml ⁻¹ (5). Following
48	on from this observation, we tested for reduced susceptibility (based on the CLSI
49	broth microdilution protocol [6]) to aztreonam in combination with avibactam (4 μ g.ml ⁻
50	¹) and other recently released serine β -lactamase inhibitors relebactam (4 µg.ml ⁻¹)
51	and vaborbactam (8 µg.ml ⁻¹) against <i>E. coli</i> producing a CTX-M and a plasmid
52	mediated AmpC (pAmpC) enzyme. In our collection of sequenced human <i>E. coli</i> , we
53	located two relevant isolates. Urinary isolate 9969 (ST69) (7) carries genes encoding
54	CTX-M-15 and CMY-60 (pAmpC). Bloodstream isolate N16 (ST101) (a gift from Prof
55	Tim Walsh, University of Oxford) carries genes encoding CTX-M-15 and CMY-4.
56	Against isolate 9969, all three inhibitors (purchased from MedChem Express)
57	brought the aztreonam MIC back into the susceptible range, based on CSLI
58	breakpoints (8). In contrast N16 was resistant to aztreonam in the presence of all
59	three inhibitors (Table 1).
60	Analysis of whole genome sequence (WGS) data revealed an 8 bp insertion, leading
61	to a frameshift in the <i>ompF</i> porin gene in N16. In 9969, <i>ompF</i> is wild-type, so we
62	hypothesised that this loss of OmpF is the reason why N16 is resistant to aztreonam
63	plus the inhibitors. To test this, we insertionally inactivated $ompF$ in 9969 using
64	pKNOCK suicide gene replacement (9). An ompF DNA fragment was amplified with
65	Phusion High-Fidelity DNA Polymerase (NEB, UK) from E. coli 9969 genomic DNA
66	using primers EC- <i>ompF</i> -KO-FW (5' CAA <u>GGATCC</u> TGATGGCCTGAACTTC 3') with
67	BamHI restriction site, underlined, and EC-ompF-KO-RV (5'
68	CAAGTCGACTTCAGACCAGTAGCC 3') with Sall restriction site, underlined,
69	digested with BamHI and Sall and ligated into pKNOCK-GM at the same sites
70	generating pKNOCK-GM:: ompF. This was transferred into 9969 by conjugation from
71	<i>E. coli</i> BW20767. Mutants were selected using cefoxitin (5 μ g.mL ⁻¹) and gentamicin

72 $(5 \mu g.mL^{-1})$ and confirmed by PCR using primers EC-*ompF*-F (5'

73 ATGATGAAGCGCAATAAT 3') and BT543 (5' TGACGCGTCCTCGGTAC 3'). Whilst

74 disruption of ompF in isolate 9969 did increase the MIC of aztreonam, and of 75 aztreonam with either relebactam or vaborbactam, it did not detectably raise the MIC of aztreonam in the presence of avibactam, nor did it confer resistance to aztreonam 76 77 in the presence of any inhibitor (**Table 1**). We hypothesised that this susceptibility difference between N16 (an *ompF* mutant) and 9969*ompF* was due to higher level 78 79 production of CMY and/or CTX-M in N16 versus 9969, and proteomics analysis, 80 performed as described by us previously (10,11), showed slightly higher enzyme 81 production in N16 versus 9969 (**Table 2**). To test whether producing high levels of 82 CMY/CTX-M in an ompF mutant confers aztreonam/inhibitor resistance, susceptible E. coli ATCC25922 was transformed with the multi-copy plasmids pYT(bla_{CTX-M-15}) 83 84 and $pSU18(bla_{CMY-2})$, made as previously described (10,12). We the generated an 85 ompF mutant derivative of this ATCC25922 transformant as above, with the mutant 86 selected on gentamicin (5 µg.mL⁻¹), cefoxitin (5 µg.mL⁻¹) and kanamycin (20 µg.mL⁻¹) 87 ¹). Proteomics confirmed the average abundance of CMY was 0.48 per unit of 88 ribosomal proteins for N16 and 3.44 for ATCC25922 ompF(CTX-M-15.CMY-2) (n=3 89 for both). For CTX-M-15, the average abundance was 0.44 per unit of ribosomal 90 proteins for N16 and 1.27 for ATCC259220mpF(CTX-M-15,CMY-2), which was resistant to aztreonam/relebactam but not aztreonam/vaborbactam; the MIC of 91 aztreonam in the presence of avibactam against ATCC259220mpF(CTX-M-15.CMY-92 93 2) remained very low (Table 1). Therefore, we conclude that slightly higher levels of 94 CMY/CTX-M production is not the reason for aztreonam/avibactam resistance in isolate N16, even when combined with OmpF porin loss and there must be an 95 96 additional mechanism. Further WGS analysis revealed a 12 nt tandem duplication in

97 fts/ in N16, predicted to cause the insertion of the amino acid sequence YRIN after 98 proline 333 in PBP3. This aztreonam target site mutation has previously been seen 99 in clinical isolates, and associated with elevated MICs of aztreonam, with and without 100 avibactam (13-15). Accordingly, the collective effects of CTX-M-15 and CMY 101 production, loss of OmpF and a target site mutation in PBP3 explain why N16 is 102 resistant to aztreonam in the presence of all three serine β -lactamase inhibitors 103 tested. 104 The cross-class bicyclic boronate inhibitor **2** inhibits pAmpCs and CTX-M β-105 lactamases (3,16). The aztreonam/avibactam resistant E. coli isolate N16 was susceptible (MIC = 4 μ g.ml⁻¹) to aztreonam in the presence of 10 μ g.ml⁻¹ of inhibitor 106 107 2, synthesized according to the literature protocol (3) and kindly provided by Prof. 108 Chris Schofield, University of Oxford. We then spent some considerable time trying 109 to select N16 point mutants resistant to aztreonam/2 but failed. During these 110 attempts, N16 and a K. pneumoniae ST265 bloodstream isolate (also a gift from Prof 111 Tim Walsh) were mistakenly inoculated into the same bottle containing cation adjusted Muller-Hinton broth (CA-MHB) and grown overnight without any antibiotic 112 113 selection. Table 2 lists the resistance gene and plasmid replicon carriage status of 114 the two isolates. One hundred microlitres of the mixed overnight culture was plated 115 onto Muller Hinton agar containing aztreonam at increasing concentrations plus inhibitor **2** at a fixed concentration of 10 µg.ml⁻¹. Profuse growth was seen on all 116 plates up to 16 µg.ml⁻¹ aztreonam, which is defined as resistant by CLSI (8). One 117 118 aztreonam/2 resistant E. coli colony was selected as representative; the MIC of aztreonam in the presence of 4 µg.ml⁻¹ of another cross-class bicyclic boronate 119 inhibitor, taniborbactam (5) was 32 µg.ml⁻¹, confirming that this N16 derivative is 120 121 more generally aztreonam/inhibitor resistant.

122	Dye accumulation assays (17,18) showed that <i>E. coli</i> N16 and its resistant derivative
123	had similar envelope permeability (Figure 1) and proteomic analysis showed no
124	significant difference in the abundances of key porin and efflux pump proteins (Table
125	2). WGS revealed that the complement of β -lactamases and plasmid replicon types
126	in the resistant N16 derivative had increased compared with N16; an SHV-12
127	encoding IncX3 plasmid had moved from the K. pneumoniae isolate into N16 during
128	co-culture (Table 2). SHV-12 was produced at high levels in the N16 resistant
129	derivative, and the abundances of the other resident β -lactamases was not
130	significantly different from N16 (Table 2). Notably, whilst IncX3 plasmids have
131	previously been seen to carry bla_{SHV-12} and bla_{NDM} (19), the bla_{NDM} gene located in
132	our <i>K. pneumoniae</i> donor isolate did not co-transfer with <i>bla</i> SHV-12 into N16 (Table 2)
133	and it has been reported previously that bla_{SHV-12} has been identified on IncX3
134	plasmids lacking <i>bla_{NDM}</i> in <i>E. coli</i> (20).
135	Whilst <i>E. coli</i> N16 (and its resistant derivative) carry genes for <i>bla</i> TEM-1 and <i>bla</i> OXA-2,
136	only the former was detectably expressed (Table 2). WGS confirmed that bla_{OXA-2} is
137	chromosomally located (so is single copy), the third gene cassette in the integron (so
138	is distant from the integron common promoter) and the integron promoter is of the
139	weakest known designation (21), explaining its low-level expression.
140	We conclude, therefore, that the in the absence of OmpF and with an aztreonam
141	target site mutation in PBP3, the production of three β -lactamases (CMY-2, CTX-M-
142	15, and SHV-12) that all hydrolyse aztreonam (1) from enzyme classes that bind
143	bicyclic boronates (3,22) perhaps with a contribution from a resident TEM-1, which
144	also binds bicyclic boronates (3) collectively overcome utility of aztreonam/ 2 and
145	aztreonam/taniborbactam.

146 The fortuitous finding reported here has significant implications for the future of 147 research into β -lactam/ β -lactamase inhibitor resistance. It is known that β -lactamase 148 hyperproduction – following gene duplication, promoter mutation, or mutations that 149 stabilise the enzyme – can overcome β -lactam/ β -lactamase inhibitor combinations 150 (e.g., amoxicillin/clavulanate or ceftazidime/avibactam) (1,2,23) but clearly another 151 way of increasing the abundance of β -lactamase activity in a cell is to acquire an 152 additional β-lactamase gene from a neighbouring bacterium with similar substrate 153 profile, as we have found here. This could never be seen when testing individual 154 isolates for their ability to generate resistant derivatives; either in the lab or using in 155 vivo infection models. However, in the real world, mixed populations of bacteria are 156 found, increasing the potential for resistance to coalesce in one member of the 157 population via horizontal gene transfer from the " β -lactamase-ome" of the population. 158 Two final findings are relevant to note. First, the bicyclic boronate taniborbactam has 159 been partnered with cefepime, not aztreonam in clinical development (5). The MIC of 160 cefepime against *E. coli* isolate N16 in the presence of taniborbactam was 4/4 µg.ml⁻ 161 ¹, and this did not rise upon acquisition of *bla*SHV-12 in the aztreonam/taniborbactam 162 resistant N16 derivative. This MIC is in CLSI's new "susceptible-dose dependent" 163 range for cefepime (8). Second, prior to clinical approval, aztreonam/avibactam as a 164 combination is created in the clinical setting by dosing aztreonam alongside 165 ceftazidime/avibactam. Using checkerboard assays (Fig. 2) we noted that the 166 aztreonam/avibactam resistant N16 and its aztreonam/taniborbactam resistant derivative are both susceptible (though sitting at the breakpoint) to 167 ceftazidime/avibactam (MIC = $8/4 \mu g.ml^{-1}$) even without aztreonam. The MIC versus 168 N16 falls slightly to $4/4 \mu g.ml^{-1}$ in the presence of a breakpoint concentration of 169 aztreonam (4 µg.ml⁻¹) but not against the aztreonam/taniborbactam resistant N16 170

171	derivative. Accordingly, in addition to the use of carbapenems (provided a metallo- β -
172	lactamase is not also present), it may be possible to treat infections with isolates
173	having the same combination of β -lactam resistance mechanisms as N16 or its
174	aztreonam/bicyclic boronate resistant derivative by using ceftazidime/avibactam (with
175	or without aztreonam) or cefepime/taniborbactam but correct dosing may be difficult
176	to achieve because the observed MICs are so close to the breakpoints.
177	
178	Acknowledgments
179	This work was funded by grants MR/N013646/1 to M.B.A. and K.J.H. and
180	MR/S004769/1 to M.B.A. from the Antimicrobial Resistance Cross Council Initiative
181	supported by the seven United Kingdom research councils and the National Institute
182	for Health Research. Additional funding came via a bequest from the estate of the
183	late Professor Graham Ayliffe. Genome sequencing was provided by MicrobesNG
184	(http://www.microbesng.uk/).
185	

186 We declare no conflicts of interest.

187 Figure Legends

188

189	Figure 1: The accumulation of H33342 dye over a 30 cycle (4500 s) incubation
190	period by K. pneumoniae and E. coli isolates. Red line, K. pneumoniae ST625
191	donor isolate; blue line, E. coli N16; green line, E. coli N16 resistant derivative. In
192	each case, fluorescence of cells incubated with the dye is presented as an absolute
193	value after each cycle. Each line shows mean data for three biological replicates with
194	8 technical replicates in each. Error bars define the standard error of the mean.
195	
196	Figure 2: Checkerboard assays for ceftazidime aztreonam in the presence of
197	avibactam.
198	Each image represents triplicate assays for an 8×8 array of wells in a 96-well plate. All wells
199	contained CA-MHB including avibactam (4 μ g.mL ⁻¹). A serial dilution of aztreonam (ATM, x-
200	axis) and ceftazidime (CAZ, y-axis) was created from 32 μ g.mL ⁻¹ in each plate as recorded.
201	All wells were inoculated with a suspension of bacteria, made as per CLSI microtiter MIC
202	guidelines (6), and the plate was incubated at 37°C for 20 h. Growth was recorded by
203	measuring OD_{600} and growth above background (broth) is recorded as a yellow block.
204	Growth at 8 μ g.mL ⁻¹ ceftazidime and 4 μ g.mL ⁻¹ aztreonam (this position indicated in red) in
205	the presence of avibactam defines resistance based on CLSI breakpoints (8). Bacterial
206	suspensions used were N16, left hand image, and the N16 derivative selected for
207	aztreonam/bicyclic boronate resistance, right hand image.

208 Tables

Table 1 MIC (μ g.ml⁻¹) of Aztreonam with and without serine β -lactamase

Isolate/	Aztreonam	Aztreonam/	Aztreonam/	Aztreonam/
Mutant		avibactam	relebactam	vaborbactam
9969	16	≤0.5/4	≤0.5/4	≤0.5/8
9969 ompF	128	≤0.5/4	1/4	2/8
N16	>256	8/4	64/4	128/8
ATCC	≤0.5	≤0.5/4	≤0.5/4	≤0.5/8
25922				
ATCC	>256	≤0.5/4	8/4	2/8
25922				
ompF				
CMY-2				
CTX-M-15				

210 inhibitors against *E. coli* isolates and mutant derivatives.

Table 2. Genotypic and Phenotypic Properties of *E. coli* and *K. pneumoniae* isolates.

Species and	Posistance gang complement	Placmid raplican
Species and Socionas Turso	A constance year complement	
Sequence Type	(abundance of protein in proteome.	complement
	nuosomai protein, n=3)	
E. coli ST69	dfrA7, anrS1, strA, strB sul1 sul2	IncFII.
2.00.0100	$b a_{\text{CMV}} \approx (0.47 \pm /-0.05)$	$lncFIB(\Delta P001918)$
(9969)	$b a_{\text{CMV}} _{A_{1}} = (0.26 + / - 0.02)$	
(0000)	$b a_{\text{TFM}} = (0.04 + - 0.001)$	$\ln c \Gamma A$, $\ln c P / O / V / Z$
	ompE(1.07 + -0.08)	IIICD/O/N/Z,
	ompC(1.91 + /-0.01)	
		Colrnal
E. coli ST101	aadA2, rmtB, strB, strA, armA, aac(3)-	IncFII,
	IIa, mph(E), msr(E), sul1, dtrA12, dfrA29,	IncA/C2,
(N16)	catA1	IncR
	bla_{CMY-4} (0.85+/- 0.22)	IncAC[ST-1],
	$Dia_{CTX-M-15} (0.36 + - 0.07)$	IncF[F2:A-:B-]
	bla _{TEM-1} (0.70 +/- 0.20)	
	bla _{OXA-2} (Not Detectable)	
	ompF (Not Detectable)	
	ompC (4.48 +/- 0.78)	
K. pneumoniae	aadA2, aac(6')lb-cr, aac(3)-lla, strA,	IncX3,
ST625	strB, rmtB, fosA, mph(A), sul2, sul1,	IncFII(pCRY),
	dfrA12, aac(6')Ib-cr, qnrB7, qnrS1,	IncFIB(K),
	tet(G), catB4, catA2	ColRNAI
	blashv-12	IncF[K-:A-:B-]
	<i>bla</i> ndm-1	
	blaCTX-M-15	
	blaokp-A-1	
	blaoxa-1	
<i>E. coli</i> ST101	aadA2, rmtB, strB, strA, armA, aac(3)-	IncX3
.	IIa, mph(E), msr(E), sul1, dfrA12, dfrA29,	IncFII,
(Aztreonam/	catA1	IncA/C2,
Boronate Resistant	<i>bla</i> _{SHV-12} (0.30 +/- 0.11)	IncR
derivative)	bla _{CMY-4} (0.70 +/- 0.26)	IncAC[ST-1],
	<i>bla</i> _{CTX-M-15} (0.31 +/- 0.07) <i>bla</i> _{TEM-1}	IncF[F2:A-:B-]
	(0.66 +/- 0.37)	
	<i>bla</i> _{OXA-2} (Not Detectable)	
	ompF (Not Detectable)	
	ompC (2.95 +/- 1.63)	

14 Figure 1

15 275

16 276

17

19 Figure 2

23 **References**

- Bush K. 2018. Past and Present Perspectives on β-Lactamases. Antimicrob Agents
 Chemother 62:e01076-18.
- 26 2. Bush K, Bradford PA. 2019. Interplay between β -lactamases and new β -lactamase
- inhibitors. Nat Rev Microbiol 17:295-306.
- 3. Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos JC,
- Avison MB, Spencer J, Fishwick CW, Schofield CJ. 2016. Structural basis of metallo-β-
- 130 lactamase, serine- β -lactamase and penicillin-binding protein inhibition by cyclic
- boronates. Nat Commun. 7:12406.
- 4. Hamrick JC, Docquier JD, Uehara T, Myers CL, Six DA, Chatwin CL, John KJ,
- Vernacchio SF, Cusick SM, Trout REL, Pozzi C, De Luca F, Benvenuti M, Mangani S,
- Liu B, Jackson RW, Moeck G, Xerri L, Burns CJ, Pevear DC, Daigle DM. 2020. VNRX-
- ³⁵ 5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-
- 36 Lactamases, Restores Activity of Cefepime in *Enterobacterales* and *Pseudomonas*
- *aeruginosa*. Antimicrob Agents Chemother. 64:e01963-19.
- 5. Mischnik A, Baumert P, Hamprecht A, Rohde A, Peter S, Feihl S, Knobloch J, Gölz
- 39 H, Kola A, Obermann B, Querbach C, Willmann M, Gebhardt F, Tacconelli E,
- 40 Gastmeier P, Seifert H, Kern WV; DZIF-ATHOS Study Group. 2017. Susceptibility to
- 41 cephalosporin combinations and aztreonam/avibactam among third-generation
- 42 cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. Int J
- 43 Antimicrob Agents. 49:239-242.
- 6. Clinical and Laboratory Standards Institute. 2015. M07-A10. Methods for dilution
- 45 antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard,
- 46 10th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

47	7. Findlay J, Gould VC, North P, Bowker KE, Williams MO, MacGowan AP, Avison MB.
48	2020. Characterization of cefotaxime-resistant urinary Escherichia coli from primary
49	care in South-West England 2017-18. J Antimicrob Chemother. 2020 75:65-71.
50	8. Clinical and Laboratory Standards Institute. 2020. M100-S30. Performance
51	standards for antimicrobial susceptibility testing; thirtieth informational supplement. An
52	informational supplement for global application developed through the Clinical and
53	Laboratory Standards Institute consensus process. Clinical and Laboratory Standards
54	Institute, Wayne, PA.
55	9. Alexeyev MF. 1999. The pKNOCK series of broad-host-range mobilizable suicide
56	vectors for gene knockout and targeted DNA insertion into the chromosome of gram-
57	negative bacteria. BioTechniques 26:824-828.
58	10. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J,
59	Schneiders T, Heesom KJ, Avison MB. 2018. Envelope proteome changes driven by
60	RamA overproduction in Klebsiella pneumoniae that enhance acquired β -lactam
61	resistance. J Antimicrob Chemother 73:88-94.
62	11. Takebayashi Y, Wan Nur Ismah WAK, Findlay J, Heesom KJ, Zhang J, Williams
63	OM, MacGowan AP, Avison MB. 2017. Prediction of cephalosporin and carbapenem
64	susceptibility in multi-drug resistant Gram-negative bacteria using liquid
65	chromatography-tandem mass spectrometry. <i>BioRxiv</i> <u>https://doi.org/10.1101/138594</u> .
66	12. Dulyayangkul P, Douglas EJA, Lastovka F, Avison MB. 2020. Resistance to
67	Ceftazidime/Avibactam plus Meropenem/Vaborbactam When Both Are Used Together
68	Is Achieved in Four Steps in Metallo- β -Lactamase-Negative Klebsiella pneumoniae.
69	Antimicrob Agents Chemother. 64:e00409-20.

70	13. Alm RA, Johnstone MR, Lahiri SD. 2015. Characterization of Escherichia coli NDM
71	isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion
72	in PBP3. J Antimicrob Chemother. 70:1420-8.
73	14. Sadek M, Juhas M, Poirel L, Nordmann P. 2020. Genetic Features Leading to
74	Reduced Susceptibility to Aztreonam-Avibactam among Metallo-β-Lactamase-
75	Producing Escherichia coli Isolates. Antimicrob Agents Chemother. 64:e01659-20.
76	15. Periasamy H, Joshi P, Palwe S, Shrivastava R, Bhagwat S, Patel M. 2020. High
77	prevalence of Escherichia coli clinical isolates in India harbouring four amino acid
78	inserts in PBP3 adversely impacting activity of aztreonam/avibactam. J Antimicrob
79	Chemother. 75:1650-1651.
80	16. Cahill ST, Tyrrell JM, Navratilova IH, Calvopiña K, Robinson SW, Lohans CT,
81	McDonough MA, Cain R, Fishwick CWG, Avison MB, Walsh TR, Schofield CJ, Brem J.
82	2019. Studies on the inhibition of AmpC and other β -lactamases by cyclic boronates.
83	Biochim Biophys Acta Gen Subj. 1863:742-748.
84	17. Coldham NG, Webber M, Woodward MJ, Piddock LJ. 2010. A 96-well plate
85	fluorescence assay for assessment of cellular permeability and active efflux in
86	Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob
87	Chemother. 65:1655-63.
88	18. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Jiménez-Castellanos
89	JC, Zhang J, Graham L, Bowker K, Williams OM, MacGowan AP, Avison MB. 2018.
90	Prediction of Fluoroquinolone Susceptibility Directly from Whole-Genome Sequence
91	Data by Using Liquid Chromatography-Tandem Mass Spectrometry to Identify Mutant
92	Genotypes. Antimicrob Agents Chemother. 62:e01814-17.

93	19. Feng Y, Yang P, Xie Y, Wang X, McNally A, Zong Z. 2015. Escherichia coli of
94	sequence type 3835 carrying bla NDM-1, bla CTX-M-15, bla CMY-42 and bla SHV-12.
95	Sci Rep 5:12275.
96	20. Liakopoulos A, van der Goot J, Bossers A, Betts J, Brouwer MSM, Kant A, Smith H,
97	Ceccarelli D, Mevius D. 2018. Genomic and functional characterisation of IncX3
98	plasmids encoding blaSHV-12 in Escherichia coli from human and animal origin. Sci
99	Rep. 8:7674.
00	21. Jové T, Da Re S, Denis F, Mazel D, Ploy MC. 2010. Inverse correlation between
01	promoter strength and excision activity in class 1 integrons. PLoS Genet. 6:e1000793.
02	22. Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J,
03	Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J. 2017. Cyclic
04	Boronates Inhibit All Classes of β -Lactamases. Antimicrob Agents Chemother.
05	61:e02260-16.
06	23. Rodríguez-Baño J, Oteo J, Ortega A, Villar M, Conejo MC, Bou G, Aranzamendi-
07	Zaldumbide M, Cercenado E, Gurguí M, Martínez-Martínez L, Merino M, Rivera A,
08	Oliver A, Weber I, Pascual A, Bartolomé RM, Gónzalez-López JJ, Campos J. 2013.
09	Epidemiological and clinical complexity of amoxicillin-clavulanate-resistant Escherichia
10	<i>coli</i> . J Clin Microbiol. 51:2414-7.