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Abstract: A large space of chemicals with broad industrial and consumer applications could be
synthesized by engineered microbial biocatalysts. However, the current strain optimization process is
prohibitively laborious and costly to produce one target chemical and often requires new engineering
efforts to produce new molecules. To tackle this challenge, modular cell design based on a chassis
strain that can be combined with different product synthesis pathway modules has been recently
proposed. This approach seeks to minimize unexpected failure and avoid task repetition, leading
to a more robust and faster strain engineering process. The modular cell design problem was
mathematically formulated using a multi-objective optimization framework.[1] In this study, we
evaluated a library of the state-of-the-art multi-objective evolutionary algorithms (MOEAs) to identify
the most effective method to solve the modular cell design problem. Using the best MOEA, we found
better solutions for modular cells compatible with many product synthesis modules. Furthermore,
the best performing algorithm could provide better and more diverse design options that might help
increase the likelihood of successful experimental implementation. We identified key parameter
configurations to overcome the difficulty associated with multi-objective optimization problems with
many competing design objectives. Interestingly, we found that MOEA performance with a real
application problem, e.g., the modular strain design problem, does not always correlate with artificial
benchmarks. Overall, MOEAs provide powerful tools to solve the modular cell design problem for
novel biocatalysis.

Keywords: modularity; modular design; modular cell; metabolic engineering; metabolic network
modeling; constraint-based modeling; multi-objective optimization; multi-objective evolutionary
algorithms; MOEA.

1. Introduction

Multi-objective optimization is a powerful mathematical toolbox widely used in engineering
disciplines to solve problems with multiple conflicting design objectives.[2] For example, in the field of
chemical engineering, multi-objective optimization has been applied to balance design conflicts in the
performance, material and energy requirements, and environmental sustainability of many different
chemical processes.[3] In industrial biotechnology, with recent advancements in synthetic biology
and metabolic engineering, microorganisms can be genetically modified to produce a large space
of molecules with broad applications using renewable lignocellulosic biomass or waste products as
feedstocks.[4,5] Due to the current strain design process that is prohibitively laborious and expensive
[6], the application of modular design principles commonly used in engineering [7] to microbial
biocatalysis has been recently proposed to overcome this challenge.[1,8–10] This modular cell design
approach, known as ModCell, uses multi-objective optimization to account for the competing cellular
objectives when cellular metabolism is (re)designed in a modular fashion to produce a diverse class of
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target chemicals. ModCell has been experimentally demonstrated for biosynthesis of alcohols [8,11,12]
and esters [13–17] in Escherichia coli.

Despite the broad applicability of multi-objective optimization in engineering design, powerful
solution algorithms remain elusive. Multi-objective evolutionary algorithms (MOEAs) are widely
used techniques due to their flexibility and computational scalability.[18] MOEAs are based on a
more general type of optimization method known as evolutionary algorithms, where candidate
solutions, that represent individuals of a population, are iteratively modified using heuristic rules
to increase their fitness. Recently, much attention has been placed in the development of MOEAs to
solve many-objective problems (e.g., problems with 4 or more objectives) that often correspond to
real-world applications, but can be very challenging to solve with conventional MOEAs.[19] For the
case of ModCell problem, the popular MOEA NSGA-II[20,21] was used to design a modular cell under
20 different production modules,[1]. Due to the large chemical space of molecules that can potentially
be synthesized by modular cells, scalability issues are expected to occur when constructing modular
cells that are designed to be compatible with tenths or hundreds of products. Furthermore, using the
best solver algorithm(s) allows to explore a more diverse design space, resulting in better choices for
experimental implementation.

Many MOEAs have been proposed over the past two decades since the inception of landmark
algorithms such as NSGAII [22] and SPEA2.[23] New MOEAs are benchmarked against libraries of
artificial problems with known solutions, [24,25] and are expected to show enhanced performance
for a subset of these problems in terms of scalability, identification of Pareto optimal solutions, and
number of simulation generations needed to converge. This benchmarking methodology does not
always reflect MOEA performance for general problems, since specialized parameter configurations or
heuristics are often used and can lead to drastically different performance towards a specific problem
of interest. Thus, the best MOEA for a certain application problem needs to be determined empirically.
In this study, we evaluated a library of state-of-the-art MOEAs to solve the multi-objective ModCell
problem, with special consideration for many-objective methods. Several cases study of increasing
difficulty were examined using common performance indicators of solution optimality and diversity,
and critical algorithm parameters that determine solution quality are also investigated.

2. Methods

2.1. Multi-objective modular cell design

Modular cell design enables rapid assembly of strains with desirable phenotypes from a modular
(chassis) cell,[1] resembling the efficiency advantages of modular design in conventional engineering
disciplines.[7,10] A modular cell is constructed by eliminating genes from a parent strain to maintain
only core metabolic pathways shared across all pathway modules. Each module enables an optimized
target product synthesis phenotype that leads to high yields, titers, and production rates. The different
biochemical nature of each target metabolite can make the objectives compete with each other, turning
the modular cell design problem into a multi-objective optimization problem known as ModCell2:[1]
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max
yj ,zjk

( f1, f2, . . . , f|K|)
T s.t. (1)

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t. (2)

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik (3)

ljk ≤ vjk ≤ ujk for all j ∈ Jk (4)

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C (5)

where djk = yj ∨ zjk

}
for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K (6)

∑
j∈C

zjk ≤ βk for all k ∈ K (7)

∑
j∈C

(1− yj) ≤ α (8)

where Ik, Jk, and K are the sets of metabolites, reactions, and associated production metabolic
networks (i.e., the combination of the chassis organism with a specific product synthesis pathway),
respectively. The desirable phenotype fk for production module k (1) is determined based on key
metabolic fluxes vjk (mmol/gDCW/h) predicted by the constraint-based metabolic model [26] (2-5).
For example, a common design objective is weak growth coupled to product formation (wGCP), that
requires a high product synthesis rate at the maximum growth-rate, enabling growth selection of
optimal production strains. Thus, in wGCP design, the inner optimization problem seeks to maximize
growth rate through the linear objective function cjk (2) subject to: (i) mass-balance constraints (3),
where Sijk represents the stoichiometric coefficient of metabolite i in reaction j of production network
k, (ii) flux bound constraints (4) that determine reaction reversibility and available substrates, where ljk
and ujk are lower and upper bounds respectively, and (iii) genetic manipulation constraints (5), i.e.,
deletion of a reaction j in the chassis through the binary indicator yj, or insertion of a reaction j in
a specific production network k through the binary indicator zjk. The maximum product synthesis
rate of each production network k, f max

k , is determined by maximizing the product synthesis reaction
subject to (3-4), allowing to bound fk in wGCP between 0 and 1. Only a subset of all metabolic reactions,
C, are considered as candidates for deletion, since many of the reactions in the metabolic model cannot
be manipulated to enhance the target phenotype. Certain reactions can be deleted in the chassis but
inserted back under specific production modules, enabling the chassis to be compatible with a broader
number of modules (6). The number of module-reactions additions and reaction deletions in the chassis
is constrained by parameters βk (7) and α (8), respectively, to avoid unnecessary genetic manipulations
that are generally time-consuming to implement and can lead to unforeseen phenotypes.

2.2. Optimal solutions for a multi-objective optimization problem

Optimal solutions for a multi-objective optimization problem (1-8) are defined based on the
concept of domination: A vector a = (a1, . . . , aK)

T dominates another vector b = (b1, . . . , bK)
T , denoted

as a ≺ b if and only if ai ≥ bi ∀i ∈ {1, 2, . . . , K} and ai 6= bi for at least one i. Letting x be the design
variables (i.e., yj and zjk) and X be the feasible set determined by the problem constraints (2-8), a
feasible solution x∗ ∈ X of the multi-objective optimization problem is called a Pareto optimal solution
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if and only if there does not exists a vector x′ ∈ X such that F(x′) ≺ F(x∗). The set of all Pareto optimal
solutions is called Pareto set:

PS := {x ∈ X : @ x′ ∈ X, F(x′) ≺ F(x)} (9)

The projection of the Pareto set in the objective space is denoted as Pareto front:

PF := {F(x) : x ∈ PS} (10)

2.3. MOEA selection

To find the best MOEAs for ModCell2, we evaluated a recent and comprehensive set of MOEAs
implemented in the PlatEMO platform.[27] From over 50 algorithms available in PlatEMO, we selected
2 methods for benchmark study, NSGAII/gamultiobj and MOEAIGDNS, and 8 methods that have
been specifically developed to tackle many-objective problems with discrete variables like ModCell2,
including ARMOEA, EFRRR, MaOEADDFC, SPEAR, tDEA, BiGE, NSGAIII, and SPEA2SDE (Table 1).
It should be noted that gamultiobj is an alternative implementation of the NSGAII algorithm available
in Matlab.

Table 1. Summary of MOEAs used in this study

Abbreviation Name Notes Reference

NSGAII Non-dominated sorting genetic algorithm 2 Highly applied MOEA [22]

gamultiobj Matlab implementation of NSGAII Used in the original
ModCell2 study[1] [20]

MOEAIGDNS
Multi-objective evolutionary algorihtm based
on an enhanced inverted generational distance
metric

General MOEA with an
implementation that works
well with discrete variables

[28]

ARMOEA Adapation to reference points multi-objective
evolutionary algorithm

Many-objective EA based on
MOEAIGDNS [29]

EFRRR Ensemble fitness ranking with ranking
restriction Many-objective EA [30]

MaOEADDFC
Many-objective evolutionary algorithm
based on directional diversity and favorable
convergence

Many-objective EA [31]

SPEAR Strength Pareto evolutionary algorithm based
on reference direction Many-objective EA [32]

tDEA θ-dominance evolutionary algorithm Many-objective EA [33]
BiGE Bi-goal evolution Many-objective EA [34]

NSGAIII Non-dominated sorting genetic algorithm 3 Many-objective EA [35]

SPEA2SDE Strength Pareto evolutionary algorithm 2 with
shift-based density estimation Many-objective EA [36]

2.4. Performance metrics

To evaluate the performance of different MOEAs for a given problem, each algorithm is ran for
the same number of generations, and the resulting solutions, known as Pareto front approximations,
are compared using functions that measure two qualities: (i) solution accuracy, i.e., to determine how
similar the solution is to the true Pareto front and (ii) solution diversity, i.e., to evaluate how well
distributed are the points in the solution. We selected the top 5 most used metrics according to a recent
literature survey.[37] These include, in order of popularity, hypervolume (HV), generational distance
(GD), epsilon indicator (ε), inverted generational distance (IGD), and coverage (C). Based on a recent
study,[38] we considered the average Hausdorff distance (∆p), that combines GD and IGD, and hence
simplified the number of performance metrics to 4 in our study. These metrics are defined as follows:

HV: This metric measures the volume occupied by the union of the smallest hyperboxes formed by
each point in the Pareto front approximation and the reference point. This Pareto front approximation
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corresponds to the solution of a specific MOEA (denoted as PF) and the reference point is selected to be
greater or equal to the maximum value attainable by any objective, which in our case is~1 (Figure 1a):

HV =
⋃
i∈I

Volume(Box(PFi,~1)) (11)

where I is the index set of PF points.
GD: This metric measures the distance between the solution PF and the best Pareto front

approximation determined by combining non-dominated points from all MOEA solutions of a specific
case study, denoted PF∗. More specifically, GD corresponds to the average Euclidean distance between

each point in PF and the nearest point in PF∗, denoted as di = min
k∈K

(
∑
j∈J

(PFij − PF∗kj)
2

) 1
2

, where I

(i ∈ I), K (k ∈ K), and J (j ∈ J) correspond to the index sets of PF points, PF∗ points, and problem
objectives, respectively (Figure 1b):

GD =

∑
i∈I

di

|I| (12)

IGD: This metric measures the distance between PF and PF∗. It is determined by the
average Euclidean distance between each point in PF∗ and the nearest point in PF denoted d̂k =

min
i∈I

(
∑
j∈J

(PF∗kj − PFij)
2

) 1
2

(Figure 1b):

IGD =

∑
k∈K

d̂k

|K| (13)

∆p: This metric combines GD and IGD metric and thus has superior properties:[38]

∆p = max(GD, IGD) (14)

C: This metric determines the fraction of PF∗ captured by the solution PF (Figure 1c):

C =
|PF∩ PF∗|
|PF∗| =

|{k ∈ K : ∃i ∈ I such that PF∗kj = PFij for all j ∈ J}|
|K| (15)

ε: This metric is the additive epsilon indicator[39] that measures the smallest value to be added to
any point in PF to make it non-dominated with respect to some point in PF∗. In other words, it is the
smallest value ε such that for any solution in PF∗ there is at least one solution in PF that is not worse
by a difference of ε (Figure 1d):

ε = inf{ε ∈ R : for all i ∈ I ∃k ∈ K such that PFij + ε ≥ PF∗kj for all j ∈ J} (16)

Use of these metrics can be illustrated with a two-objective design example with 4 generations of
improving Pareto front approximations, where the final Pareto front is used as a reference (i.e., PF∗)
(Figure 1e). As the Pareto fronts contain points that dominate the previous generations, all metrics
decrease monotonically with the exception of C that increases to a value of 1 when both Pareto front
approximation and reference are the same (Figure 1f).
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Figure 1. (a-d) Conceptual illustration of performance metrics of MOEAs for two-objective design
problem. PF and PF∗ correspond to the Pareto front approximation and the best Pareto front available,
respectively. The reference point R must always dominate all solutions in PF. (e-f) An example of
Pareto fronts with 2 dimensions and associated metrics. The 4th generation corresponds to PF∗ used as
a reference for comparison.

2.5. Algorithm parameters

All parameters used in the simulations of this study were left as default except the following ones.
The total number of generations was set to be 200, which is sufficient to reach high quality solutions for
the problems of this study. In addition, the population size was set to be 100 for all algorithms unless
noted otherwise. All problems were solved in triplicates with unique random number generator seeds.

2.6. Metabolic models

For all simulations, we used a core E. coli model, downloaded from the BiGG database[40] (https:
//bigg.ucsd.edu), that captures the most important metabolic pathways.[26] The product synthesis
pathways for each module correspond to native E. coli pathways togheter with well-characterized
heterologus pathways for the synthesis of propanol,[41] butanol,[42] isobutanol,[43] and pentanol.[41]
The metabolic reactions associated with these pathways are described in the software implementation
(Supplementary Material 1).

2.7. Implementation

The simulations were performed using the ModCell2 software framework.[1] The MOEAs are
implemented in the PlatEMO Matlab library,[27] except gamultiobj which is implemented as part of
the Matlab Optimization Toolbox. HV was calculated using the hv package.[44] All computations were
executed in a computer with the Arch Linux operative system, Intel Core i7-3770 processor, and 32 GB
of random-access memory. The Matlab 2018b code used to generate the results of this manuscript is
available in Supplementary Material 1 and https://github.com/trinhlab/compare-moea.
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3. Results and Discussion

3.1. Case 1: A 3-objectives design problem

We first formulated a design problem that considers an E. coli core model and 3 production
modules based on the endogenous acetate, D-lactate, and ethanol biosynthesis pathways (Figure 2a).
We used all MOEAs to solve for the problem by setting the wGCP design objective, a maximum number
of reaction deletions α = 3, and no module reactions β = 0. These design parameters were sufficiently
restrictive to generate conflicting objectives. A total coverage of PF∗ (C = 1) was reached within 20
generations by several algorithms (Figure 2b, e, h, i) and by gamultiobj after 150 generations (Figure 2k),
while the remaining algorithms could not attain C values above 0.8 (Figure 2c, d, f, g, j, l). In particular,
MaOEADDFC and BiGE obtained the worst C, ε, and ∆p values (Figure 2m). Although C, ε, and ∆p

values of BiGE indicated inferior performance, this algorithm had the lowest HV since it generated
only one point with a high objective value (Figure 2o). Due to the simplicity of the problem, every
algorithm except MaOEADDFC, tDEA, and BiGE converged to very similar Pareto fronts (Figure 2n-x),
and 5 of them reached C = 1, indicating convergence to the reference Pareto front (Figure 2y).

3.2. Case 2: A 10-objectives design problem

Using the same model and design parameters as in Case 1, we expanded the number of
objectives to represent a more realistic scenario. These objectives correspond to 6 endogenous
pathways for biosynthesis of D-lactate, acetate, ethanol, formate, pyruvate and L-glutamate and 4
heterologous pathways for biosynthesis of propanol, butanol, isobutanol, and pentanol. The additional
objectives increased the difficulty of the problem, leading to more notable difference among algorithm
performances (Figure 3a-k). The SPEA2SDE algorithm displayed consistent improvement of C as
generations progressed, and quickly reached the smallest values of ε and ∆p (Figure 3h). Other
algorithms, including ARMOEA and MOEAIGDNS, also improved their ε with the increasing number
of generations and reached the same final values of ε and ∆p as SPEA2SDE (Figure 3a, d). However,
SPEA2SDE approached C ∼= 0.6, which is twice the value reached by the next best-performing methods
(Figure 3l). Remarkably, SPEA2SDE outperformed every other algorithm in all metrics, except HV.
The HV metric continues to show bias towards algorithms that generated a small number of points
and scored poorly in other metrics.

3.3. Case 3: Use of large population size overcomes poor MOEA performance

Increasing the number of objectives often leads to a combinatorial explosion of the number of
feasible Pareto optimal points and consequently causes poor MOEA performance. This problem can
be alleviated by using a larger population size to sample a broader volume of solution space.[45] To
test this strategy for the 10-objectives design problem above, we increased the population size from
100 to 1000 individuals. The result showed that ARMOEA, MOEAIGDNS, NSGAII, SPEA2SDE (the
best performer in Case 2), and gamultiobj, could reach C of 0.7, ε of 0, and ∆p of 0 in fewer than 50
generations (Figure 4a, d, g, h, j). These 5 algorithms also yielded very similar final values across all
metrics (Figure 4l). The remaining algorithms converged to considerably lower C values (Figure 4b, c,
e, f, i, k). Remarkably, NSGAII/gamultiobj, that is not considered a many-objective solver, performed
better than more recent many-objective algorithms such as NSGAIII.

One limitation of using larger populations is an increased cost in computational time. We observed
that a 10-fold increase in population sizes resulted in a 10-fold increase in the run times (Figure 5).
Nonetheless, all metrics reached a stable value in the top performing algorithms after 50 generations
(out of 200 total), suggesting that fewer generations were needed by using a larger population size.
Among the best performing algorithms with large population sizes, gamultiobj, implemented in the
Matlab Optimization Toolbox, required the shortest run time, followed by NSGAII and SPEA2SDE
implemented in PlatEMO.
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Figure 2. (Caption next page.)
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Figure 2. (Previous page.) Comparison of MOEAs for a 3-objectives design problem. (a) The
simplified metabolic pathways for conversion of glucose to the target products. Reducing equivalents
are presented with e−. (b-l) Generation-dependent performance metrics for various MOEAs. (m)
Performance metrics for various MOEAs at the last generation. (n-x) Pareto fronts of various MOEAs
at the last generation. It should be noted that only the first replicate is plotted for clear illustration. (y)
Reference Pareto front (PF∗). Each line represents a solution.

Figure 3. Comparison of MOEAs for a 10-objective design problem. (a-k) Generation-dependent
performance metrics for various MOAEs. (l) Performance metrics for various MOEAs at the last
generation.
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Figure 4. Comparison of MOEAs for a 10-objective design problem with larger population sizes (a-k)
Generation-dependent performance metrics for various MOAEs. (l) Performance metrics for various
MOEAs at the last generation.
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Figure 5. Wall-clock run times for the 10-objective design problem with population sizes of 100 (Case
2) and 1000 (Case 3).

4. Conclusions

In this study, we evaluated the performance of several MOEAs to solve the modular cell design
problem. SPEA2SDE, the recently developed many-objective method, was the best performing MOEA
under limited population sizes in our study. However, for sufficiently large populations, several
algorithms attained the best results, including the well-established NSGAII, which performed better
under large populations than more recently developed many-objective MOEAs. We used the most
popular performance metrics to compare MOEAs and found that the coverage (C) metric is the most
valuable indicator. This metric can provide an intuitive quantitative meaning and tends to increase
monotonically with the number of generations simulated. In contrast, hypervolume (HV) generally
did not differentiate algorithm performance and was misleading in some scenarios where an algorithm
generated very few solutions. Overall, these results highlight the need for empirical testing of MOEAs
towards specific problems and of the population size as a more important factor in performance than
the unique heuristics used by different algorithms.
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