Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures

Sumitabha Brahmachari, John F. Marko
doi: https://doi.org/10.1101/616102
Sumitabha Brahmachari
1Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sumitabha@u.northwestern.edu
John F. Marko
1Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
2Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Eukaryote cell division features a chromosome compaction-decompaction cycle that is synchronized with their physical and topological segregation. It has been proposed that lengthwise compaction of chromatin into mitotic chromosomes via loop extrusion underlies the compaction-segregation/resolution process. We analyze this disentanglement scheme via considering the chromosome to be a succession of DNA/chromatin loops - a polymer “brush” - where active extrusion of loops controls the brush structure. Given topoisomerase (TopoII)-catalyzed topology fluctuations, we find that inter-chromosome entanglements are minimized for a certain “optimal” loop that scales with the chromosome size. The optimal loop organization is in accord with experimental data across species, suggesting an important structural role of genomic loops in maintaining a less entangled genome. Application of the model to the interphase genome indicates that active loop extrusion can maintain a level of chromosome compaction with suppressed entanglements; the transition to the metaphase state requires higher lengthwise compaction, and drives complete topological segregation. Optimized genomic loops may provide a means for evolutionary propagation of gene-expression patterns while simultaneously maintaining a disentangled genome. We also find that compact metaphase chromosomes have a densely packed core along their cylindrical axes that explains their observed mechanical stiffness. Our model connects chromosome structural reorganization to topological resolution through the cell cycle, and highlights a mechanism of directing Topo-II mediated strand passage via loop extrusion driven lengthwise compaction.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted October 25, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures
Sumitabha Brahmachari, John F. Marko
bioRxiv 616102; doi: https://doi.org/10.1101/616102
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures
Sumitabha Brahmachari, John F. Marko
bioRxiv 616102; doi: https://doi.org/10.1101/616102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3573)
  • Biochemistry (7517)
  • Bioengineering (5479)
  • Bioinformatics (20675)
  • Biophysics (10257)
  • Cancer Biology (7931)
  • Cell Biology (11578)
  • Clinical Trials (138)
  • Developmental Biology (6563)
  • Ecology (10135)
  • Epidemiology (2065)
  • Evolutionary Biology (13537)
  • Genetics (9497)
  • Genomics (12788)
  • Immunology (7870)
  • Microbiology (19451)
  • Molecular Biology (7613)
  • Neuroscience (41871)
  • Paleontology (306)
  • Pathology (1252)
  • Pharmacology and Toxicology (2179)
  • Physiology (3249)
  • Plant Biology (7005)
  • Scientific Communication and Education (1291)
  • Synthetic Biology (1942)
  • Systems Biology (5405)
  • Zoology (1107)