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Abstract 

Electro-encephalography (EEG) source connectivity is an emerging approach to estimate 

brain networks with high time/space resolution. Here, we aim to evaluate the effect of 

different functional connectivity (FC) methods on the EEG-source space networks at rest. The 

two main families of FC methods tested are: i) the FC methods that do not remove the zero-

lag connectivity including the Phase Locking Value (PLV) and the Amplitude Envelope 

Correlation (AEC) and ii) the FC methods that remove the zero-lag connections such as the 

Phase Lag Index (PLI) and orthogonalisation approach combined with PLV (PLVorth) and 

AEC (AECorth). Methods are evaluated on resting state dense-EEG signals recorded from 20 

healthy participants. Networks obtained by each FC method are compared with fMRI 

networks at rest (from the Human Connectome Project -HCP-, N=487). Results show low 

correlations for all the FC methods, however PLV and AEC networks are significantly 

correlated with fMRI networks (ρ = 0.12, p = 1.9310-8 and ρ = 0.06, p = 0.007, respectively), 

while other methods are not. These observations are consistent for each EEG frequency bands 

and for different FC matrices threshold. Furthermore, the effect of electrode density was also 

tested using four EEG montages (dense-EEG 256 electrodes, 128, 64 and 32 electrodes). 

Results show no significant differences between the four EEG montages in terms of 

correlations with the fMRI networks. Our main message here is to be careful when selecting 

the FC methods and mainly those that remove the zero-lag connections as they can affect the 

network characteristics. More comparative studies (based on simulation and real data) are still 

needed in order to make EEG source connectivity a mature technique to address questions in 

cognitive and clinical neuroscience. 

Keywords: electroencephalography, functional brain networks, connectivity measures, 

electrodes density 
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Introduction 

Electro/magneto-encephalography (EEG/MEG) source-space connectivity is a unique non-

invasive technique, which enables the tracking of large-scale brain network dynamics on a 

sub-second time-scale (Hassan and Wendling, 2018; O'Neill et al., 2018; Schoffelen and 

Gross, 2009). Benefiting from the excellent time resolution of the M/EEG (sub-millisecond), 

the method consists of identifying brain networks in the cortical space through sensor-level 

signals. However, several methodological choices should be carefully accounted for to avoid 

pitfalls.  

In this regard, the spatial leakage (presence of spurious connections) was considered as one of 

the main challenges that affects the accuracy of the M/EEG source-space networks. It was 

shown to lead to false positive observations caused directly by signal mixing or arising 

indirectly from the spread of signals from true interacting sources to nearby false loci (Palva 

et al., 2018; Wang et al., 2018). To deal with this problem, most existing approaches are 

based on the hypothesis that leakage generates inflated connectivity between estimated 

sources, which manifests as zero-phase-lag correlations. Thus, these methods dealt with the 

leakage problem by removing the zero lag connections (Nolte et al., 2004; Stam et al., 2007) 

or adopting orthogonalization-based approach (Brookes et al., 2012; Hipp et al., 2012).  

Here we compare two families of functional connectivity (FC) methods: i) the FC methods 

that do not remove the zero-lag-phase connectivity including the Phase Locking Value (PLV) 

and the Amplitude Envelope Correlation (AEC) and ii) the FC methods that remove the zero-

lag connections such as the Phase Lag Index (PLI) and orthogonalisation approach combined 

with PLV (PLVorth) and AEC (AECorth). Networks obtained by each method were compared 

with the networks obtained using fMRI (HCP database, N=487). The impact of the EEG 

channels density (256, 128, 64 and 32) is also investigated. 
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Materials and Methods 

Participants 

Dense-EEG recordings (256 channels, EGI, Electrical Geodesic Inc.) were collected from 

twenty healthy participants (10 women and 10 men; mean age, 23 y). Experiments were 

performed in accordance with the relevant guidelines and regulations of the National Ethics 

Committee for the Protection of Persons (CPP), (BrainGraph study, agreement number 2014-

A01461-46, promoter: Rennes University Hospital), which approved all the experimental 

protocol and procedures. All participants in the study provided written informed consents. 

Participants were asked to relax for 10 minutes with their eyes closed during the acquisition 

without falling asleep.  

Data acquisition and preprocessing 

EEG signals were sampled at 1000 Hz, band-pass filtered within 0.1–45 Hz, and segmented 

into non-overlapping 40 s long epochs (Chu et al., 2012; Fraschini et al., 2016). Electrodes 

with poor signal quality (amplitude > 100 µV or < -100 µV) have been identified and 

interpolated using signals recorded by surrounding electrodes. Segments that have more than 

20 electrodes interpolated have been excluded from the analysis. Three clean epochs per 

subject were then used for source estimation. One subject was excluded from the study due to 

noisy data. 
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Figure 1. Study pipeline. EEG recordings were preprocessed and clean EEG epochs were used to solve the 

inverse problem using wMNE. Statistical couplings were then computed between the reconstructed 

sources using different methods (PLV, AEC, PLI, PLVorth and AECorth). Then, the identified matrices were 

compared with the fMRI functional connectivity matrix obtained from HCP. Abbreviations: EEG: 

electroencephalogram; wMNE: weighted Minimum Norm Estimate; PLV: phase locking value; AEC: 

amplitude envelope correlation; PLI: phase lag index; fMRI: functional magnetic resonance imaging; 

HCP: human connectome project. 

Estimation of regional time series 

First, the MRI template “Colin27” (Holmes et al., 1998) and EEG channel locations were co-

registered using Brainstorm (Tadel et al., 2011). The lead field matrix was then computed for 

a cortical mesh of 15000 vertices using OpenMEEG (Gramfort et al., 2010). The noise 

covariance matrix was calculated using a long segment of EEG data at rest, as recommended 

in (Tadel et al., 2011). An atlas-based approach was used to project EEG signals onto an 

anatomical framework consisting of 68 cortical regions identified by means of the Desikan-

Killiany atlas (Desikan et al., 2006). To reconstruct the regional time series, we used the 

weighted Minimum Norm Estimate (wMNE), widely used in the context of EEG source 

localization (Gramfort et al., 2012; Hassan et al., 2015; Hauk, 2004; Kabbara et al., 2017; 
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Rizkallah et al., 2018) and showed higher performance than other algorithms in several 

comparative studies (Hassan et al., 2014; Hassan et al., 2016). The regional time series were 

then filtered in the different EEG frequency bands: Delta [0.5-4 Hz], Theta [4-8 Hz], alpha [8-

13 Hz], beta [13-30 Hz] and gamma [30-45 Hz]. Results are presented in beta band, in which 

previous studies have reported its importance in driving large-scale spontaneous neuronal 

interactions (Brookes et al., 2011; de Pasquale et al., 2012), results for other frequency bands 

are presented in the supplementary materials. Finally, functional networks were computed 

using EEG source connectivity method (Hassan et al., 2014; Hassan et al., 2015; Rizkallah et 

al., 2018; Sakkalis, 2011; Schoffelen and Gross, 2009) by measuring the functional 

connectivity between the reconstructed regional time series (fig 1). 

Connectivity measures 

The functional connectivity analysis was performed by computing pair-wise statistical 

interdependence between regional time series using: 

1) Phase locking value (PLV) 

The phase locking value between two signals x and y is defined as (Lachaux et al., 1999):  
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where φy(t) and φx(t) are the phases of the signals x and y at time t extracted using the Hilbert 

transform. δ denotes the size of the window in which PLV is calculated. Here, we used a 

sliding window technique for each epoch to compute the FC matrices. The smallest window 

length recommended by (Lachaux et al., 2000) was used, equal to 
  

 

number of cycles

central frequency
 where 

the number of cycles at the given frequency band is equal to six. Finally, FC were averaged 

over the 40s epoch. 
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2) Phase lag index (PLI) 

The PLI was introduced as an alternative measure of PLV and less sensitive to the influence 

field spread and amplitude effects. It is defined as follows (Stam et al., 2007):  

( ) ( )y xPLI sign t t  = −   

Where φy(t) and φx(t) are the phases of the signals x and y at time t and 〈〉 denotes the average 

over the time. 

3) Amplitude envelope correlation (AEC) 

The envelopes of the regional time series were estimated using Hilbert transform then Pearson 

correlation between amplitude envelopes was computed (Brookes et al., 2004).  

4) Orthogonalisation approach 

The symmetric orthogonalisation approach (Colclough et al., 2015) was used to remove all 

shared signal at zero lag between regional time series in the time domain. Here, we applied 

this approach to PLV and AEC methods. 

fMRI networks 

Here, we used data from 487 participants at rest collected from the human connectome project 

(HCP) (Van Essen et al., 2013). In brief, functional connectivity between each of the 68 

regions was assessed by means of analysis of the resting-state fMRI data of the HCP (Q3 

release, voxel-size 2 mm isotropic, TR/TE 720/33.1 ms, 1200 volumes, 14:33 minutes). 

Images were realigned, co-registered with the T1 image, filtered (0.03 - 0.12 Hz), corrected 

for global effects of motion (realignment parameters), global signal mean, ventricle and white 

matter signal by means of linear regression and ‘motion-scrubbed’ for potential movement 

artifacts. Average time-series of the cortical regions were computed by averaging the time-

series of the voxels in each of the cortical regions, and functional connectivity between all 
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region pairs was derived by means of correlation analysis. A  group-averaged  weighted  

functional  connectivity (FC) matrix was formed by averaging the individual matrices, see 

(van den Heuvel et al., 2016) for more detailed information.  

Statistical comparisons  

To statistically assess the difference between the connectivity methods, we thresholded the 

matrices (EEG and fMRI) by keeping the highest 10% connections (Garrison et al., 2015; 

Kabbara et al., 2017), results for other threshold values are presented in the supplementary 

materials. Then, Spearman correlation values between EEG connectivity matrices and the 

averaged fMRI connectivity matrix were calculated for each participant. Mann-Whitney U 

Test was used to assess the statistical difference between FC methods. In order to investigate 

the effect of the number of EEG channels on the identified source-space networks, we 

spatially subsampled the 256 recordings for each subject and derived the recordings from 128, 

64 and 32 channels respectively on which the same steps of preprocessing, source 

reconstruction and connectivity computation have been applied.  

Results 

Effect of connectivity measures 

The FC matrices (averaged over subjects) obtained by each of the FC methods (in beta band) 

are illustrated in figure 2. These matrices were reordered according to brain lobes. The red 

module represents the occipital lobe, the green one represents the temporal brain regions, the 

blue section represents the parietal lobe, the purple module represents the frontal regions, the 

orange section represents the central lobe and the last module in grey represents the cingulate 

regions (details are presented in supplementary materials Table1). The averaged FC matrix 

obtained using fMRI is also illustrated. The visual investigation of these results revealed that 
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matrices obtained from PLV and AEC connectivity methods are more consistent with the 

fMRI matrix compared to the other three methods after removing zero lag connections. The 

latter FC methods connections between brain regions were sparser. 

 

Figure 2. Functional connectivity matrices obtained in beta band from averaged fMRI data and EEG 

networks. Matrices were ordered according to brain lobes (red: Occipital lobe - O, green: Temporal lobe - 

T, blue: Parietal lobe - P, purple: Frontal lobe - F, orange: Central lobe - C and grey: Cingulate - Cing). 

PLV: Phase Locking Value, AEC: Amplitude Envelope Correlation, PLI: Phase Lag Index, PLVorth: 

Phase locking Value after applying leakage correction and AECorth: Amplitude Envelope Correlation after 

applying leakage correction. 

We then explored the Spearman correlations between the EEG network (averaged over 

subjects) obtained from the five FC methods and the fMRI network at the level of each 

network connection (edge’s weight) represented in figure 3. Results show low correlations for 

all the FC methods, however PLV and AEC networks are significantly correlated with fMRI 

networks (ρ = 0.12, p = 1.9310-8 and ρ = 0.06, p = 0.007, respectively). However, the 

networks obtained after using methods with leakage correction (PLI, PLVorth and AECorth) 

were not significantly correlated with fMRI networks (ρ=-0.004, p=0.84; ρ=0.03, p=0.12 and 

ρ=0.01, p=0.49 respectively). 
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Figure 3. Spearman correlation between different averaged EEG connectivity methods and average fMRI 

edges weights. 
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To quantitatively assess the difference between FC methods, Spearman correlation 

coefficients between FC matrices for each participant and the averaged fMRI connectivity 

matrix were calculated and presented in figure 4. Results showed significantly higher 

correlation with fMRI using the PLV and AEC as compared to the other three methods. PLV 

correlation values were significantly higher than PLI (p=1.510-7), PLVorth (p=1.510-7) and 

AECorth (p=5.310-6). AEC correlation values also higher than PLI (p=2.0210-5), PLVorth 

(p=2.6210-5) and AECorth (p=0.001). These results are consistent in the delta, theta, alpha and 

gamma frequency bands (see figures S1 to S4 in supplementary materials) and after using 

different thresholds (5%, 20%, 30%, 50% and 80%), see figures S5 to S9 in supplementary 

materials. 

 

Figure 4. Spearman correlation values between averaged fMRI network and EEG networks in beta band. 

Individual participant correlations are shown in the scatter plot next to the box plot. ** represents 

significant differences obtained between methods using Bonferroni correction. 

Effect of electrodes density 

In this section, we evaluate the effect of the number of EEG channels on the correlation 

between EEG and fMRI networks. The FC matrices (averaged over subjects) obtained by PLV 

and AEC (the most correlated connectivity methods with fMRI) are illustrated in fig 5.A and 
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fig5.B respectively. The averaged FC matrix obtained using fMRI is also illustrated. The 

visual investigation of these results revealed that matrices obtained from all EEG montages 

show similar topologies. 

 

Figure 5. Functional connectivity matrices obtained in beta band from averaged fMRI data and A. PLV 

and B. AEC networks from four different EEG montages (256, 128, 64 and 32 electrodes). Matrices were 

ordered according to brain lobes (red: Occipital lobe - O, green: Temporal lobe - T, blue: Parietal lobe - P, 

purple: Frontal lobe - F, orange: Central lobe - C and grey: Cingulate - Cing).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/617118doi: bioRxiv preprint 

https://doi.org/10.1101/617118


We Then explored the Spearman correlation (figure 6) between the EEG networks weights 

obtained using PLV and AEC methods for each EEG montage (256, 128, 64 and 32 

electrodes) and the averaged fMRI network weights. All EEG montages show low but 

significance correlation with fMRI (p<0.001): ρPLV256=0.12, ρPLV128=0.08, ρPLV64=0.11, 

ρPLV32=0.14, ρAEC256=0.06, ρAEC128=0.09, ρAEC64=0.09 and ρAEC32=0.14. 
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Figure 6. Spearman correlation between fMRI edges weights and different EEG montages using PLV (A, 

B, C and D) and AEC (E, F, G and H) methods. 
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To quantitatively assess the difference between EEG montages, Spearman correlation values 

between EEG obtained from PLV and AEC methods and fMRI networks (presented in fig7.A 

and fig7.B respectively) were computed for each subject for each montage. Comparison 

between EEG montages was done using Mann-Whitney U Test and shows no significant 

difference (p>0.05). These results are consistent in the delta, theta, alpha and gamma 

frequency bands (see figures S10 to S13 in supplementary materials) and after using different 

threshold (5%, 20%, 30%, 50% and 80%), see figures S14 to S18 in supplementary materials. 

 

Figure 7. Correlation values between fMRI network and A. PLV and B. AEC networks in beta band. 

Individual participant correlations are shown in the scatter plot next to the box plot. 
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Discussion 

Connectivity measures 

While a large number of FC methods are available, their reliability and consistency are still 

under exploration. Also, the effect of leakage correction on EEG source-space networks by 

removing zero lag connections is not sufficiently studied. This paper (and some other recent 

papers (Colclough et al., 2016)) is a step toward this exploration in which we decided to 

compare the EEG FC matrices to those obtained using fMRI (HCP databases). Our results 

show mainly low correlations for all the FC methods. This may be explained by the fact that 

we are comparing data recorded from different subjects in addition to the intrinsic differences 

between EEG and fMRI. Slightly higher correlation values between EEG and fMRI resting 

state networks were found in other study (Liu et al., 2018). Even though the low correlations, 

our results showed that FC matrices estimated using methods that keep the zero-lag 

correlations (PLV and AEC) were significantly correlated with the averaged fMRI functional 

connectivity matrix as compared to the other methods.  

The non-significance between PLI, PLVorth and AECorth with fMRI network can be explained 

by the fact that not all zero-lag connections are spurious. Several previous study described the 

presence and potential mechanisms for zero-lag connectivity (Gollo et al., 2014; Roelfsema et 

al., 1997). Recent study showed that removing zero lag connections may indeed reveal false 

and significantly different estimated connectivity from the true connectivity (Palva et al., 

2018). Another study reported that PLV showed the best matching between simulations and 

empirical data and that zero-lag correlation are very crucial to assess the structural/functional 

relationships (Finger et al., 2016). 
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Electrodes density 

Here, we analyzed the effect of EEG electrodes density on the correlation between EEG and 

fMRI networks. We applied FC methods on dense-EEG (256 electrodes) and the subsampled 

EEG montages (128, 64 and 32 electrodes). Results showed no significant differences 

between the different EEG electrodes density. The effect of EEG sensor density on the source 

localization analysis was previously studied showing that the increase of the EEG channel 

number may improve the accuracy of the localization (Michel and Murray, 2012; Song et al., 

2015). Previous study showed also that Resting State Networks (RSNs) with close brain 

regions, such as Dorsal Somatomotor Network (DSN), could be successfully reconstructed 

with low density EEG montage. However, RSNs with distant brain regions, as default mode 

network (DMN) was affected the most by reducing the number of electrodes (Liu et al., 

2018). In addition, previous studies have reported that the results of source localization can be 

improved with higher densities, but the improvement from 128 to 256 channels is modest 

(Hassan et al., 2014; Song et al., 2015). We speculate that a compromise between the number 

of channels and the number of regions of interests should be certainly respected. Our recent 

findings showed that a high number of electrodes (>32) is mandatory in the case of 

applications that require higher ‘granularity’, i.e. spatial precision and accurate 

characterization of the network local properties, such as the identification of epileptogenic 

networks. Here, and as we were looking to very large-scale properties (global correlation 

between EEG and fMRI matrices), a low number of electrodes was sufficient. In other context 

(such as localization of epileptogenic network), it was shown that higher number than 

standard montage (>32 channels) is needed (Michel and Murray, 2012; Song et al., 2015). 
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Methodological considerations  

First, in this study the fMRI connectivity matrices were used as a ’reference’ in order to 

evaluate the results of each of the FC connectivity measures applied to EEG regional time 

series. However, the EEG and fMRI data were not collected from the same participants. To 

that end, we used an averaged matrix over a large number of healthy participants (N=487). 

We were aware about this limitation and that the ideal situation was to have EEG and fMRI 

recordings for the same subjects. Of course, the fMRI matrices cannot be considered as an 

absolute ‘ground truth’ as preprocessing and analysis choices can produce different results 

(Carp, 2012). However, the spatial resolution of the fMRI networks (not affected by the 

leakage issue) and the consistency of these networks (we have tested another fMRI-based 

dataset over 10 healthy subjects and the two networks were highly correlated: correlation is 

equal to 0.8) can indeed justify its use as performance criteria for analyzing the EEG source-

space networks.  

Second, the connectivity matrices were thresholded by keeping only the highest 10% 

connectivity values. It was used to standardize the comparison between the two connectivity 

methods and fMRI matrices, as network measures are stable across proportional thresholds, as 

opposed to absolute thresholds (Garrison et al., 2015). We are aware about the effect of this 

threshold and we have tested other thresholds and the results are very consistent over different 

threshold values (see figures S5 to S9 and S14 to S18 in supplementary materials).  

Conclusion 

M/EEG source connectivity is a unique tool to identify high resolution functional brain 

networks in time and space. However, results are dependent on the choice of processing 
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methods. In this paper, we analyzed the impact of the method used to measure the functional 

connectivity and the effect of EEG sensor density. Our results showed that among the 

different connectivity measures tested, PLV and AEC provided closer results to fMRI network 

compared to the three other methods that removes the zero-lag connections. Furthermore, no 

significant differences were found when using a reduced number of EEG electrodes. We 

believe that more comparative studies (based on simulation and real data) should be done to 

make M/EEG source connectivity a mature technique to address questions in cognitive and 

clinical neuroscience.  
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