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Abstract

We introduce a probabilistic model for estimation of sample index-hopping
rate in multiplexed droplet-based single-cell RNA sequencing data and for
inference of the true sample of origin of the hopped reads. Across the datasets
we analyzed, we estimate the sample index hopping probability to range between
0.003–0.009, a small number that counter-intuitively gives rise to a large fraction
of ’phantom molecules’ – as high as 85% in a given sample. We demonstrate that
our model-based approach can correct for this artifact by accurately purging the
majority of phantom molecules from the data. Code and reproducible analysis
notebooks are available at https://github.com/csglab/phantom_purge.

Structure. Section 1 provides a concise summary of the paper. Section 2 provides
a brief historical and technical overview of the phenomenon of sample index hopping
and an explanation of related concepts. The three sections that follow describe the
statistical modeling approach and correspond to the following three goals. (1) Building
a generative model that probabilistically describes the phenomenon of sample index
hopping of multiplexed sample reads (Section 3). (2) Estimating the index hopping
rate from empirical experimental data (Section 4). (3) Correcting for the effects of
sample index hopping through a principled probabilistic procedure that reassigns
reads to their true sample of origin and discards predicted phantom molecules by
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optimally minimizing the false positive rate (Section 5). Next, Section 6 details the
results of the analyses performed on empirical and experimental validation datasets.
The Supplementary Notes consists of three sections: (1) Mathematical Derivations,
(2) Overview of Computational Workflow, (3) Method’s Limitations.

1 Précis
Due to the increasing capacity of modern sequencing platforms, sample multiplexing,
the pooling of barcoded DNA from multiple samples in the same lane of a high-
throughput sequencer, is rapidly becoming the default option in single-cell RNA-seq
(scRNA-seq) experiments. However, as several studies have recently shown [3,10], multi-
plexing leads to incorrect sample assignment of a significant fraction of demultiplexed
sequencing reads. Out of several mechanisms that can introduce sample index missas-
signment [9], the presence of free-floating indexing primers that attach to the pooled
cDNA fragments just before the exclusion amplification step in patterned sequencing
flowcells has been shown to be the main culprit [6]. This phenomenon is known as
sample index hopping and results in a data cross-contamination artifact that takes
the form of phantom molecules, molecules that exist only in the data by virtue of
read misassignment (Fig. 1a). The presence of phantom molecules in droplet-based
scRNA-seq data should be a cause of great concern since they can introduce both
phantom cells and artificial differentially expressed genes in downstream analyses.
Importantly, it is conceivable that even when the index-hopping rate is very small, the
fraction of phantom molecules can still be high due to the distributional properties of
sequencing reads across samples (Fig. 1b).

Despite recent attempts to computationally estimate the rate of sample index
hopping in plate-based scRNA-seq data [4,7], no statistical model of index hopping
for droplet-based scRNA-seq data has yet been proposed. Consequently, current
computational methods can neither accurately estimate the underlying rate of index
hopping nor adequately remove the resulting phantom molecules in droplet-based
scRNA-seq data. This has been a challenging problem since droplet-based libraries are
tagged with a single sample index rather than a unique combinatorial pair of sample
indices such as those used in plate-based approaches. As a solution to this problem,
we here propose a statistical framework that provides (i) a generative probabilistic
model that formalizes in a mathematically rigorous manner the phenomenon of index
hopping, (ii) a statistical approach for inferring the sample index hopping rate (SIHR)
in droplet-based scRNA-seq data at the level of individual reads, (iii) a non-heuristic,
model-based approach for inferring the true sample of origin of hopped sequencing
reads, and (iv) a data decontamination procedure for purging phantom molecules
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that optimally minimizes the false positive rate of molecule re-assignments.
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Figure 1: (a) A schematic representation of of sample index hopping. (b) Example
count matrices showing hopped reads (left) and the resulting molecule count matrix
(right). Blue and red depict true sample of origin and the hopped sample, respectively,
with the color intensity showing relative counts. (c) A heatmap depicting the
probability of observing a chimera as a function of hopping rate (SIHR) and PCR
amplification level r. (d) Model fit showing predicted mean function overlayed over the
observed proportion of chimeric observations for a HiSeq 4000 multiplexed dataset [1].
(e) Validation data showing the ground-truth proportion of hopped reads by sample
conditional on the PCR duplication level alongside the ground-truth marginal mean
proportion of hopped reads and the model estimated sample index hopping rate.

The generative probabilistic model we propose starts with the observation that
each cDNA fragment, in addition to its sample barcode index, has a cell barcode and a
unique molecular identifier (UMI), and maps to a specific gene. As has been suggested
previously [4], we make the assumption that any particular cell-UMI-gene combination
(hereafter referred to as CUG) is so unlikely that it cannot arise independently
in any two different samples. Accordingly, each CUG would represent one unique
molecule and all sequencing reads with the same combination would correspond
to PCR amplification products of that original molecule. A second assumption we
make is that the probability of index hopping is the same for all reads, regardless of
the source or target sample of the read (Methods 3.3). We were able to validate
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both assumptions (Fig. 8 and Supplementary Notes) by analyzing data from an
experiment in which two 10X Genomics scRNA-seq sample libraries were sequenced
in two conditions. In the first condition, two sample libraries were multiplexed on the
same lane of HiSeq 4000. In the second condition, the same libraries were sequenced
separately on two lanes of HiSeq 4000 (this non-multiplexed condition provides a
ground truth for the true sample of origin of each CUG; see Supplementary Notes
5). The validation dataset has been deposited on the open-access data repository
Zenodo (https://doi.org/10.5281/zenodo.3267922)

Building on these two assumptions, we derived a mixture-of-multinomials model
(Methods 3.4) whose likelihood is governed by a single "index hopping" parameter
that determines the observed distribution of read counts across samples at each PCR
amplification level. We used this model to further derive a closed-form expression of the
probability distribution of chimeric observations, namely CUGs whose corresponding
reads are assigned to multiple samples (Fig. 1c and Methods 4.1). We were then
able to estimate the index hopping rate by fitting the resulting generalized linear model
to the empirically observed distribution of chimeric CUGs across PCR amplification
levels (Methods 4.4). We observed close agreement between the observed and
fitted non-chimeric CUGs across multiple datasets, including two eight-sample HiSeq
datasets from mouse epithelial cells [1,4] and two 16-sample NovaSeq 6000 datasets
from Tabula Muris [2] (Fig. 1d and Fig. 5). We also observed excellent agreement
between our SIHR estimate and the empirical estimate for the dataset with known
ground truth (Fig. 1e). Overall, we found that SIHR ranges between 0.3% and 0.9%
in the datasets we analyzed (Table 4).

Furthermore, the proposed framework also allows the calculation of the posterior
distribution of the true sample of origin for each CUG, given its read counts across
samples, the SIHR, and the molecular proportions complexity profile of the samples
(Fig. 2a and Methods 3.5). It then assigns each CUG to the most likely sample
of origin, and further decontaminates the data by removing assignments that have
low posterior probability. We have devised an approach for estimating the number of
false positives (FP) and false negatives (FN) for distinguishing true molecules from
phantom molecules after decontamination at different posterior probability cutoffs
(Fig. 6), enabling the selection of a cutoff based on a user-specified marginal trade-off
ratio (TOR) that represents the number of real molecules one is willing to discard in
order to correctly purge one extra phantom molecule (Fig. 7 and Methods 5.3).
These model-based FP and FN estimates are in excellent agreement with empirical
estimates based on ground truth (Fig. 2b). We observed that we can achieve a
sensitivity of 0.999 (down from 1 in the original non-purged data) and specificity
of 0.979 (up from 0 in the non-purged data) in distinguishing true molecules from
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phantom molecules across all samples. Furthermore, our model-based purging of
phantom molecules substantially outperforms, both on validated and simulated data,
a previous heuristic approach [4] that is based on retaining CUGs with a certain
minimum fraction of reads (MRF) assigned to one sample (Fig. 2b, Fig. 10, and
Tables 5-11).

Surprisingly, we found that the proportion of phantom molecules (PPM) varies
widely depending on the molecular proportions complexity profile (Fig. 2c and Fig.
4) of the samples, and can reach as high as 86% in low-complexity samples (i.e.
samples in which a relatively small number of unique molecules contribute to the
majority of sequencing reads, Fig. 2d and Tables 7-8). We believe that high PPM
values might in fact be common in multiplexed datasets that contain both low- and
high-complexity samples, since hopping of even a small fraction of reads from high-
to low-complexity samples can create more phantom molecules than the unique real
molecules native to the low-complexity sample. Overall, these results indicate that
even a small sample index hopping rate can be a substantial confounding factor
in multiplexed scRNA-seq experiments by overwhelming the data with phantom
molecules. However, the effects of index hopping on the integrity of the data, whether
it leads to mixing of transcriptomes or creation of phantom cells (Fig. 9), or the
miss-classification of RNA-containing cells vs. empty droplets (Tables 9-10), can
be almost completely remedied by model-based purging of phantom molecules (Fig.
2e-f). The code and reproducible analysis notebooks for our approach are available
at https://github.com/csglab/phantom_purg.
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Figure 2: (a) The simplex containing all 10 possible read count outcomes at PCR
amplification level (r = 3) and for the case of 3 samples. The pie charts depict the
posterior probabilities of the true sample of origin for each outcome. π3 represents
the proportion of molecules with r = 3 that originate from each sample in this toy
example. (b) Effect of purging and discarding on the number of false positive and
false negative counts. Points closer to the origin are more optimal. FP: false positive;
FN: false negative. (c) The molecular library complexity profile for eight samples in a
previously published HiSeq 4000 dataset [1]. (d) The proportion of real and phantom
molecules in each of the eight samples, the fraction of molecules and mapped reads
in the entire dataset that belong to each sample, the read-to-molecule ratio (RMR)
per sample, and the corresponding FDR statistics (i.e. the within-sample proportion
of molecules that we miss-classify as real after purging). (e) The effect of purging on
gene expression profiling in the validation dataset with known ground truth. Each
dot represents one gene expression measurement in one cell. Dots are colored based
on cell-sample assignment in the ground truth, with red and blue representing cell
barcodes that are found only in Sample 1 or Sample 2, respectively. Green represents
cell barcodes that are found in both samples (barcode collision). Note that non-zero
Sample 1 UMI counts for blue dots and non-zero Sample 2 UMI counts for red dots
represent phantom molecules. (f) Same as panel (e), but with the counts aggregated
per cell (each dots represents one cell). Blue dots with high counts in Sample 1 and
red dots with high counts in Sample 2 represent phantom cells. Green dots represent
potential transcriptome mixing.
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2 Background
This section describes the phenomenon of sample index hopping and provides a brief
overview of existing published research that aims to quantify its rate and to correct
for its data corrupting effects. The section also highlight the limitations of existing
approaches and argues that the issue of index hopping is a significant problem in the
field, one that no satisfactory solution for yet exists.

2.1 Overview of Index Hopping on Illumina’s Sequencers

Patterned flowcells. Ever since the emergence of next-generation sequencing
technologies in 2006, the speed and throughput at which we can perform whole-
genome DNA and RNA sequencing have been steadily increasing. For example, in
recent years Illumina has introduced a family of sequencing platforms (i.e. the HiSeq
4000 and NovaSeq 6000) characterized by substantial increased capacity, faster run
times, and lower sequencing cost. The significant boost in sequencing throughput1
first came about in 2015 when Illumina introduced the patterned flow cell technology
on the HiSeq 4000 sequencers. In particular, there were two key innovations that
led to the significantly improved performance. (1) A flow cell surface design that
optimizes the prearranged spacing of nanowells, thus allowing the accurate imaging
of billions of clusters of amplified cDNA fragments. (2) The Exclusion Amplification
(ExAmp) chemistry that instantaneously amplifies a single cDNA fragment, effectively
excluding and preventing other cDNA fragments from forming a cluster within the
same nanowell. In 2017, Illumina launched the NovaSeq 6000 instrument with an
updated flow cell design that further decreased the spacing between the nanowells,
thus significantly increasing the density of generated clusters and, consequently, the
amount of data that can be generated. Currently, a total of 2.5B single reads can
be generated on each of the four lanes that comprise a single NovaSeq S4 flow cell,
compared to 350M reads on each of eights lanes of HiSeq 4000.

Sample multiplex sequencing. However, given that for most sequencing studies,
the number of reads required to achieve an adequate transcriptome coverage tends to
be in the tens of millions, it then becomes necessary to resort to sample multiplex
sequencing strategies to fully utilize the massive capacity and cost efficiency that
the patterned flow cell with ExAmp chemistry technology can bring about. The
process of sample multiplexing can be briefly summarized with the following few

1As measured by the total number of nucleotide sequence reads generated in a single run of an
experiment
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steps. First, a sample barcode index is added to each cDNA fragment during library
preparation (to one end in single-indexing or to both ends in dual-indexing). Then,
cDNA fragments from multiple samples are subsequently pooled together in the same
lane to be cluster-amplified and sequenced. Finally, the generated sequenced reads
are demultiplexed into their respective source samples using the sample barcode
indices. Note that with current technology, in a single run of droplet-based RNA-seq
experiment, a maximum of a 384 samples can be multiplexed (Chromium i7 Multiplex
Kit) using a 96-plex on each of the four lanes of a NovaSeq S4 flow cell. In what follows,
we define a sequencing library as a collection of index-barcoded and PCR-amplified
cDNA fragments which are purified from the mRNA of a particular sample tissue

Sample read misassignment. Unfortunately, sample multiplexing can cause a
significant percentage of the demultiplexed sequenced reads to be misassigned to an
incorrect sample barcode. Although sample read misassignments can arise due to
several factors [9], one specific mechanism termed sample index hopping is the primary
cause of read misassignments in patterned flow cells. Index hopping is believed to
result from the presence of free-floating indexing primers that attach to the pooled
cDNA fragments just before the exclusion amplification step that generates clusters
on the flow cell. In addition, if during library preparation, free adapters or primers
are not properly removed, the resulting purified library would show higher levels of
index hopping that increases linearly with the molar concentration of free adaptors
relative to DNA input [6].

2.2 Discovery and Quantification of Index Hopping

The problem of index hopping was first identified as early as December 2016 in a blog
post reporting read sample misassignment on HiSeq 4000 and HiSeqX platforms [5].
Soon afterwards, Illumina [6] released a white paper acknowledging that index switching
does indeed occur and tends to be higher in machines that use a patterned flow
cell, but maintaining that the phenomenon affects only <2 % of reads. However,
around the same time, Sinha et al. [10] reported that 5-10% of sequencing reads were
incorrectly assigned a sample index in a multiplexed pool of plate-based scRNA-seq
samples. More recently, using two plate-based scRNA-seq datasets, Griffiths et al. [4]

provided a lower estimate of the index swapping on the HiSeq 4000 at approximately
2.5%. Another study [11] conducted in the context of exome sequencing also reported
a contamination (index hopping rate) ranging from 2% to 8%. Using unique antigen
receptor expression, [12] estimated the index hopping rate in plate-based single cell
RNA-seq data (i.e. spread-of-signal across wells) to be approximately 3.9%. They
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also failed to detect any evidence that sample barcode indices vary in their proneness
to undergo index swapping than others. With the aim of reconciling the conflicting
hopping rate estimates that had been reported, Costello et al. [3] used a non-redundant
dual indexing adapters developed in-house and performed an exhaustive study across
multiple libraries (whole genomes, exome, and stranded RNA) and sequencer models
(HiSeq 4000, NovaSeq 6000 and HiSeqX) to determine the rate of index hopping.
They observed a rate of 0.2% to 6% in all sequencing runs. More importantly, they
showed that even in bulk RNA-seq libraries where the indexing hopping rate was as
low as 0.32%, spurious results in downstream analysis can be generated. This finding
mirrors the conclusions reached by the other five papers referenced in this paragraph
including Illumina’s white paper.

2.3 Impact and Significance of Index Hopping.

Given the large amount of data that are being increasingly generated using multiplexed
sequencing, index hopping should be a great cause of concern due to potential signal
artifacts and spurious results that it can generate. Here we list the three main
unwanted consequences in the context of scRNA-seq sequencing experiments that
sample index hopping can bring about through the introduction of phantom molecules.

1. Mixing of transcriptomes: when a given cell-barcode is observed in both the
donor and target samples, index hopping would result in phantom molecules
being introduced in the cell with the corresponding cell-barcode in the target
sample. When this happens, the rates of false positives and even false nega-
tives can increase in downstream statistical analyses such as differential gene
expression.

2. Phantom cells : when a given cell-barcode is observed only in the donor sample,
but not the target, phantom molecules would also lead to phantom cells emerging
in the target sample.

3. Cell-barcode miss-classification: an abundance of phantom molecules associ-
ated with a given cell-barcode would lead cell-barcoding algorithms (used to
computationally determine which cell-barcodes originate from proper cells) to
incorrectly classify an empty droplet as a cell and conversely to classify a proper
cell as an empty droplet.
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2.4 Mitigating the Effects of Sample Index Hopping.

2.4.1 Experimental Strategies.

Given that index hopping would occur in all sequencing platforms that uses patterned
flow cells, one can resort to any of the following three experimental strategies to
mitigate sample index hopping from affecting the integrity of experimental data.

1. One sample per lane. By avoiding multiplexing altogether and running one
sample per lane, one can confine the sample indices in a given lane to be for one
given sample only, thus minimizing the risk of index hopping from occurring
in the first place. However, sample read misassignments can still occur due to
other causes.

2. Unique-at-both-ends dual indexing library. By utilizing two unique barcodes
for each sample, sample misassignment would occur only when both sample
indices hop. Given the low probability that such an event would occur, index
hopping can be reduced and computationally mitigated by discarding reads
with unexpected combinations post-hoc.

3. Post-library prep treatment. By using Illumina’s Free Adapter Blocking Reagent,
the 3′ ends of the free adapters become blocked preventing their extension and
thus reducing the rate of index hopping [6].

Limitations of Experimental Strategies. Although running one sample per
lane can be feasible on HiSeq platforms for some single cell RNA-seq libraries, it
would be financially prohibitive on newer higher capacity NovaSeq platforms. As for
unique-at-both-ends indexing, the strategy is currently incompatible with single index
droplet-based protocols such as the widely used 10x Genomics single cell protocol.
Lastly, the blocking reagent Illumina provides is only compatible with a few bulk DNA
and RNA protocols, but not for single cell protocols. Whether it can be incorporated
in single cell droplet-based protocol is yet to be determined.

2.4.2 Computational Strategies.

Given the limitations of existing experimental strategies to eliminate index hopping,
the urgency to develop computational strategies instead has only intensified since the
phenomenon was first discovered. Indeed, the first attempt to computationally correct
for index hopping in multiplexed sequencing libraries was only recently published [7].
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However, the linear regression method the authors propose is applicable only to plate-
based scRNA-seq samples, where a unique combination of a pair of sample barcodes
in each well determines the identity of cells and can give rise to "crosshair" pattern
in the data when index hopping occurs. It is this pattern that allows the estimation
of fraction of hopped reads and upon which their proposed approach relies. Another
limitation of their approach is that it uses only a subset of the data corresponding to
genes whose specific cell expression is above a given threshold. However, Griffiths
et al. [4] developed a more accurate method for plate-based scRNA-seq that makes
fewer assumptions and that uses data from all the genes. In the same paper, the
authors also proposed a heuristic computational strategy for droplet-based scRNA-
seq 10x Genomics experiments that excludes hopped reads without removing the
corresponding cell libraries, but did not attempt to propose a modeling framework
for estimating sample index hopping in droplet-based data since unlike plate-based
assays, droplet-based assays do not use a unique pair of sample barcodes but rather
use one mate of the paired read for quantification and a second mate to carry the UMI
and cell barcode tags, thus rendering the "crosshair" pattern approach inapplicable.

Limitations of existing computational strategies. The computational strategy
proposed in Griffiths et al. [4] is the only attempt we are aware of that is aimed at
estimating the rate and mitigating the effects of index hopping in droplet-based
scRNA-seq data. Nonetheless, the strategy the authors propose, similar to other
computational approaches we mentioned in the previous paragraph, does not in fact
estimate the index hopping rate of individual reads, but rather computes a proxy
measure, the swapped fraction in the case of Griffiths et al. [4], which they define as
the fraction of molecules (i.e. those with an identical UMI, cell barcode, gene label)
that are observed in more than one sample. As we show in this paper, the probability
at which an individual sequencing read swaps the sample index is not the same as
the probability that one out of all the PCR-duplicated reads from the same molecule
swaps the sample index. As we show, even when the sample index hopping probability
at the level of individual read is very low, the fraction of phantom molecules, molecules
that we observe to have swapped sample indices, can vary greatly, even as far as
comprising the vast majority of molecules in a given sample. As for correcting for
the effects of index hopping, the proposed molecular exclusion heuristic the authors
propose suffers from high positive and negative rates, resulting in unnecessarily
discarding molecules that otherwise should have been retained and conversely, in
retaining molecules that should have been discarded. In particular, by overlooking
the possibility that a given fraction of observations consists entirely of phantom
molecules, the molecule exclusion strategy they propose can potentially retain a high
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proportion of false positives molecules. Furthermore, by assigning the true sample
of origin as the sample with the largest read fraction while discarding all molecules
that have a read fraction below a given threshold (default being ≤ 0.8), their strategy
would further result in high false positive since neither the information implicit in the
absolute read count distribution nor the extremely variable distribution of molecular
proportions (i.e. library complexity) across samples and PCR duplication levels are
considered. For example, even if an observation such as y = (1, 4, 0, 0) has the highest
read fraction at s = 2, it would still be an unlikely event if for instance we have 70
times more molecules in Sample 1 than in Sample 2, that is, π5 = (0.7, 0.01, 0.19, 0.1).

Contrasts with Proposed Approach. The probabilistic model we propose in
this paper aims at capturing the distributional patterns of sequencing read counts in
order to both estimate the fundamental quantity of interest the sample barcode index
hopping rate at the level of individual reads and quantify its manifestation as a data
contamination artifact as measured by the fraction of phantom molecules. As we show
(see Equation 8), the fraction of phantom molecules is determined not only by the
sample index hopping rate, but also by the number of multiplexed samples, as well as
by their library size, coverage, and molecular complexity profiles (i.e. the distribution
of molecular proportions conditional on the PCR duplication levels). As such, this
complex relationship, which we have attempted to capture in our proposed model, can
potentially provide an explanation for the large variance in the index hopping rate
estimates (0.2% - 8%) that have been reported in the literature [3,4,7,11]. Furthermore,
we use the probabilistic modeling approach to discard molecules not based on their
observed read fraction, but rather on a corresponding posterior probability that
is a function of not only the distribution of the read counts, but also the model’s
estimated sample index hopping rate, the library sizes and the expression profiles of
the multiplexed samples, as the following paragraph illustrates.

Illustrative Examples from Empirical Data Consider the following scenarios
encountered in the data. For example, in the HiSeq 4000 dataset, q (the max-
imum posterior probability of the true sample of origin) is higher for outcome
y(opt) = (0, 0, 0, 1, 1, 0, 0, 1) than it is for y(below) = (0, 1, 2, 0, 0, 0, 1, 0) even though in
the latter, the inferred true sample of origin s = 3 (Sample B1) has two reads whereas
the three molecules in the former has one read each, including the inferred true sample
of origin s = 5. This might seem counter-intuitive at first sight, but once we consider
the proportion of molecules, it becomes apparent why it makes sense to retain the
molecule corresponding to s = 5 but discard the one corresponding to s = 3. For
this observation, we have π̂r = (0.075, 0.136, 0.004, 0.005, 0.169, 0.517, 0.082, 0.011) for
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r = 3 for r = 4. Given that the lowest proportions are for s = 3, 4, 8 in that order, and
highest for s = 5, it does make sense indeed to expect that the two reads y(opt) origi-
nated from s = 5. In contrast, for y(below), it is not really clear that the hopped reads
originated from s = 3 given the sample has the lowest proportion of molecules. For the
HiSeq 2500 data, we have π̂r = (0.096, 0.173, 0.001, 0.001, 0.216, 0.409, 0.093, 0.011)
for r = 3, which explains why we end up discarding the molecule s = 8 in y(below)
but not in y(opt) since there are half the number of molecules in s = 5 than in s = 6,
making it more likely that the read indeed hopped from s = 8. We have a similar
situation for the NovaSeq 6000 datasets where the sample with the lowest proportion
of molecules (i.e. 0.005) corresponds to s = 15 (i.e. Sample P7_8 ), making it more
likely that the two hopped reads in y(opt) of L1, the one hopped read in in y(below)
of L1, and the one hopped read in y(opt) of L2 actually originated from s = 9. This
also makes y(below) of L2 more likely to be a fugue non-chimeric observation (see
definitions, Methods Section 3.6), such that the one read in s = 15 would in reality
have had hopped from a sample with a larger number of molecules.

3 Methods: Model Formulation
Scope. Although much of what we propose here can be ported, modified, and
applied to other protocols, we limit the scope of the proposed approach to droplet-
based scRNA-seq data, with libraries prepared using the 10x Genomics Single Cell
Protocol and that are subsequently multiplexed for sequencing on Illumina machines.

3.1 Sequencing Reads Annotation

Consider a droplet-based single-cell sequencing experiment where a total of S (ranging
from 2 to 96) libraries are pooled together and multiplexed on the same lane of a
patterned flow cell. In a single sequencing run, millions of short sequencing reads
are generated (from 350M reads on a single lane of HiSeq 4000 to 2.5B reads on a
single lane of a NovaSeq 6000 S4 flowcell), each of which is annotated with barcodes
representing the sample, cell, and molecule from which the read originated. If the
reads are aligned to the genome, a read would also be annotated with the genomic
location where it mapped to. That is, after sample demultiplexing and transcriptome
alignment, each read becomes associated with a cell-umi-gene-sample label. More
precisely, Each mapped read in a 10x Genomics Single Cell 3’ v2 Gene Expression
Library can be annotated by four labels: (1) A sample barcode, (2) cell-barcode index,
(3) Unique Molecular Identifier (UMI) (4) gene ID.
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1. A sample barcode. In the case of a 10x Genomics single-indexed library, there
are four indices for each sample. In what follows, we collapse all four indices
into a single sample index for computational, mathematical, and practical
considerations. However, as we show in Section 1.5, the model we propose
allows us to recover the sample index hopping rate at the level of the barcodes.

2. A 16bp cell-barcode index randomly selected out of a set containing 737,280
possible combinations.

3. A 10bp Unique Molecular Identifier (UMI) index for which there are a total
of 410 = 1, 048, 576 combinations. A UMI collision occurs when two or more
UMIs possess the same sequence.

4. A mapped gene ID as provided by a transcriptome. For example, Ensemble
95 [14] has annotations for 19,768 and 21,823 non-conjoined coding and noncoding
genes, respectively.

UMI Collisions. Given that the UMI index in v2 chemistry is 10bp long, the
number of possible UMIs is one order of magnitude larger than the number of UMIs
typically observed in any one cell. Accordingly, a UMI collision in a single cell, when
it does occur, would result in two reads from different molecules to be considered as
originating from the same cDNA fragment (i.e. PCR duplicates), thus reducing the
number of real molecules that can be observed in any one cell. To further reduce the
chance of collisions, gene ID labels can be considered in order to limit the space of
collisions to those UMIs that are mapped to the same region of the genome. Although
these genomic regions, each consisting of the union of exons belonging to a given
gene, vary in length, the localization of possible collisions to a small region of the
genome greatly reduces the probability of UMI collisions.

RNA-containing cells. In scRNA-seq data, a cell is identified by a unique cell
barcode. However, only a fraction (1k-10k) out of the +100K observed cell barcodes
correspond to actual cells. In each of these cells, we typically observe anywhere from
a minimum of a 1000 (a threshold usually specified manually) up to approximately
100,000 unique molecules, or more depending on the average read coverage per cell.

Discarding non-exon mapped reads. We note here that by discarding un-
mapped reads and reads that mapped to genomic regions other than exon bodies, we
are further making the implicit assumptions that the large portion of data that we
end up retaining contains enough information to determine the index hopping rate
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and that the data we discard is not characterized by a different mechanism underlying
the sample barcode index hopping phenomenon.

3.2 Modeling Sequencing Reads

We start by observing that after cDNA molecules of a given transcript are amplified,
they are subsequently fragmented into 300-400 bp fragments, each containing both
a cell barcode and a UMI. During the sample index PCR amplification step, an
Illumina Read 2 adapter is ligated to a fragment m before it gets amplified, resulting
in nm sequencing reads having the same cell-umi-gene-sample label. If none of the nm
sequencing reads are misassigned, then each n’th sequencing read’s observed sample
index dmn would correspond to the true sample index smn. When index hopping
occurs, the read misassignment process can be modeled as a mixture of S categorical
distributions where each observed molecule’s read sample index belongs to a given
sample. See Table 1 for an example toy data table in which each row corresponds to
a single sequencing read with label m.

Table 1: Toy dataset I. Table of three multiplexed samples (i.e. S = 3) in which each observation
is a sequencing read with label m (i.e. a unique combination of c, u, and g, which denote the
cell-barcode, UMI, and gene, respectively), a true source sample s, and an observed sample di,
i = 1, 2, 3. In a typical experiment, a single lane can generate anywhere from 350 million to 2.5
billion sequencing reads.

label l s d1 d2 d3

c1u2g1 1 1 0 1 0
c1u1g1 2 2 1 0 0
c1u3g2 3 2 1 0 0
c1u3g2 3 2 1 0 0
c1u3g2 3 2 0 1 0
c2u1g1 4 1 0 1 0
c2u1g1 4 1 0 0 1
c2u1g1 4 1 0 0 1

...
...

...
...

...
...

We can formulate the mixture model formally as a two-stage hierarchical sampling
process, where we first draw a molecule with an unobserved true sample index smn
that gets assigned to read n with label m from a categorical distribution governed by
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a label-specific probability parameter vector ϕm. Next we draw the observed sample
index from another categorical distribution with a probability parameter vector psmn

whose value is conditional on the value of smn. In what follows, smn denotes the index
of the element in the vector smn for which we observe a one (i.e [smn = 1]).

smn ∼ Categorical(ϕm)

dmn|smn ∼ Categorical(psmn
)

n = 1 . . . nm, m = 1 . . .M.

(1)

Whereϕm ∈ [0, 1]S, ‖ϕm‖1 = 1, psmn
∈ [0, 1]S,

∥∥psmn

∥∥
1

= 1, dmn ∈ {1, · · · , S}, smn ∈
{1, · · · , S}, S ∈ N+.

The sample hopping probability matrix. The probability parameter vectors
of all the S distributions can be stacked together in P as such.

P =


pᵀ1
pᵀ2
...
pS

 =


p11 p12 . . . p1S
p21 p22 . . . p2S
...

... . . . ...
pS1 pS2 . . . pSS


When P = I, then the probability that a read keeps its sample index of origin is

one, and consequently, reads do not hop over to other samples. That is, dmn = smn
for all m and n. Here pij denotes the probability that a read from sample i hops
to sample j. The number of parameters in P equals S × (S − 1). Furthermore, in
Model 1 there are a total of M parameter vectors ϕm each taking values on the
probability simplex for a total of M × (S − 1) parameters. We can reduce the number
of parameters from (M + S)× (S − 1) to 1 by making the following two assumptions.

3.3 Two Simplifying Assumptions

The nm reads associated with label m can come from different source samples. This
could happen for example when reads from two samples are assigned the same label
simply by chance. However, such an outcome is extremely unlikely and by ruling it
out we can greatly simplify the modeling framework if we constrain each of all the M
parameter vectors ϕm to be the one vector (i.e. 1). More formally, we formulate the
assumption as follows.
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Assumption 1 (Discrete Simplex Constraint Assumption). Let max(ϕm) = 1 for
all l such that ϕm ∈ ∆S

1 :=
{(

ϕ0, . . . , ϕS
)
| ϕi ∈ {0, 1},

∑
i ϕi = 1

}
. That is, we

restrict ϕm to belong to the discrete S-simplex, a set with cardinality S whose
elements are vectors each consisting of a single 1 and zeros elsewhere. We basically
assume that all the reads with a given cell-umi-gene (CUG) label (i.e. PCR read
duplicates of a unique cDNA molecule) can be indexed with the same sample barcode
only.

As a result of Assumption 1, the sample index smn becomes a constant random
variable drawn from one of S degenerate categorical distributions such that all the
nm reads with label m are assigned the same sample index. That is, for each ϕm,
all the psmn

vectors become the same for all the nm reads (i.e. psm). Assumption 1
entails the following two corollaries.

Corollary 1 (Label Collision Across Samples). A given cell-umi-gene label combina-
tion has a zero probability of co-occurring with more than one sample barcode index.
That is, reads annotated with the same label combination can only belong to one
sample.

Corollary 2 (Number of Molecules). The number of total molecules across all S
samples equals the number of unique cell-umi-gene label combinations L. That is,
each CUG would represent one unique molecule and all sequencing reads with the
same CUG would correspond to PCR amplification products of that original molecule.
In other words, the number of molecules equals the number of rows in a merged data
table of sample read counts, which has been fully joined by the combination of cell,
umi, and gene key.

Furthermore, given that we have no reason to believe that reads in a particular
sample are characterized by a different chemical properties, we can simplify the
problem by making a second assumption.

Assumption 2 (One parameter to rule them all). The probability of a read keeping
its sample index is the same across samples (i.e. p ) and the probability of a read
switching the sample index is the same regardless of either its source or target sample
(i.e. ph = (1−p)

S−1 ).

Assumption 2 reduces the number of parameters in P from a total of Q =
(S − 1)× S to just a single parameter.

P =

 p ph . . . ph
...

... . . . ...
ph ph . . . p


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More importantly, Assumption 2 induces a symmetry on the probabilities we
assign to the possible counts that lie within the same m−face of an (S − 1)−simplex
denoted by MS−1

r , which in turn constitutes the r’th component of the Pascal’s Simplex
denoted by ∧S.

3.4 Modeling Sequencing Reads Counts

Assumption 1 allows us to sum over the nm categorical random variables to obtain a
mixture of multinomials model for data {ym}, where ym = (ym1, · · · , yms, · · · , ymS)
denotes the vector of read counts across S samples corresponding to an observed
CUG label (i.e. molecule) m = {1, · · · ,M} originating from an unobserved source
sample sm ∈ S := {1, · · · , S}. Here, the total number of CUGs (i.e. molecules) is
M ∈ N+; the total number of PCR duplicated reads associated with molecule m is
by ‖ym‖1 = nm; and the total number of mapped reads across all samples in the
dataset is N = ‖n = (n1, · · · , nM)‖1 where n is the M -dimensional vector of read
count sums.

We are interested in specifying a model of read counts conditional on a given
unique PCR duplication level. So in what follows, we partition n by the unique values
that nm can take. That is, the number of PCR duplicated reads - whether hopped
or not - a given unique molecule generates, more specifically, r ∈ R := {1, . . . , R |
r ∈ N+}, where ‖R‖ = I and R is the maximum value in R. For each r ∈ R, let
mr ∈M := {m1, . . . ,mR | mr ∈ N+} denote the corresponding number of times r is
observed in n such that

∑R
r=1mr = M . We denote the empirical distribution of r by

M(.). Accordingly, we can write the mixture of multinomials model conditional on
the PCR duplication level r as follows.

sl ∼ Categorical(πr)

yl| sl ∼ Multinomial(r,psl)

l = 1, . . . ,mr.

(2)

where l now indexes the mr observations with PCR duplication level r; yl ∈ NS
0 ,

S ∈ N+, ‖yl‖1 = r , sl ∈ s, πr ∈ [0, 1]S, ‖πr‖1 = 1, ps ∈ [0, 1]S, ‖ps‖1 = 1; the
vector psl denotes the sl row of the S × S sample hopping probability matrix P ; and
the probability vector πr represents the proportion of molecules across the S samples
at PCR duplication level r.

The mixture model can be viewed more intuitively as a generative process in which
we first sample a molecule sl from a library sample sl according to the categorical
model then we amplify the molecule by generating r PCR read duplicates according to
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the multinomial model. The number of molecules originating from a given sample with
a given PCR read duplicates r is determined by the parameter vector πr whereas the
number of PCR duplicated reads that end up hopping to other samples is determined
by the parameter vector psl).

3.5 The Molecular Proportions Complexity Profile

In a multiplexed experiment, several samples that vary in their library complexity
are sequenced together, where we define library complexity as the expected number
of unique molecules sampled with a finite number of sequencing reads generated in
a given high-throughput sequencing run. These samples would differ in the total
number of unique transcripts each one has due to a host of factors, ranging from
the presence of varying amounts of RNA that characterize different cell types (e.g.
neuronal cells have low RNA content) to accidental errors in library preparation that
could cause many cells to break up and lose their endogenous mRNA. That is, even if
total number of available sequencing reads were budgeted evenly over the multiplexed
samples, the number of unique molecules detected in the sequencing run could vary
widely across the samples. In order to assess and identify potential problems such
as low library complexity across all the samples in a sequencing run, we propose
that a more informative picture could be gained into the root cause of a sample’s,
if we consider the molecule counts conditional on the PCR duplication level r or
more specifically, the set of molecular proportions Π := {πr}Rr=1, which we term the
molecular proportions complexity profile (see Fig. 4).

We can obtain an estimate for πrs from the observed proportion of read counts
v̄rs for sample s observations at PCR duplication level r by the following formula (for
derivation see Supplementary Notes 1.1).

π̂rs =
v̄rs(S − 1) + (p− 1)

(S × p− 1)
(3)

3.6 Definitions

Corollary 2 implies that since a distinct molecule is defined by a read (or multiple
reads) with a unique cell-umi-gene label, any label collision across samples would
result in a total number of observed molecules greater than M . Therefore, to avoid
any potential naming confusions, we make the following clarifying definitions.

Definition 1 (Chimeric Observation). A chimera refers to a hybrid creature composed
of the parts of more than one animal. We use the analogy to refer to those read
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count observations for which (ylj 6= r) for all j = 1, . . . , S, or in other words, to those
cell-umi-gene labels where we observe reads from more than one sample. We can
further classify chimeras by the number of collisions. A k-chimera has reads in k
sample categories (e.g. y = (4, 1, 0, 2, 0) is a 3-chimera when S = 5). In contrast, we
refer to an observation with no collisions (i.e. a 1-chimera) as a non-chimera.

If there is no sample index misassignment whatsoever, then we expect that all the
M observations to be non-chimeric. When the sample index hopping rate is large,
we expect to see a correspondingly large proportion of chimeras, observations where
there are collisions of labels across the samples.

Definition 2 (Phantom Molecule). For a given observation with label cell-umi-gene,
we term molecules observed in samples other than the true source sample as phantom
molecules. We call them phantom since their existence is not real, due only to an
artifact brought about by index hopping.

It is important to note that a sample index can hop even when we do not observe
a label collision. Thus one or even all reads annotated with a given label may be
actually hopping reads originating from the true source sample. In such a case, we
are unable to determine the true source sample of these molecules. Nonetheless, we
can estimate their expected observed proportions.

Definition 3 (Fugue Observation). A disassociative fugue is a personality disorder
characterized by unplanned travel, wandering, and even the establishment of a new
identity. Similarly, for a given label, when all the reads hop over from an unobserved
sample to establish a new identify in other samples, we term all such observations
as fugues since we cannot know where they came from since we observe zero reads
associated with the true sample of origin.

Definition 4 (Sample Index Hopping Rate). Whereas the term ph = (1−p)
S−1 represents

the probability that a sample index hops into a one particular target sample, the
complement of p, namely 1− p, refers to the quantity of interest, the Sample Index
Hopping Rate, which we abbreviate as SIHR .

3.7 Toy Data Example

To illustrate the concepts and definitions in the preceding sections, consider the
following toy example where we have three samples S = 3. The data would thus
consist of three-dimensional discrete vector observations yl ∈ N3

0 sampled from a
multinomial distribution with total sum of counts r, where ‖yl‖1 = r, and a probability
parameter.
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p ∈ ∆2 =

{
(p1, . . . , p3) ∈ R3

∣∣ 3∑
s=1

ps = 1 and ps ≥ 0 for all s

}
For concreteness, assume that the source sample s is known for each observation

and consider what the data would look like when the sample index hopping rate (i.e.
probability) is not zero (e.g. p1 = [.9, .05, .05]) such that the probability concentration
bleeds into outcomes with hopped reads (see Table 2). That is, we see that the same
label we associate with a unique molecule co-occurs with more than one sample index.
When there is no index hopping, for example, when SIHR= 0 (e.g. p2 = [0, 1, 0]),
we observe reads only in one of the three samples (i.e. non-chimeric non-fugues). In
Table 2, we show observations corresponding to only 4 out of the 10 possible outcomes
at read count level r = 3. However, when r is large, the set of possible outcomes
increases exponentially. When S = 3, probabilities of observing these outcomes are
given by the corresponding terms of the trinomial expansion of p.

Table 2: Toy dataset II. Data table of read counts and corresponding deduplicated
counts (i.e. molecules). The data table shows 4 out of the 10 possible outcomes at
read count sum level r = 3 for multiplexed data with S = 3 samples, see Figure
3. All 4 observations are associated with a unique cell-umi-gene label l each and
an unobservable true sample of origin s = 1. For each read count y, a vector of
deduplicated read counts or molecules x is given. The chimeric number k denotes the
number of molecules observed in each outcome and f denotes the number of phantom
molecules. Although the chimeric vs. non-chimeric state of an observation can be
directly seen from the data, the fugue vs. non-fugue state of an observation cannot
be directly inferred, since it depends on knowing the true origin of the reads (i.e. the
latent variable s). When there is no index hopping, the only outcomes possible are
those classified as non-chimeric non-fugues.

y (reads) x (molecules)
l r k f s y1 y2 y3 x1 x2 x3 category

1 3 1 0 1 3 0 0 1 0 0 non-chimeric non-fugue
2 3 1 1 1 0 3 0 0 1 0 non-chimeric fugue
3 3 2 1 1 1 2 0 1 1 0 chimeric non-fugue
4 3 2 2 1 0 1 2 0 1 1 chimeric fugue
...

...
...

...
...

...
...

...
...

...
...

...
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Figure 3: The 3rd component of Pascal’s 3-Simplex denoted by ∧3
3. All 10 possible

outcomes (at read count sum r=3) for three samples (S=3) are arranged on the
simplex. The sample of origin is s = 1 as shown by the arrows. Outcomes can
be classified according to the number of observed molecules (i.e. k-chimera) or the
number of hopped reads. The four outcomes corresponding to all 3 reads hopping over
are called fugues. The two fugue outcomes in the vertices are termed non-chimeric
fugues whereas the other two on the edge are termed chimeric fugues

To better visualize the distribution of possible outcomes, consider the case at the
read count level r = 3 when reads hop from one sample only, that is, when the true
sample of origin is s = 1 (See Fig. 3). When r = 3 the number of coefficients and
thus corresponding outcomes (i.e. elementary events ) are given by the (r + 1)‘th
triangular number t =

(
r+(S−1)
(S−1)

)
, which here equals (3+1)×(3+2)

2
= 10. That is, we group

the 10 outcomes, which make up the sample space Yr into a set of three categories:
(1) Three non-chimeric outcomes, each lying on one of the three 0−faces (vertices);
(2) Six 2−chimeric outcomes, two lying on each of the three 1-faces (edges); (3) One
3−chimeric outcome lying in the middle of a single 2−face (facet). In general, the
number of m−faces of an r−simplex is u =

(
r+1
m+1

)
. The unit probability measure is

split over r outcomes instead of t outcomes. Out of the u m−faces, t =
(
r
m

)
correspond

to non-fugue outcomes whereas f = (u− t) are fugues (i.e. those observations where
all the reads hop from their source sample). That is, if in Fig. 3, the true sample of
origin is s = 1, then a 1-read hop would correspond to two possible outcomes: two
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2-chimeric observations each giving rise to one true and one phantom molecule; A
2-read hop would correspond to three possible outcomes: two 2-chimeric observations
each giving rise to one true and one phantom molecule and a single 3-chimeric
observation giving rise to one true and two phantom molecules; A 3-read hop would
would correspond to four possible outcomes: two 2-chimeric fugue observations each
giving rise to two phantom molecules and a two non-chimeric fugue observations, each
giving rise to one phantom molecule. Note however that when we consider hopping
from all S samples, the number of possible outcomes e increases by a factor of S, so
when r = 3, we have e = 30 possible outcomes.

The number of observations in data Y is typically high (in the hundreds of
millions). Each observed vector of read counts can be categorized as a combination
of chimeric/non-chimeric and fugue/non-fugue. For each k-chimeric observation,
we potentially have from one and up to S − 1 phantom molecules. For example,
the observation y4 has two phantom molecule and zero real molecules. If there is
indeed no index hopping, then the number of phantom molecules would be zero
whereas the number of real molecules would equal to L, the number of unique label
combinations. Although the probability that all reads get misassigned to the same
sample is negligibly low, the effect can be significant for non-chimeric labels for which
there is only one or two reads (a group that makes up a large fraction of observations).

4 Methods: Estimation of the Sample Index Hop-
ping Rate

Given the large number of observations (i.e. number of CUGs M) that are commonly
encountered in practice, we proceed to simplify the problem analytically to make
computation tractable. In what follows, we reduce the mixture model to a single
parameter model for the distribution of non-chimeric observations, we then derive
the distribution of the sum of non-chimeric observations and show, after making a
third simplifying assumption, that the distribution’s mean function corresponds to
the solution of a differential equation governing a negative growth process. Then, we
show how the index hopping rate can be estimated by formulating the problem as
generalized linear regression model for binomial counts with a log link function that
corresponds to the solution of the differential equation.

23

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/617225doi: bioRxiv preprint 

https://doi.org/10.1101/617225
http://creativecommons.org/licenses/by-nc/4.0/


4.1 Modeling the Distribution of k-chimeras

The distribution of k-chimeras is essentially the distribution of the total number
of non-zero counts of a multinomial random variable. With regards to single cell
data, determining whether a sample count is nonzero is equivalent to a deduplication
process of obtaining molecule counts from read counts. Statistically, deduplication
can be formulated as a thresholded latent variable model where each element of a
potentially unobservable random vector yl is thresholded into an observable Bernoulli
random variable zls with an indicator function I that detects whether a molecule is
observed. That is,

sl ∼ Categorical(πr)

yl|sl ∼ Multinomial(r,psl)

xli = I(yli > 0) for l = 1, . . . ,mr; i = 1, . . . , S

where yl ∈ NS
0 , p ∈ [0, 1]S, ‖p‖1 = 1, and S ∈ N. The marginal distribution of

each element of the multinomial observation yl is binomial.

yli|sl ∼ Binomial(r, p[sl=i]p
(1−[sl=i])
h )

where the Iverson bracket notation is used. As we show in Supplementary
Notes 1.2, the Bernoulli random variables (i.e. the elements of xr) can be treated
as independent (for r > S) but not identically distributed, and their sum, which
indicates the category of the observation (i.e. k−chimera), can be given by the
Poisson Binomial distribution.

kr = 1ᵀxr ∼ PB(µr =
S∑
i=1

ζi)

4.2 Modeling the Distribution of Non-chimeras

For the case of k = 1, or non-chimeric observations, we can derive a closed form of
the distribution by noting that a non-chimera is a count observation yl for which
(yli = r) for any i ∈ {1, . . . , S}. We denote the event of observing a non-chimera
by a Bernoulli random variable wl := I((yli = r)) with mean parameter given by
pw = E(I((yli = r)). As a result, the distribution of observing a non-chimera is given
by
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wl|r ∼ Bernoulli
(
pr + (S − 1)×

(
1− p
S − 1

)r)
where pf0(r) = (S − 1)×

(
1−p
S−1

)r
is the probability of observing a non-chimeric

fugue observation with r reads and pr is the probability of observing a non-chimeric
non-fugue observation with r reads.

4.3 Modeling the Distribution of Sum of non-Chimeras

Given that pw is the same for all observations with the same PCR duplication level,
we can sum all the mr Bernoulli random variables in PCR duplication level r to
obtain a Binomial distribution over the number of non-chimeras zr conditional on r
Supplementary Notes 1.3. That is, for a given r we have

zr =
mr∑
l=1

wl ∼ Binomial

(
mr, p

r + (S − 1)×
(

1− p
S − 1

)r)

4.4 Estimating the Sample Index Hopping Rate

The joint sampling distribution of the chimeras at all PCR duplication level values,
concatenated as a vector z, can be decomposed as follows.

P(z|θ) =
R∏
r=1

Binomial

(
zr|mr, p

r + (S − 1)×
(

1− p
S − 1

)r)
(4)

Assumption 3 (The Negligible Contribution of the Probability of Observing non-Chimeric
Fugues). Given that the the sample index hopping rate we observe in experimental
data tends to be very small, SIHR < 0.05, the contribution of the second term (i.e.
the probability of non-Chimeric fugues) in the parameter of Model 4 is discernible
only when r ≤ 2.

With the aid of Assumption 3, Model 4 can be simplified and the relationship
between the number of non-chimeras zr and the sample index hopping rate (1− p)
at a given PCR duplication level r and with an mr number of observations can be
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formulated as a generalized linear regression model with a log link function as follows
(see Supplementary Notes 1.4 for details).

zr ∼ Binomial
(
zr| N = mr, µ = eβr

)
(5)

where zr,mr ∈ N+; β = log(p) ∈ R−; r = 2, . . . R.

An estimate of the sample index hopping rate can be obtained from the regression
coefficient.

SIHR = 1− p̂ = 1− exp(β̂)

From which we can obtain the sample barcode index hopping rate (Supplementary
Notes 1.5).

SBIHR = (1− p̂)
(4S − 1

4S − 4

)
5 Methods: Reassigning Reads and Purging Phan-

tom Molecules

5.1 Inferring the True Sample of Origin

In Model 2, we denote the true sample of origin of a sample index by the latent
variable sl, whose posterior probability distribution can be derived via Bayes theorem.
The posterior distribution allows us to quantify our residual uncertainty about the
true sample of origin given the observed read count and the set of parameters p and
the molecular proportions Π := {πr}Rr=1 that govern the mixture model.

5.1.1 The Posterior Distribution of the True Sample of Origin

The posterior distribution for each element is given by.

P(sl = s | yl; r, p̂, π̂r) =

(
S−1
1
p̂
−1

)yls
π̂rs∑S

s=1

(
S−1
1
p̂
−1

)yls
π̂rs
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where the plug-in estimates π̂rs is the proportion of molecules in sample s at PCR
duplication level r as computed by Equation 3 and p̂ is the complement of the sample
index hopping rate as estimated by Model 5. For derivation, see Supplementary
Notes 1.6. We label the sample with the maximum posterior probability as the true
sample of origin.

s
(t)
l = argmax(P(sl | yl; r, p̂, π̂r)

The corresponding posterior probability of s(t)l is simply the maximum over the
posterior probability vector.

ql|yl = max(P(sl | yl; r, p̂, π̂r)

When π̂r is uniform, the maximum ql|yl can have duplicated values. However, such an
outcome is extremely unlikely given the high variability of the molecular proportions
that characterize empirical data and therefore will not be considered.

5.2 Purging Phantom Molecules

For each of the L observations, we label the molecule corresponding to s(t)l as a real
molecule and all the others (with nonzero reads) as phantom molecules. Such a
procedure achieves the minimum possible number of false negatives at the expense
of false positives. However, it could be well the case that sacrificing a potential real
molecule is worth more than retaining a phantom molecule in the dataset. In scientific
applications, most often, a weak signal is preferable to an artifactual signal. That
said, to achieve the minimum possible number of false positives, it might be the case
that the entire data would need to be discarded. An alternative approach attempts
to find the optimal trade-off that minimizes both the false positive and false negative
rates.

To optimally minimize the false positive rate, we would need to find the optimal
cutoff value q∗ below which, observations with s(t)l that we labeled as real molecules
are now relabeled as phantom – in other words, we discard them along with previously
labeled phantom molecules. In order to determine q∗, we would need to work with
the marginal posterior cumulative distribution function of q, which does not have a
closed-form expression but which can be expressed as such.
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P(q) = P (q|y)P(y) =
∑
o∈∧S

P(q|y = o)P(y = o)

=
∑
o∈O

∑
r∈{1,...,I}

P(q|y = o(r))P(y = o(r)|n = r)P(n = r) (6)

Here, O consists of all the outcomes y that correspond to the coefficients in r’th
component of the Pascal’s S-Simplex ∧Sr . Whereas P(y = o(r)|n) is given by the
multinomial distribution can be computed numerically for the first dozen values of
PCR duplication level r, the marginal distribution of r, P(n), can be approximated
by the observed proportion of PCR duplication levels which we denoted by M(.) in
Model 2. However, since r can have large values in empirical data, we can work with
the empirical distribution instead and approximate the marginal distribution of P (y)
by the observed relative frequency distribution of outcomes (e.g. the proportion of
y = (1, 2, 0, 0) observations in the data).

5.3 Determining the Optimal False Positive Rate

The approach outlined in the previous section can be thought of as a classification
task in which we attempt to predict whether a given molecule is a phantom molecule,
which we consequently discard, or a real molecule, in which case we retain. We would
like to minimize both the error that a molecule we deem real is in fact a phantom
(i.e. false positive) and the error that a molecule we deem phantom is in fact a
real molecule (i.e. false negative). In a dataset consisting of L observations and M
molecules, the maximum number of real molecules is L. In what follows, it helps
to work with proportions relative to the number of observations L. Accordingly, we
define u = M−L

L
as the molecule inflation factor, a lower limit on the fraction of

molecules we can predict to be phantom (with respect to L). Although the initial
total number of molecules in the entire data before index hopping is L, the upper
limit of the number of real molecules we are able to predict as real is slightly less
than L due to the existence of fugue observations in the dataset, each one of which
would lead to one extra true phantom molecule to be unaccounted for. We term
these molecules as fugue phantoms. L therefore would equal the sum of real molecules
and fugue phantoms. Accordingly, if g is the proportion of fugue observations in the
dataset, which we can obtain as shown in Supplementary Notes 1.8, then there
would be a total of (u+ g) true phantom molecules and a total of (1− g) true real
molecules in the data. For example, for a dataset with L = 100 observation, a total
number of molecules M = 150, and an estimated proportion of fugues g = 0.05, the
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molecule inflation factor u would equal 0.5 so that the total number of true phantom
molecules is given by (0.5 + 0.05)× L = 55 and the total number of real molecules is
given by (1− 0.05)× L = 95.

Given that the number of phantom molecules in a given dataset is given by
L× (u+ g), there are three courses of action we can choose to take.

1. No Purging : We keep the data as it is. By doing so, we basically label all
the phantom molecules as real, which would correspond to L × (u + g) false
positives (i.e. FPR=1). That is, we are in effect incorrectly classifying all true
phantom molecules as real.

2. No Discarding : We purge the phantom molecules by reassigning the reads to
the sample with largest posterior probability. By doing so, we can drastically
decrease the number of false positives while incurring relatively small number
of false negatives.

3. Discarding Below Cutoff : We can decrease the false positives further at the
cost of a slight marginal increase in false negatives by choosing a cutoff q∗
below which predicted real molecules are classified as phantom instead. That
is, in our classification task, we label the molecule with the maximum posterior
probability (q) above or equal to a given threshold q∗ as a real molecule while
the remaining molecules are all labelled as phantoms. Furthermore, all the
molecules in observations whose corresponding q falls below the cutoff are
also labeled as predicted phantoms even though a proportion of them are real
molecules which we cannot confidently classify (i.e. false negatives). Effectively,
all molecules we label as phantom get eliminated from the dataset.

In what follows, it would be easier to work with the complement of q, which
we denote qr = 1 − q, which is the probability of a molecule originating from a
sample other than the one with maximum posterior probability. For a given selected
threshold value qr∗, we let o∗ = Fqr(qr

∗) := Pr(qr ≤ qr∗) denote the proportion of
observations whose corresponding predicted real molecules we retain. Here, Fqr is
the empirical CDF of qr. Consequently, the fraction of predicted real molecules is
o∗ and the fraction of predicted phantom molecules is 1 + u − o∗, since the total
fraction of molecules must sum up to u+ 1 ( see Table 3). Out of the (o∗) predicted
real molecules, the proportion of false positives is given by the expectation of the
probability of false assignment over the subset of the data o∗.

FP (qr∗) =

∫ qr∗

0

1− Fqr(qr) d(qr) =

∫ qr∗

0

qr fqr(qr) d(qr).
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Table 3: Confusion Matrix. Possible outcomes for classifying molecules as real or as phantom.
Given a data table of read counts with L observations, the total number of molecules would be
(1 + u) × L where u is the molecule inflation factor. The variable o∗ denotes the proportion of
observations that fall above threshold q∗ and such that o∗ × L would be the number of molecules
we label as real. The constant g is the proportion of fugue observations estimated for that given
dataset.

T
ru
th

Prediction

Phantom Real Total

Phantom
TN

=u+ g−FP FP(qr∗)
u +g

Real
FN

=FP +1− o∗ − g
TP

= o∗ - FP

1-g

Total u+1-o∗ o∗ 1+u

Note that the empirical cumulative distribution function of qr is discrete (i.e. its
ECDF increases by jump discontinuities only) even though it takes real values in
R[0,1]. Accordingly, the threshold qr∗ should be set such that very few potential real
molecules are discarded for any marginal decrease in false positives.

TORC approach. The optimal value for the threshold qr∗ is the one that simul-
taneously minimizes both the number of FP counts and FN counts, but note that
discarding lower quality data would lead to a small FP but also a large FN. Although
we can use Youden’s J statistic = 1- (FPR +FNR) to find the optimal cut-off value
qr∗ that maximizes J, where (FPR) := FP

(u+g)
and FNR := FN

(1−g) = o∗+FP−g
(1−g) , the

measure is not appropriate for our application (see Supplementary Notes 1.7).
An alternative approach for minimizing both the number of FP counts and FN counts
considers the ratio of marginal increase in FNs over the marginal decrease in FNs
as a trade-off to be specified by the researcher, the Trade-Off Ratio Cutoff TORC
parameter, which represents the maximum number of real molecules one is willing
to incorrectly discard in order to correctly purge one phantom molecule. That is,
we make our reference coordinates (the point of origin) to be the number of false
positive and false negative molecules we obtain if we reassign reads without purging
any predicted real molecules. As we discard an increasing number of predicted real
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molecules, the marginal false positive (i.e. predicted real molecules that are actually
phantom) decreases while the marginal false negative (i.e. real molecules that we
effectively predict as phantom by discarding) increases. For a given dataset, the
cutoff TORC* that gets effectively chosen would correspond to the largest observed
TOR value not exceeding the preset TORC value. All molecules with corresponding
TOR values strictly less than TORC* - not TORC - are discarded. For example, if
we have tor = (0.1, 0.5, 2.9, 4.1, . . .) and TORC=3, then TORC*=2.9 and predicted
real molecules corresponding to tor = 0.1 and tor = 0.5 are discarded.

6 Data Analysis

6.1 Data Preprocessing

Empirical data We applied the proposed model on three publicly available 10X
Genomics scRNA-seq datasets: (1) a control non-multiplexed dataset in which each
sample was sequenced on a separate lane of HiSeq 2500; (2) a multiplexed dataset
sequenced on HiSeq 4000; and (3) a multiplexed dataset sequenced on NovaSeq 6000.
The HiSeq 2500 and HiSeq 4000 datasets consist of 8 libraries of mouse epithelial
cells, which have also been used previously by Griffiths et al. [4] for analysis of sample
index hopping. The two datasets were downloaded from the authors’ host server using
the get_data.sh script available on our paper’s GitHub repo (for a more detailed
description of the data, please refer to the original publication, [1]). The third dataset
was obtained from the Tabula Muris project’s repository. It consisted of 16 libraries
(i.e. the P7 libraries) of mouse tissue samples, which were pooled and multiplexed on
two lanes of an S2 flowcell in a single NovaSeq 6000 sequencing run [2]. BAM files for
the 16 samples were downloaded from the NIH’s SRA data repository (SRA accession
number SRP131661) and converted back to FASTQ files using the 10X Genomics
bamtofastq utility. Cell Ranger 3.0.0 was run with the default options on each set of
samples multiplexed on the same lane.

Validation Data Two 10X Genomics scRNA-seq sample libraries were sequenced
in two conditions. In the first condition, the samples were multiplexed on the same
lane. In the second condition, two sample libraries were sequenced on two separate
lanes of HiSeq 4000 (this non-multiplexed condition provides a ground truth for the
true sample of origin of each CUG). Cell Ranger 3.0.0 was run with the default
options on each of the four samples (two sample multiplexed on the same lane and
the same two samples non multiplexed. A joined read counts table was created
and gene IDs anonymized. The joined table had 16,547,728 unique CUGs, out of
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which 9,252,147 CUGs were present in both the multiplexed and non-mulitplexed
samples. These were retained and a column containing goundtruth labels was added
to the resulting inner joined datatable. Rows corresponding to colliding CUGs were
filtered out and the table saved to file (see the reproducible R markdown notebook
validation_hiseq4000_1.nb.html for details). Both read counts tables was deposited
on Zenodo (https://doi.org/10.5281/zenodo.3267922) and linked on the GitHub
project’s website.

6.2 Molecular Proportions Complexity Profiles

Figure 4 depicts the molecular proportions complexity profile plots for four datasets.
The same three samples (B1, B2, and D2) in both the HiSeq 2500 and HiSeq 4000
datasets show molecular proportion curves indicative of low library complexity. Indeed
even though the number of reads is approximately equal across the 8 samples, the
number of molecules differ drastically, by an order of 100 or more, and are lowest in
these three samples (see analyses notebooks). Furthermore, whereas the proportion
curve of Sample D2 peaks at a moderate PCR duplicate level then tapers off, those of
B1 and B2 start picking up and maintain a steady proportion for a wide range of high
duplicate level values, up to r = 1706 and r = 3744, for HiSeq 2500 and HiSeq 4000,
respectively. These trends are indicative of problematic samples; incidentally, Samples
B1, B2 are the two samples that our analysis identifies to have the largest fraction of
phantom molecules. As for the NovaSeq 6000 datasets, the curves for Samples P7_1
and P7_8 indicate low complexity libraries. This is also confirmed by the analysis
since both samples turned out to have the two lowest number of molecules but the
two highest fractions of phantom molecules among the 16 multiplexed samples.
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Figure 4: The molecular proportions complexity profile plots for four pre-
viously published datasets. Each curve represents the proportion of library
complexity (i.e. fraction of molecules) at the indicated PCR amplification level r that
originate from a given sample. The horizontal dotted lines represent the marginal
library complexity proportions. Note that while the plots show r up to a maximum
of 150, the corresponding subplots in the upper right corners show the distribution of
the number of observations for the entire observed range of r.

6.3 Estimates of the Sample Index Hopping Rate

The model fits for the four datasets are summarized in Table 4 with estimates of p
along with margin of errors corresponding to the 99 percent confidence intervals. The
table also lists the derived estimates of the sample index hopping rates (SIHR) and
the sample barcode index hopping rates (SBIHR). As the numbers show, the non-
multiplexed (HiSeq 2500) dataset has a much lower (SIHR) than the 3 multiplexed
datasets, whose estimates show high consistency. Notice how a slight increase in the
sample index hopping rate translates into a sizable increase in the molecule inflation
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factor and therefore in the proportion of phantom molecules in the dataset.
As Fig. 5 shows, the GLM fits the four datasets rather well, especially for low r

values for which there is almost negligible missingness. Also, notice that the observed
chimeric proportions show a downward deviation from the predicted mean trend at
high PCR duplication levels, especially for those top 1 percent of observations that
are characterized by noisiness and sparsity. In fact, the downward trend tends to
occur right after the cumulative proportion of molecules in the dataset begins to
plateau. The downward trend we observe in the proportion of chimeras seems to
indicate a slight decrease in hopping rate that kicks in at high PCR duplication levels.
The downward trend in the proportion of chimeras that we observe to deviate from
from the model predicted trend could potentially be explained by sample dropout
at high r values. That is, when the molecules of only a subset of the samples are
PCR duplicated at high levels, the multinomial model we specified can no longer
assume that we have S samples since sample indices cannot hop to nonexistent
sample molecules. Accordingly, we expect the curve to differ when we have S samples
compared to when we have fewer. Another aspect of the observed chimeric proportions
becomes apparent at very high r values. The observed trend becomes noisy and
fluctuating. This can be explained by the the high proportion of missingness at those
levels. That is, there are finite observations at a given PCR duplication level r, and
therefore we will observe only a few of the possible outcomes, especially when r > 25,
where the number of potential outcomes are in the millions. When this happens, the
variability of the mean estimate would increase as the number of observations at a
given r decreases.

34

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/617225doi: bioRxiv preprint 

https://doi.org/10.1101/617225
http://creativecommons.org/licenses/by-nc/4.0/


Table 4: Estimates of the sample index hopping rate for one non-multiplexed and three
multiplexed sample libraries. p̂ is the estimate of the model parameter (i.e. the complement
of the sample index hopping rate, SIHR); SBIHR is the sample barcode index hopping rate (see
Methods 4.4) . m.e. is the margin of error corresponding to a 99% confidence interval; u is
the molecule inflation factor, a summary measure that represents a lower limit on the number of
phantom molecules in the data; g is the proportion of fugue observations, i.e. CUGs whose reads
are all affected by index hopping (and therefore none of their reads represent a real molecule); and
PPM=(u+ g)/(1 + u+ g) is the Proportion of Phantom Molecules in the dataset. The HiSeq 2500
dataset (control) represents eight mouse epithelial sample libraries that were sequenced separately
(non-multiplexed) on different HiSeq 2500 lanes [1]. The HiSeq4000 dataset corresponds to eight
mouse epithelial sample libraries that were multiplexed on a single HiSeq 4000 lane [4]. The NovaSeq
L1 and NovaSeq L2 datasets correspond to the same set of 16 sample libraries that were multiplexed
on two NovaSeq 6000 lanes [2].

dataset p̂ SIHR SBIHR m.e. u g PPM
HiSeq 2500 0.99990 0.00010 0.00011 ±1.11× 10−6 0.00060 0.00003 0.00062
HiSeq 4000 0.99130 0.00866 0.00960 ±9.96× 10−6 0.08169 0.00147 0.07688
NovaSeq L1 0.99188 0.00812 0.00853 ±4.73× 10−6 0.04131 0.00206 0.04167
NovaSeq L2 0.99177 0.00823 0.00864 ±5.25× 10−6 0.04187 0.00210 0.04222

Table 5: Classification performance comparison of four different approaches. Results
correspond to a multiplexed dataset of two libraries in which the ground truth is known (i.e.
the source sample of each molecule is determined by sequencing the same two libraries on two
separate lanes). No purging corresponds to the multiplexed data as is. No discarding corresponds
to reassignment of reads to the sample with the largest posterior probability, but without further
filtering. Discarding represents the results after discarding the molecules that have a posterior
probability lower than a specified cutoff, with the cutoff determined so as to achieve a trade-off ratio
of 3 (see Methods). Min fraction corresponds to a previous heuristic approach [4] based on keeping
the molecules for which at least 80% of reads are assigned to the same sample. FP: false positive
count (phantom molecules that are mistakenly classified as true molecules); FN: false negative count
(real molecules that are mistakenly classified as phantom molecules); TP: true positive count (real
molecules that are classified as real); TN: true negative count (phantom molecules that are classified
as phantom); FPR: false positive rate = FP/(FP+TN); FNR: false negative rate = FN/(FN+TP).

Approach FP FN TP TN FPR FNR

No purging 485399 0 9717504 0 1.0000 0.0000
Purging at TORC=0 12585 2590 9239510 472814 0.0259 0.0003
Purging at TORC=3 10116 7685 9234416 475283 0.0208 0.0008
Min read fraction ≥ 0.8 10000 16094 9226006 475399 0.0206 0.0017
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Figure 5: Concordance between model predictions and empirically observed
number of chimeras. Each panel corresponds to a different previously published
dataset. In each panel, the top plot shows the proportion of chimeras across CUGs
with different PCR amplification levels, with red dots depicting observed values
and blue line representing the model prediction. The ECDF of r (grey) shows the
cumulative proportion of observations (CUGs) that are less than or equal to r. The
bottom plot shows the fit on the absolute count of chimeras rather than proportions.
(a) Mouse epithelial non-multiplexed HiSeq 2500 dataset [1]. (b) Mouse epithelial
multiplexed HiSeq 4000 dataset [4]. (c) Tabula Muris NovaSeq 6000 dataset (Lane
1) [2]. (d) Tabula Muris NovaSeq 6000 dataset (Lane 2) [2].
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6.4 Minimizing False Positive by Discarding Molecules

As Table 6 shows, leaving the data as it is (i.e. nopurging) comes at cost in the form of
a large number of false positives (i.e. true phantom molecules that we incorrectly label
as real molecules). In contrast, by reassigning reads to the sample with the maximum
posterior probability and retaining only those associated molecules (i.e. nodiscarding),
we are able to substantially reduce the number of false positives at a very little cost of
removing true real molecules. We can further minimize the number of false positives
by discarding predicted real molecules that have low posterior probability. By using
the default torc = 3 value, we retain molecules with tor values that are equal or
greater than the maximum tor value not exceeding torc = 3. In the table, the rows
corresponding to the above approach shows the corresponding outcome, inferred
sample of origin s, posterior probability qr, false positive (FP) and false negative
(FN) counts, and the tor value for the observed outcome with the next higher tor
value, the one with a lower false positive count.

1×106 4×1061×1050
FP

1×107

1×106

2×107

3×107

4×107
5×107

0

F
N

a

No purging

FP
1×106 1×1070

1×107

1×108

2×108

0

b

No purging
TORC=0

TORC=3

FP
1×106 1×1070

0

1×107

1×108

2×108

c

No purging
TORC=0

TORC=3

TORC=0

TORC=3

Figure 6: The trade-off between false negatives and false positives. The
points correspond to the estimated number of FNs vs. FPs at different posterior
probability cutoffs. (a) Mouse epithelial multiplexed HiSeq 4000 dataset [4]. (b)
Tabula Muris NovaSeq 6000 dataset (Lane 1) [2]. (c) Tabula Muris NovaSeq 6000
dataset (Lane 2) [2]. In each panel, the FP/FN values when the data are kept as it is
(no purging), or reads are reassigned without further filtering by posterior probability
(TORC=0) are also shown.

Fig. 6 left shows the trade-off between false negatives and false positives for all
four datasets. As can be seen, the optimal cutoff occurs at the point that is closer to
the origin. Note that a small marginal decrease in FPs can be offset only by a large
increase in FNs. Fig. 7 right shows the marginal increase in false negatives against
the marginal decrease in false positives with the default torc value in color.
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Figure 7: Marginal increase in false negatives against the marginal decrease
in false positives. Dots correspond to estimated marginal decrease/increase of false
positives/negatives at different posterior probability cutoffs for each dataset. The
colored lines show the decision curves for different trade-off ratio cutoff (TORC)
values. At any given TORC value, the point that is on or immediately below the
corresponding decision curve will be selected as the posterior probability cutoff. (a)
Mouse epithelial multiplexed HiSeq 4000 dataset [4]. (b) Tabula Muris NovaSeq 6000
dataset (Lane 1) [2]. (c) Tabula Muris NovaSeq 6000 dataset (Lane 2) [2].

38

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2019. ; https://doi.org/10.1101/617225doi: bioRxiv preprint 

https://doi.org/10.1101/617225
http://creativecommons.org/licenses/by-nc/4.0/


Table 6: Outcomes datatable. The table shows the tor cutoff values, corresponding
outcome, inferred sample of origin s, posterior probability qr, false positive (FP) and
false negative (FN) counts. Values corresponding to no purging, no discarding, and
to the next more conservative torc are listed for the mouse epithelial non-multiplexed
HiSeq 2500 and multiplexed HiSeq 4000 datasets and the two lanes of the Tabula
Muris NovaSeq 6000 datasets.

dataset approach outcome s qr tor FP FN

HiSeq2500 above 0,0,1,0,1,0,0,0 5 0.00630 49.64 984 23, 384
HiSeq2500 torc 0,0,1,0,0,0,0,0 3 0.00731 2.97 1147 1201
HiSeq2500 nodiscarding 1,0,0,0,0,0,1,0 7 0.49826 0.00 1, 449 303
HiSeq2500 nopurging 27, 393 0

HiSeq4000 above 0,1,2,1,1,0,0,0 3 0.10741 6.24 69, 241 114, 007
HiSeq4000 torc 0,0,1,0,0,0,0,0 3 0.11089 2.96 80, 320 25, 186
HiSeq4000 nodiscarding 0,1,0,0,1,0,1,0 5 0.56309 0.00 86, 289 7, 546
HiSeq4000 nopurging 4, 460, 074 0

NovaSeqL1 above 0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0 3 0.07375 3.01 558, 115 623, 953
NovaSeqL1 torc 0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0 10 0.07399 2.99 558, 550 618, 509
NovaSeqL1 nodiscarding 0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0 10 0.72582 0.00 712, 958 157, 145
NovaSeqL1 nopurging 11, 711, 946 0

NovaSeqL2 above 0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0 3 0.07390 3.01 568, 394 631, 097
NovaSeqL2 torc 0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0 10 0.07393 2.98 568, 846 625, 445
NovaSeqL2 nodiscarding 0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,1 10 0.76330 0.00 725, 117 159, 048
NovaSeqL2 nopurging 11, 902, 481 0

6.5 The Extent of Contamination by Phantom Molecules

If we had chosen not to decrease the number of false positives by discarding molecules,
or in other words if we had set o∗ = 1, then the number of molecules we predict as
phantoms for the entire dataset would be given by (u + g) × L, out of which the
number of true phantoms are given by (TN ×L),and false phantoms by (FN ×L).
However, the proportion of phantoms for individual samples can depart drastically
from these marginal measures for the entire dataset as a whole since library complexity
varies widely across samples with some samples even consisting mostly of empty
cells. Indeed, this is the case for the HiSeq 4000 dataset. As Table 7 shows, the
proportion of phantom molecules for this dataset ranges from 0 .012 to 0.864 whereas
the same proportion ranges from 0.0132 to 0.176 in both of the two NovaSeq 6000
datasets (see Tables 8 and 8). In contrast, in the HiSeq 2500 dataset, which had
not been multiplexed and whose hopping rate we estimated to be extremely small,
we see that the range of predicted proportion of phantom molecules ranges from
0.0002 to .02 (Table 7). In the two tables, the number of molecules is given by the
second column. The proportion of total molecules predicted as real and therefore
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retained is given by the real column. The proportion of total molecules that predicted
as real but discarded since their q values fall below the corresponding tor cutoff
is given by the false phantoms column. The proportion of molecules predicted as
phantom is given by the phantoms column. The two proportions columns give show
the discrepancy between library size and library complexity across the samples. The
last column measures the extent of PCR Amplification bias as given by RMR, the
total number of mapped Reads over total number of Molecules (i.e. library size
divided by library complexity) ratio. Note that RMR tends to be a good indicator
of which samples would have a high proportion of phantoms and also which would
have a high proportion of false predicted phantoms (i.e. real molecules which we
incorrectly classify as phantoms). For example, Sample P7_8, the sample with the
highest RMR in both lanes.
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Table 7: Extent of contamination by sample for mouse epithelial non-multiplexed
HiSeq 2500 dataset (control) and a multiplexed HiSeq 4000 dataset. The columnMolecules
lists the number of total molecules in each sample. The Breakdown columns list the proportion
of predicted real molecules (Real), molecules discarded at TORC=0 (Phantom0), and additional
molecules discarded when TORC is increased to 3 (Phantom3). The Proportions columns list the
marginal proportions of molecules and reads across the entire dataset. RMR: the ratio of reads to
molecules. Note the small fraction of molecules discarded in the non-multiplexed dataset, which
serves as a negative control that should not be affected by our purging approach.

Breakdown Proportions
Sample Molecules Real Phantom0 Phantom3 Molecules Reads RMR

HiSeq 2500 Dataset

A1 5.94× 106 0.9986 0.0014 0.0000 0.13 0.13 6.1
A2 8.02× 106 0.9997 0.0003 0.0000 0.18 0.13 4.5
B1 0.15× 106 0.9795 0.0205 0.0000 0.00 0.13 228.8
B2 0.20× 106 0.9865 0.0135 0.0000 0.00 0.13 177.8
C1 8.51× 106 0.9997 0.0003 0.0000 0.19 0.12 3.7
C2 14.19× 106 0.9998 0.0002 0.0000 0.32 0.12 2.3
D1 5.45× 106 0.9995 0.0004 0.0001 0.12 0.11 5.5
D2 1.63× 106 0.9984 0.0016 0.0000 0.04 0.12 20.1

Hiseq 4000 Dataset

A1 7.03× 106 0.9662 0.0337 0.0001 0.12 0.13 11.6
A2 9.59× 106 0.9776 0.0222 0.0002 0.17 0.13 8.6
B1 1.82× 106 0.1351 0.8643 0.0006 0.03 0.13 44.1
B2 1.75× 106 0.1754 0.8239 0.0006 0.03 0.14 50.1
C1 10.46× 106 0.9781 0.0215 0.0004 0.18 0.12 7.3
C2 18.65× 106 0.9874 0.0120 0.0006 0.32 0.12 4.0
D1 6.56× 106 0.9684 0.0314 0.0002 0.11 0.11 10.2
D2 2.16× 106 0.8787 0.1207 0.0006 0.04 0.12 35.1
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Table 8: Extent of contamination by sample for the Tabula Muris NovaSeq 6000
datasets. The column Molecules lists the number of total molecules in each sample. The Breakdown
columns list the proportion of predicted real molecules (Real), molecules discarded at TORC=0
(Phantom0), and additional molecules discarded when TORC is increased to 3 (Phantom3). The
Proportions columns list the marginal proportions of molecules and reads across the entire dataset.
RMR: the ratio of reads to molecules.

Breakdown Proportions
Sample Molecules Real Phantom0 Phantom3 Molecules Reads RMR

NovaSeq 6000 Lane 1 Dataset

P7_0 13.54× 106 0.9316 0.0672 0.0012 0.05 0.07 7.9
P7_1 8.16× 106 0.8653 0.1343 0.0004 0.03 0.08 14.5
P7_2 28.02× 106 0.9754 0.0214 0.0032 0.10 0.06 2.9
P7_3 28.58× 106 0.9760 0.0214 0.0026 0.10 0.06 3.1
P7_4 8.48× 106 0.9101 0.0898 0.0001 0.03 0.06 10.1
P7_5 17.40× 106 0.9678 0.0302 0.0001 0.06 0.05 4.5
P7_6 26.17× 106 0.9773 0.0181 0.0045 0.09 0.04 2.3
P7_7 11.69× 106 0.9512 0.0478 0.0010 0.04 0.05 5.7
P7_8 5.99× 106 0.8247 0.1753 0.0000 0.02 0.07 17.3
P7_9 10.49× 106 0.9146 0.0849 0.0005 0.04 0.07 10.1
P7_10 38.68× 106 0.9837 0.0132 0.0031 0.14 0.06 2.4
P7_11 16.20× 106 0.9549 0.0437 0.0014 0.06 0.07 6.1
P7_12 21.28× 106 0.9663 0.0315 0.0022 0.08 0.07 4.8
P7_13 20.80× 106 0.9681 0.0298 0.0021 0.07 0.07 4.9
P7_14 12.92× 106 0.9470 0.0523 0.0007 0.05 0.06 6.8
P7_15 12.81× 106 0.9600 0.0386 0.0014 0.05 0.05 5.4

NovaSeq 6000 Lane 2 Dataset

P7_0 13.59× 106 0.9309 0.0012 0.0679 0.05 0.07 7.9
P7_1 8.20× 106 0.8645 0.1351 0.0004 0.03 0.08 14.4
P7_2 28.11× 106 0.9750 0.0218 0.0032 0.10 0.06 2.9
P7_3 28.67× 106 0.9756 0.0217 0.0026 0.10 0.06 3.1
P7_4 8.51× 106 0.9088 0.0910 0.0001 0.03 0.06 10.1
P7_5 17.43× 106 0.9674 0.0306 0.0020 0.06 0.05 4.5
P7_6 26.25× 106 0.9770 0.0184 0.0046 0.09 0.04 2.3
P7_7 11.72× 106 0.9506 0.0485 0.0010 0.04 0.05 5.7
P7_8 6.03× 106 0.8238 0.1762 0.0000 0.02 0.07 17.3
P7_9 10.53× 106 0.9139 0.0856 0.0005 0.04 0.07 10.1
P7_10 38.78× 106 0.9834 0.0135 0.0031 0.14 0.06 2.4
P7_11 16.25× 106 0.9543 0.0443 0.0014 0.06 0.07 6.1
P7_12 21.34× 106 0.9657 0.0320 0.0022 0.08 0.07 4.8
P7_13 20.85× 106 0.9676 0.0303 0.0022 0.07 0.07 4.9
P7_14 12.96× 106 0.9463 0.0530 0.0007 0.05 0.06 6.8
P7_15 12.84× 106 0.9595 0.0392 0.0014 0.05 0.05 5.4
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6.6 The Effects of Phantom Molecules on Identifying RNA-
containing Cells

Given that a substantial percentage of mapped molecules in the dataset originate
from empty droplets, one can argue that what matters in the final analysis is whether
there turns out to be a substantial degree of phantom contamination in the subset
of molecules originating from RNA-containing droplets. In general, there are two
potential effects that phantom molecules bring about: (1) the emergence of phantom
cells and more commonly (2) causing cell-calling algorithms to miss-classify empty
droplets as cells and vice versa.

To assess the extent and effects of contamination by phantom molecules in this
subset, we used the EmptyDrops [8] algorithm to call cell-barcodes in order to determine
whether a cell-barcode originated from a cell or an empty droplet. For each dataset,
we ran EmptyDrops the first time on the unpurged data and then a second time of
purged data. To compare the results of the two runs, all barcodes classified as either
cell or empty by the algorithm were divided into three groups each as shown in Tables
9and 10. In the tables, the Consensus columns show the number of cell-barcodes
that maintain the same classification as cell or empty, across the two runs. The
Phantom columns show the number of cell-barcodes whose associated molecules were
all predicted as phantom molecules (true and false phantoms). The Re-classified
columns show the number of barcodes that have been reclassified after running the
cell-calling algorithm of purged data. For example, we see that for the A1 sample in
the HiSeq 4000 dataset, 13 barcode that was previously classified as background, were
re-classified as cells after purging whereas 105 cell-barcodes that were classified as
cell before purging were re-classified as empty after purging. For sample, the extent
of the reclassification is more pronounced. If we had called cells without first purging
the dataset of phantom molecules, we would have believed that we have called a total
of 1023 (= 16+1007) cells, whereas re-running cell-calling on purged data would have
produced no more than 16 cells.

For the NovaSeq 6000 datasets, the effects of contamination are less severe than
those see in the HiSeq 4000 dataset. For many samples the number of barcodes that
are reclassified as empty can make a substantial fraction of total cells (e.g. Sample
P7_01 with 223 barcodes). Note that we opted to treat the two lanes separately
for the cell-calling stage of the analysis to evaluate the consistency of the proposed
approach on two datasets that only differ by flowcell sequencing lane. For downstream
analysis, data from the two lanes should be combined before cell-calling is performed.
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Table 9: Effect of contamination on cell calling in mouse epithelial non-multiplexed
HiSeq 2500 (control) and multiplexed HiSeq 4000 datasets. The cell and empty columns
list the number of cell-barcodes that were categorized as RNA-containing cells or background cells
(empty droplets), respectively. The Phantom column enumerates the cells and empty droplets that
disappear once phantom molecules are purged; The Consensus column enumerates the cells and
empty droplets that maintain the same status no matter whether the phantom molecules were
purged or not; The Reclassified column represents the number of cell-barcodes that were re-classified
(transitioned) as empty droplet or cell after purging the phantom molecules. Note the small number
of changes in the non-multiplexed dataset, which serves as a negative control that should not be
affected by our purging approach.

Phantom Consensus Reclassified
Sample Cell Empty Cell Empty Cell Empty

HiSeq 2500 Dataset

A1 0 1, 332 409 123, 769 1 0
A2 0 770 564 138, 948 0 2
B1 4 1, 258 199 26, 138 0 17
B2 0 1, 136 16 29, 971 0 0
C1 0 808 739 145, 283 0 0
C2 0 668 1, 316 195614 4 1
D1 0 778 685 98, 969 1 0
D2 0 975 160 61, 353 1 0

HiSeq 4000 Dataset

A1 0 12, 478 401 138, 117 13 105
A2 0 11, 188 565 156, 913 13 105
B1 0 70, 193 16 40, 016 0 1, 007
B2 0 65, 001 20 45, 503 0 885
C1 0 11, 729 730 168, 503 0 118
C2 0 10, 087 1, 318 232, 404 5 154
D1 0 11, 609 661 119, 473 15 64
D2 0 15, 912 165 82, 287 7 29
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Table 10: Effect of contamination on cell calling in the Tabula Muris NovaSeq 6000
datasets. The cell and empty columns list the number of cell-barcodes that were categorized as
RNA-containing cells or background cells (empty droplets), respectively. The Phantom column
enumerates the cells and empty droplets that disappear once phantom molecules are purged; The
Consensus column enumerates the cells and empty droplets that maintain the same status no matter
whether the phantom molecules were purged or not; The Reclassified column represents the number
of cell-barcodes that were re-classified (transitioned) as empty droplet or cell after purging the
phantom molecules.

Phantom Consensus Reclassified
Sample Cell Empty Cell Empty cell empty

NovaSeq 6000 Lane 1 Dataset

P7_0 0 61, 772 1, 119 245, 922 156 196
P7_1 0 73, 677 551 231, 820 105 223
P7_2 0 53, 833 4, 037 306, 452 13 21
P7_3 0 49, 661 3, 974 330, 196 26 26
P7_4 0 63, 917 927 250, 569 29 69
P7_5 0 47, 393 19, 69 316, 514 37 12
P7_6 0 45, 701 7, 268 304, 202 63 17
P7_7 0 63, 518 733 210, 349 21 11
P7_8 0 95, 414 10, 89 175, 093 21 108
P7_9 0 76, 342 2, 306 238, 232 8 89
P7_10 0 41, 213 2, 449 375, 818 19 11
P7_11 0 64, 228 3, 474 259, 465 1 32
P7_12 0 59, 249 3, 027 291, 810 16 28
P7_13 0 53, 450 3, 383 305, 486 10 26
P7_14 0 64, 676 2, 601 244, 136 12 28
P7_15 0 54, 118 2, 753 242, 666 12 8

NovaSeq 6000 Lane 2 Dataset

P7_0 0 62, 320 947 246, 383 358 213
P7_1 0 73, 684 611 232, 303 43 224
P7_2 0 53, 673 4, 036 307, 442 11 22
P7_3 0 50, 035 3, 981 331, 060 24 25
P7_4 0 64, 176 826 251, 665 17 173
P7_5 0 47, 130 2, 023 317, 367 40 18
P7_6 0 46, 122 7, 264 305, 496 76 16
P7_7 0 63, 731 732 211, 401 23 11
P7_8 0 95, 323 1, 089 176, 709 24 120
P7_9 0 76, 811 2, 305 239, 238 13 95
P7_10 0 41, 633 2, 451 376, 946 21 13
P7_11 0 64, 495 3, 476 261, 000 0 38
P7_12 0 59, 618 3, 029 293, 207 16 33
P7_13 0 54, 118 3, 389 306, 711 7 27
P7_14 0 65, 386 2, 597 245, 290 15 33
P7_15 0 54, 121 2, 757 244, 201 6 8
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6.7 Validation

Assumption I. Corollary 1 of Assumption 1 states that the probability of a CUG
collision is zero. To examine the extent of the assumption’s validity, we counted the
number of colliding CUGs in the inner joined data table. We found that there are
only 52 (real, real) colliding CUGs out of a total of 9,252,147, or in other words, a
collision rate of approximately 0.00001 for the case of two samples. Accordingly, for
practical purposes, we can consider Assumption I to be valid given that collision
rate is close to zero and is more than 3 orders of magnitude smaller than the CUG
collision rates observed in data contaminated by sample index hopping.

Assumption II Assumption 2 states that the hopping probability of a sequencing
read’s sample index is the same regardless of either the sample index’s source or target.
To validate the assumption we counted the fraction of hopped reads originating from
each sample at the entire range of PCR duplication levels ( see Fig. 8). As the
figure shows, the estimated sample index hopping rate 0.00320± 0.00001 is very close
to the marginal ground truth estimate of 0.00326 (i.e. the true mean). That said
there are two trends that seem to slightly depart from the model’s assumption. First,
there is a minor difference between the two samples’ proportion of hopped reads,
SIHR1 = 0.00346 vs SIHR2 = 0.00302 (the subscript denotes the source sample).
Second, the ground truth estimates for both samples start out at higher proportion
values but stabilize starting at r = 10 (see the reproducible R markdown notebook
validation_hiseq4000_2.nb.html for details). These trends could be sub-sampling
artifacts of the filtering procedure step in which we only retained CUGs that are
observed in both the multiplexed and non-multiplexed samples (each of which has
twice the number of reads). Alternatively, these trends could be persistent across
experiments in which case the model we have proposed captures rather well but
not perfectly the underlying mechanism of sample index hopping. A model that
is governed by several sample-specific hopping rates that are also dependent on
the number of duplicated reads would provide better accuracy but at the cost of
intractable computational and mathematical complexity. Even then, the improved
accuracy in estimating the hopping rate would not affect the purging procedure greatly
given that the molecular complexity profiles plays an important role in assigning
reads to their sample of origin.
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Figure 8: Validating model assumptions. (a) Venn diagram showing the number
of CUG collisions between two libraries that were sequenced on two separate HiSeq
4000 lanes (i.e. ground truth in the validation dataset, see Methods). Note the
minuscule fraction of CUGs that collide (less than 6 in a million), in agreement with
Assumption I. (b) The proportion of hopped sample indices by source sample across
a range of PCR amplification levels r, in the multiplexed dataset with known ground
truth (the origin of each read was determined based on non-multiplexed sequencing
runs of the same libraries on two separate lanes). The straight line shows the marginal
mean of proportion of hopped reads. Note that per-sample index hopping rates differ
by less than 10%, in agreement with Assumption II. Red: hopping from S1 to S2;
Blue: hopping from S2 to S1.

6.7.1 Comparing and Evaluating Classification Performance

We evaluate the tor cutoff approach by contrasting it with two alternative actions:
no purging, where we leave the data as it is, and no discarding, where we purge
predicted phantom molecules but refrain from discarding real molecules whose inferred
sample-of-origins have low posterior probabilities. We also compare the classification
performance of the proposed method to the minimum read fraction molecule exclusion
approach [4], in which the sample-of-origin molecule is deemed the one with the
majority of the reads (default ≥ 80%).

As Table 5 and Fig. 1, the torc approach achieves a false positive count 10,116
that is very close to the lowest possible (i.e. 9,995, the number of fugue molecules
in the dataset) while maintaining a low number of false negatives, 7,685 as well. In
contrast, although the maximum fraction approach achieves a lower number of false
positives, the reduction of 116 false positives is offset by a substantial number of false
negatives, 16,094, an increase of 8,409 over torc approach.
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6.7.2 Extent of contamination

Although the proportion of hopped reads in Sample 1 and Sample 2 are 0.0035 and
0.0030, respectively, the corresponding proportion of phantom molecules (PPM) are
an order of magnitude higher, at 0.085 and 0.037, respectively. Furthermore, the
percentage of cells that contain at least one phantom cell is approximately 20%. For
illustration see Fig. 9 which plots, for each affected cell, the number of phantom
molecules against the total number of molecules.
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Figure 9: The ratio of phantom to total molecules per cell. Each dot represents
one cell that is affected by index hopping. Data correspond to sample S2 from the
multiplexed validation dataset (i.e. two libraries with known ground truth multiplexed
on the same HiSeq 4000 lane). Blue points are cells whose molecules are all phantom.

6.8 Simulation

To compare the performance of the proposed approach to the minimum read fraction
molecule exclusion approach [4] for a case when there are more than two samples, as
was the case in the validation data, we simulated data for (S = 8) samples using
the molecular complexity profile computed for the mouse epithelial cells HiSeq 4000
data. For computational feasibility, outcomes were simulated for all r values up to a
maximum of 15 for a range of four p values. The simulation results show (see Table 11
and Fig. 10) that in contrast to the minimum read fraction approach, the tor (default
maximum value not exceeding 3) approach gives a false negative proportion that is
about 3 times lower while also maintaining a comparable false positive proportion,
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which progressively becomes relatively smaller as the hopping rate increases. More
importantly, as the tor curves show in Figure 10, the entire range of possible tor
cutoff values provide a more optimal trade-off choice than the minimum read fraction
approach (represented by three possible thresholds mf = (0.6, 0.8, 0.9)) for balancing
the false negative and positive rates.
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Figure 10: Performance on simulated data. The colored dots represent false pos-
itive and false negative proportions after filtering with different posterior probability
cutoffs. The color of each dot represents the trade-off ratio, i.e. the number of real
molecules lost for every phantom molecule that is correctly purged. The simulations
were performed for four evenly spaced values of SIHR (sample index hopping rate).
The open circles show the FN/FP values obtained by a previous heuristic approach [4]

that is based on retaining CUGs with a certain fraction of reads assigned to only one
sample (three choices of the minimum read fraction threshold were used: 0.6, 0.8,
and 0.9). The default trade-off ratio cutoff is marked with a plus superimposed on
the curve of possible trade-off ratio values within 1-10 range.
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Table 11: Performance on simulated data. The table shows the false positive and false
negative proportions for the default cutoff value of the minimum read fraction (MRF) method [4]

and our probabilistic modeling approach for four evenly spaced values of p (the complement of the
sample index hopping rate). We used a trade-off ratio cutoff (TORC) of 3 for our method. Note
that the trade-off ratio (TOR) after purging corresponds to the largest TOR value obtainable that
is still smaller than TORC=3.

p Cutoff FP FN

0.982 MRF≥ 0.80 0.00374 0.02210
0.982 TOR=2.35 0.00343 0.00492

0.986 MRF≥ 0.80 0.00291 0.01696
0.986 TOR=2.43 0.00306 0.00230

0.990 MRF≥ 0.80 0.00208 0.01195
0.990 TOR=2.98 0.00212 0.00205

0.994 MRF≥ 0.80 0.00124 0.00707
0.994 TOR=2.98 0.00127 0.00122
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Supplementary Note

1 Mathematical Derivations

1.1 The Molecular Proportions Complexity Profile

Let vr =
∑mr

l sl denote the molecule count across the S samples at level r and
v =

∑R
r

∑mr

l vr =
∑R

r

∑mr

l sl the molecule count across the S samples for the
entire data. Since E(vr) = mr × πr, the expected total molecule count is therefore
E(v) =

∑R
r mr × πr. If πr = π for all r = 1, . . . , R, then E(v) = L × π would

correspond to the library complexities of the S samples.
Let ur = (ur1, . . . urS)(=

∑mr

l sl) represent the unobserved molecule (i.e. UMIs)
counts at PCR duplication level r across S samples. The distribution of ur can
be obtained by noting that sum of mr identically distributed categorical random
variables with parameter vector πr is a multinomial random variable with the same
parameter vector. That is,

ur =
mr∑
l

sl ∼ Multinomial(mr,πr)

Now, the expected molecule count across samples in the entire data is given as
such.

E
∑
r∈R

ur =
∑
r∈R

(mr × πr)

However, we do not observe sl, and the expected total number of observed
molecules in the data can be much greater due to the presence of phantom molecules
brought about by sample index hopping.

Let vr =
∑mr

l yl denote the total read count at PCR duplication level r. In what
follows, it helps to think of the mr observations as members of S partitions, where
the size of partition s is given by πrs, the proportion of molecules in Sample s at
PCR duplication level r. Now since
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E(vr) = E(
mr∑
l

yl) =
mr∑
l

Es(Ey|s(yl))

= (mr × r)
S∑
s=1

psπrs

therefore

E(vrs) = (mr × r)
(πrs(S × p− 1) + (1− p)

S − 1

)
and so we can obtain an estimate for πrs from the observed proportion of read

counts v̄rs for sample s observations at PCR duplication level r. That is,

π̂rs =
v̄rs(S − 1) + (p− 1)

(S × p− 1)
(7)

Notice that when there is no sample index hopping (i.e. p = 1), the proportion of
molecules equals the proportion of reads, that is π̂rs = v̄rs. Also, note that for the
denominator to be positive, the proportion of reads v̄rs > 1−p

S−1 for all s = 1, . . . , S.
In empirical data, when this relationship is violated, we can set π̂rs = 10−6 and
renormalize π̂r accordingly.

1.2 The Distribution of k-chimeras

sl ∼ Categorical(πr)

yl|sl ∼ Multinomial(r,psl)

xli = I(yli > 0) for l = 1, . . . ,mr; i = 1, . . . , S

where yl ∈ NS
0 , p ∈ [0, 1]S, ‖p‖1 = 1, and S ∈ N

The marginal distribution of each element of the multinomial observation yl is
binomial. That is,

yli|sl ∼ Binomial(r, p[sl=i]p
(1−[sl=i])
h )
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where the Iverson bracket notation is used. It follows that the distribution of xli is
a Bernoulli with a probability parameter that can be obtained by observing that the
expectation of an event defined by an indicator function is equal to the probability of
that event. That is,

xli ∼ Bernoulli(ζi)

where

ζi = E(xli) = Es(Ex|s(xli))

= Es(Ex|s(I(yli > 0)))

=
S∑
j=1

P(yli > 0|sl = j) P(sl = j)

= 1−
S∑
j=1

P(yli = 0|sl = j) P(sl = j)

= 1−
S∑
j=1

(1− p[j=i]p(1−[j=i])h )
r
π
(r)
j

= 1−
(
π
(r)
i (1− p)r + (1− π(r)

i )((1− ph)r)
)

= 1− π(r)
i −

(( 1

1− p
− 1

S − 1

)r(
(1− p)r − π(r)

i

))

Now given that the Bernoulli random variables (i.e. the elements of xr) can
be treated as independent (for r > S) but not identically distributed, their sum,
which indicates the category of the observation (i.e. k−chimera), can be given by the
Poisson Binomial distribution. That is,

kr = 1ᵀxr ∼ PB(µr =
S∑
i=1

ζi)
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and a PMF given by the following recursive formula ζ

Pr(K = k) =



S∏
i=1

(1− ζi) k = 0

1
k

k∑
i=1

(−1)i−1 Pr(K = k − i)T (i) k > 0

where T (i) =
S∑
j=1

(
ζj

1−ζj

)i
Note the independence assumption does not hold when r < S since Pr(K = 0) is

not zero even though it should be given that the r reads must be belong to at least
one sample. Also note that the mean, µr, of the Poisson Binomial distribution is
equal to the sum of the probabilities. In this case, the π(r)

i ’s do not affect µr since

they cancel out. That said, they do affect the variance σ2
l =

n∑
i=1

(1 − ζi)ζi where it

is maximized when the ζi’s, and accordingly the π(r)
i ’s, are equal. In this case kl

can be reduced to the sum of dependent Bernoulli variables, which for r > S can
be approximated as the sum of independent and identically distributed Bernoulli
variables. That is,

kr ∼ Binomial

(
S, 1− 1

S

(
(1− p)r + (S − 1)1−r(S + p− 2)r

))

The distribution of phantoms can be obtained from kr by noting that for non-
fugue observations, the number of phantoms equals kr − 1. The expected fraction of
phantoms at PCR duplication level r is therefore approximately as such.

E(fl) = S − 1− (1− p)r − (S − 1)1−r(S + p− 2)r (8)

Figure 1 plots the functional relationship between the expected fraction of phan-
toms and the variables p, r, and S.
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Figure 1: The expected number of phantoms for an observation with PCR duplication
level r for a range of values of p and number of samples S

1.3 Distribution of non-chimeras

For the case of k = 1, or non-chimeric observations, we can derive a closed form of
the distribution by noting that a non-chimera is a count observation yl for which
(yli = r) for any i ∈ {1, . . . , S}. We denote the event of observing a non-chimera by
a Bernoulli random variable wl := I((yli = r)) with parameter pw given by

pw = E(I((yli = r)) = P(ylji = r)

=
S∑
j=1

S∑
i=1

P(yli = r|(sl = j)) P(sl = j)

=
S∑
j=1

S∑
i=1

(p[j=i]p
(1−[j=i])
h )

r
π
(r)
j

=
S∑
j=1

[pr + (S − 1)×
(

1− p
S − 1

)r
]π

(r)
j

=pr + (S − 1)×
(

1− p
S − 1

)r
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As a result, the distribution of observing a non-chimera is given by

wl|r ∼ Bernoulli
(
pr + (S − 1)×

(
1− p
S − 1

)r)
where pf0(r) = (S − 1)×

(
1−p
S−1

)r
is the probability of observing a non-chimeric

fugue observation with r reads and pr is the probability of observing a non-chimeric
non-fugue observation with r reads.

1.4 Estimation of the Sample Index Hopping Rate

P(z|θ) =
R∏
r=1

P(zr|mr, µ(p, r))

=
R∏
r=1

Binomial
(
zr|mr, p

r
)

Note that the mean function µ(r) = pr can be expressed as such.

µ(r) = pr = er log(p) = eβr

which corresponds to the integral curve solution of the differential equation

dµ(r)

d r
= βµ(r)

This is a negative growth curve since β = log(p) ∈ (−∞, 0). We can estimate
β by formulating the problem as a generalized linear regression for binomial counts
with a systematic component η = βr and a log link function g(µ) = log(µ) such that.

µ = g−1(η) = eη

Note that the standard link function for binomial counts is the logit g(µ) =
log( µ

1−µ). However, it corresponds to the solution of another differential equation,
namely.
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dµ(r)

dr
= β µ(r)

(
1− µ(r)

)
Although the log link function is not symmetric, η is defined only on the negative

real line. Furthermore, the log link renders the parameters interpretable since β is
basically just the log of p the parameter of interest.

The relationship between the number of non-chimeras zr and the sample index
hopping rate (1− p) at a given PCR duplication level r and with an mr number of
observations can be formulated as a generalized linear regression model with a log
link function as follows.

zr ∼ Binomial
(
zr| N = mr, µ = eβr

)
(9)

where zr,mr ∈ N+; β = log(p) ∈ R−; r = 2, . . . R.

An estimate of the sample index hopping rate can be obtained from the regression
coefficient as such.

SIHR = 1− p̂
= 1− exp(β̂)

We can use the estimate of the sample index hopping rate to obtain the expected
number of hopped reads at each PCR duplication level, namely (mr × r × SIHR).
We can also plug it into Equation 8 to compute the expected Fraction of Phantom
Molecules (FPM) for the entire dataset. That is.

FPM = Em(E(fr))

=

∑R
r=1mr × E(fr)∑R

r=1mr

=

∑R
r=1mr ×

(
S − 1 + (1− p̂)r + (S − 1)r−1(S + p̂− 2)r

)
∑R

r=1mr

= mᵀ
p f

Here mp = m
‖m‖1

where m = (m1, . . . ,mR) and f = (E(f1), . . . ,E(fR)).
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We would like to note that we can do away with Assumption 3 and estimate p
in Model 4 using a likelihood optimization procedure. However, the optimization
algorithm might not converge or it can get stuck at a local optimum. Furthermore,
compared to the GLM approach, it is not straightforward to obtain standard errors
or any measure of uncertainty by optimizing the likelihood. We provide code in
the paper’s GitHub repository showing the likelihood optimization approach and its
overall similar results to the GLM approach.

1.5 Estimating the Sample Barcode Index Hopping Rate

A sample in a 10X Genomics experiment is actually labelled by, not one, but four
different barcodes. By considering only the sample labels instead of the sample
barcode, the statistical approach outlined in this paper models sample index hopping
across samples rather than across individual barcodes. Nonetheless, we can still
estimate the sample barcode index hopping rate by noting that when we treat all
reads of a given sample as having the same sample index, we are effectively collapsing
a 4×S-dimensional multinomial vector of barcode sample index hopping probabilities
pb into an S-dimensional vector of sample index hopping probabilities p. That is, since
the read counts are modeled with a multinomial, we can fuse the four barcode count
events within a sample by summing their read counts and corresponding probabilities.
Accordingly, the relationship between the two parameters of interest pb and p can be
expressed as such.

p = pb +
3(1− pb)
4S − 1

= pb

(
1− 3

4S − 1

)
+

3

4S − 1

where pb is probability that a given sample barcode index does not hop. Ac-
cordingly, we can obtain an estimate of the sample barcode index hopping rate by
expressing pb in terms of p and S.

SBIHR = 1− pb = (1− p)
(4S − 1

4S − 4

)
Notice that the multiplicative factor is at its maximum (i.e. 1.75) when S = 2. As

S increases however, it approaches 1 and the two terms become approximately equal.

1.6 The Posterior Distribution of the True Sample of Origin

The posterior distribution can be obtained as follows.
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P(sl | yl; r, p̂, π̂r) =
P(yl | sl; r, p̂)P(sl; π̂r)

P(yl)

=
Multinomial(yl | sl; r, p̂sl) Categorical(sl; π̂r)∑S
s=1 Multinomial(yl | sl; r, p̂sl) Categorical(sl; π̂r)

=

(
p̂yl
sl

)(
π̂sl
r

)
∑S

s=1

(
p̂yl
sl

)(
π̂sl
r

)
which for each element, simplifies to

P(sl = s | yl; r, p̂, π̂r) =

(
S−1
1
p̂
−1

)yls
π̂rs∑S

s=1

(
S−1
1
p̂
−1

)yls
π̂rs

1.7 Youden’s J statistic.

The cut-off given by Youden’s J is optimal in the sense that it minimizes the probability
of random guessing when we give equal weight to FPR and FNR, or equivalently
to sensitivity and specificity [13]. Nonetheless, optimizing J might not be the most
appropriate choice for the problem at hand since the number of phantom molecules is
an order of magnitude smaller than the number of real molecules. That is, FPR and
FNR are proportions of unbalanced classes, whose denominators depend on u, which
is a function of the hopping rate, and g, which not only depends on the hopping rate,
but whose estimate can be biased.

1.8 Computing the Proportion of Fugue Observations (g)

To obtain the proportion of all fugues g, we need to take into account the propor-
tion of chimeric fugues gc as well the proportion of non-chimeric fugues, which we
denote by g0. We can compute g0 by multiplying the observed relative frequency
proportion vector of the read count levels (i.e. m) by the vector of non-chimeric
fugue probabilities, whose elements are given by pf0(r).
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g0 = Er

(
pf0(r)

)
=

R∑
r=1

mr × (pf0(r))

=
R∑
r=1

mr × (S − 1)×
(

1− p
S − 1

)r
= mᵀ pf0 (10)

The probability of observing chimeric fugues can be obtained as such.

pfc(r) =
∑
y∈Tr

(
r

y

)
×
(

1− p
S − 1

)r
(11)

where the set Tr consists of outcomes corresponding to events where all the r
reads hopped to two or more target samples: the outcomes (0, 2, 1) and (0, 1, 2)
in Figure 3. For r = 1, the set Tr is empty; for r = 2, there are

(
S−1
r

)
= (S−1)(S−2)

2

such outcomes. For r > 3, it becomes increasing hard to enumerate and compute
the probabilities for all the possible outcomes, especially when S is large as well.

However, the value of
(

1−p
S−1

)r
becomes negligibly small for r > 3 given that p tends

to be very close to 1. Furthermore, empirical data is characterized by a highly skewed
distribution of PCR duplication levels such that the proportion of observations in
the first few r values makes up a substantial fraction of all observations. Therefore
even if pfc(r) was not negligible for r > 3, it would ultimately be weighted down by
the respective mr. Under this assumption, the proportion of fugue observations can
therefore be accurately approximated as such.

g = g0 + gc

=
R∑
r=1

mr ×
(
pf0(r) + pfc(r)

)
≈ m1(S − 1)

( 1− p
S − 1

)
+ m2

(
(S − 1)

( 1− p
S − 1

)2
+ 2

(S − 1)(S − 2)

2

( 1− p
S − 1

)2)
+ · · ·

= m1(1− p) +m2(1− p)2 +m3(1− p)3 + · · · (12)
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For example when p = .99, m1 = 0.20, m2 = 0.15, and m3 = 0.1 g = 0.0020151.
Or in other words, only 0.2 % of observations are fugues. If all the data is restricted
to have PCR duplication level r = 1 (i.e. m1 = 1), then g = (1 − p) would be the
maximum possible proportion of fugue observations.

2 Overview of Computational Workflow
Here we provide a rough summary of the data analysis steps that comprise the Phan-
tomPurge workflow. The code implementing the workflow and a set of reproducible
R Markdown notebooks detailing the data analysis steps are available on the paper’s
GitHub repository.

Step 1: creating a joined read counts table. In order to create the joined data
table of gene-mapped read counts across samples, we load from the molecule_info.h5
file of each sample the data corresponding to the following four fields: cell-barcode,
gene, umi, and reads. We then join the data from all samples into a single data table
that is keyed by a unique cell barcode-gene-umi combination ID. In addition to the
unique label ID, each row of the data table contains read counts across all the S
samples.

Step 2: creating an outcome counts table. Given that the number of observa-
tions in the joined read counts data table tends to be in the hundreds of millions,
we then collapse observations with similar outcomes and tally their frequency of
occurrence. Working with a data table of outcome tallies drastically reduces the
number of computations required. A few grouping variables are also added to the
joined data table of outcome tallies to be used for subsequent analysis steps. The
resulting data table contains the following additional variables: an outcome character
variable (e.g. "(1,0,1,1)") to group the observations into unique outcomes, a count
variable (n) denoting the number of times a particular outcome was observed in the
data, a PCR duplication level variable (r), and a (k_chimera) variable that counts
the number of molecules we observe in each outcome.

Step 3: estimating the sample index hopping rate. Using the introduced
grouping variable, we tallied the number of observations that are chimeric and those
that are non-chimeric at each PCR duplication level r. The resulting data table is
then used as input to the GLM Model 5 in order to estimate, from the proportion of
chimeric observations, the sample index hopping rate.
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Step 4: inferring the true sample of origin and reassigning reads. To
compute the posterior probability of the true sample index (the latent variable s) for
each unique observed outcome, we first summarized from the data the conditional and
marginal distributions of reads. The summaries are represented by a vector of PCR
duplication level proportions m, which we used to compute the empirical marginal
distribution of q, and a set of I across-samples read count proportion vectors from
which we estimated the proportion of molecules across samples π̂r, one at each PCR
duplication level r, that in turn we plugged in to calculate the conditional posterior
probability q|y. For each outcome, the posterior probabilities of the possible true
samples of origin are computed and the index of the sample with the maximum
posterior probability along with posterior probability itself is added to the original
joined read count table. We then used the predicted true sample of origin and its
associated posterior probability to reassign reads to their predicted sample of origin.

Step 5: determining the cutoff for purging predicted phantom molecules
In order to remove predicted phantom molecules from the data while minimizing
the rate of false positives and false negatives, we computed the trade-off ratio (tor)
statistic by dividing the marginal increase in FNs over the marginal decrease of FPs
for each observed unique qr∗ value. Predicted real molecules associated with outcomes
whose corresponding tor values are greater than the user-specified torc are retained
( default value is 3). To purge the data, the read counts are first deduplicated to
obtain a table of molecule (i.e. UMI) counts. After purging, the molecule counts are
collapsed over gene labels to produce a gene-by-cell umi-count expression matrices
for all the samples sequenced in the same lane.

Step 6: identifying RNA-containing cells before and after purging To
distinguish cells from empty droplets, the cell-calling algorithm EmptyDrops [8] is
called. The set of called cells in each sample is used to filter out background cell-
barcodes from the deduplicated purged UMI count matrices. The filtered matrices
are then saved to file in order to be used for downstream statistical analyses. By
comparing the results of the cell-calling algorithm from both purged and unpurged
data, one can then examine the extent of contamination of phantom molecules on
data that would have otherwise not been purged.

3 Method’s Limitations
The work presented in this paper has the following limitations.
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The non-negligible probability of a cell-umi-gene label collision across
samples when the number of samples is large. As the number of multiplexed
samples increases, Corollary 1 would no longer hold since the probability of observing,
in more than one sample, a given cell-umi-gene label combination becomes non-
negligible. That said, in single cell experiments, multiplexing more than 16 samples
on a single lane is not commonly done given the smaller library size and lower genomic
coverage that follows as a result. Furthermore, the adoption of a longer UMI index in
the latest 10X Genomics Single Cell 3’ v3 assay would further reduce the probability
of potential collisions, thus rendering this concern less of a problem.

The sensitivity of the FPR-minimizing cutoff on the ECDF of q. As we
have already mentioned, the marginal distribution of q given by Equation 6 has no
closed-form nor is it feasible to compute the exact probabilities for all its possible
outcomes even when r is not large. As r increases, we tend to observe in the data an
increasingly fewer proportion of all possible outcomes and subsequently we would
expect the resulting ECDF to deviate from the theoretical distribution. That said, the
deviations would only affect the classification measures and the determination of the
cutoff o∗ whether optimally or not, but they would not affect the read reassignment
procedure and the initial purging that retains all predicted real molecules (i.e. when
we set o∗ = 1) since the marginal distribution is not involved at this step.

Memory requirements. For data generated on the Hiseq 4000, the analysis
workflow does not require computational requirements beyond what is found on a
regular desktop with 32G of RAM. However, for Novaseq 6000 data with a large
number of multiplexed samples (e.g. S > 8), more memory would be needed - up to
150G if not more. In particular, the first step in the workflow consisting of joining
data from all samples into a datatable keyed by cell-barcode, UMI, and gene ID is
the most memory intensive.

Incorporating the sample barcode indices in the model. In this work, we
formulated a model for index hopping that treats all the four distinct sample barcodes
present in a given sample as identical. Even though we showed in Section 1.5 that
the sample barcode index hopping rate can be derived from the model nonetheless,
we have not used information from the sample barcode indices to reassign reads or to
purge phantom molecules. The model can potentially be expanded to incorporate
the 4 sample barcodes, but such an extension would be accomplished at the cost
of increased, if not prohibitive, computational and memory requirements since the
workflow would need to start with the FASTQ files, not the output of the CellRanger
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pipeline and furthermore, the read count data table would need to be joined and
keyed across 4 times the number of samples, potentially requiring more memory than
would be available on some clusters. We would like to point out that the main reason
we chose to formulate a model for index hopping at the level of samples and not
individual sample barcodes is that in the end, sample index hopping between reads
belonging to the same sample would not have any effect on downstream analyses
since no phantom molecules would be generated when a read in a given sample swaps
its sample barcode index with one of the other three barcode indices that are assigned
to the same sample.
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