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Abstract 

MUC1 ranks No.2 on the list of targets for cancer immunotherapy. We previously reported 

monoclonal antibodies binding to glycopeptide neoantigen epitopes centering GSTA sequence of 

the highly glycosylated tandem repeat region of MUC1.  Epitopes centering GSTA sequence are 

also predicted by NetMHC programs to bind to MHC molecules, although empirical data are 

lacking. Detecting isomeric MUC1 glycopeptide epitopes by mass spectrometry (MS) remains a 

technical challenge since antigenic epitopes are often shorter than 10 amino acids. MUC1 digests 

by Arg-C-specific endopeptidase clostripain could generate heterogenous icosapeptides, but 

isomeric 20-residue glycopetides could not be separated by liquid chromatography. In this study, 

we used pronase from Streptomyces griseus, which has no amino acid sequence preference for 

enzymatic cleavage sites, to digest a pair of synthetic glycopeptide isomers 

RPAPGST(Tn)APPAHG and RPAPGS(Tn)TAPPAHG, and analyzed the digests by LC-MS using 

electron transfer dissociation (ETD) and higher-energy collisional dissociation (HCD) methods. 

The results showed that glycopeptide isomers containing 8 to 11 amino acids could be efficiently 

generated by pronase digestion. Such glycopeptide isomers of minimal epitope lengths were 

clearly distinguished by characteristic MS/MS ion patterns and elution profiles of liquid 

chromatography. A glycopeptide library was generated which may serve as standards for 

measuring neoantigen epitopes centering GSTA sequence.   

 

Key words: MUC1; glycopeptide; mass spectrometry; electron transfer dissociation; neoantigen; 

epitope 
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Introduction 

MUC1 is a type I membrane glycoprotein currently ranked as number 2 on the list of targets for 

cancer immunotherapy (1-2). Its extracellular portion contains 20 to 120 or more tandem repeats 

(TR) of 20-residue sequence (HGVTSAPDTRPAPGSTAPPA) with five potential O-linked 

glycosylation sites through N-acetylgalactosamine to serine and/or threonine residues. It is 

expressed at low levels at the apical surface of most healthy glandular epithelial cells, with 

normal pattern of O-glycosylation. In tumor settings MUC1 loses its polarity and normal pattern 

of glycosylation to expose GalNAc (Tn) residue.  

 

We and others have dissected the abnormally glycosylated TR region as three antigenic motifs: 

PDTR, GSTA, and GVTS (2). The glycosylation of the three aforementioned peptide motifs may 

influence their binding to mAbs by several mechanisms. Identification of glycosylation site on 

above motifs is critical for dissecting the exact MUC1 antigenic epitopes for cancer diagnosis 

and therapy. For example, we have reported the expression of abnormally glycosylated GSTA 

neoantigen motif in non-small cell carcinoma cells (3-4).  

 

MUC1 glycopeptides may also be processed by MHC Class I and/or MHC class II pathway, and 

serve as neoantigen epitopes for T cells. Barnea et al. reported the elution of MUC1-derived 

NLTISDVSV sequence from HLA-A2 molecules in breast cancer cell line MCF-7, although 

glycosylated NLTISDVSV has not been reported (5-6).  Hanisch et al. reported the processing of 

a recombinant glycoprotein containing six MUC1 tandem repeats by mouse dendritic cells, that 

glycopeptides centering all PDTR, GSTA, and GVTS motifs could be generated by lysosomal 

protease digestion (7).  Ninkovic et al. reported the loading of SAPDT(GalNAc)RPAPG by 
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HLA-A2 molecule, that stimulated CTL cells (8). However, the direct detection of endogenous 

glycopeptides eluted from MHC molecules have not been reported.  

 

Significant progresses have been made for glycopeptide analysis in past decade. Databases (9-

10) and methods (11-31) for analyzing N-glycopeptides and O-glycopepitdes are accumulating, 

especially for site-specific glycosylation.  Obviously, data containing both identities of glycan 

structures and glycosylation sites are most valuable for their functional analysis, compared to 

data containing glycan structures or glycosylation sites alone.  

 

The accumulation of glycopeptide data benefit from most widely used MS ionization and ion 

activation techniques. Especially, electro-spray ionization (ESI) and electron transfer 

dissociation (ETD) greatly paved studies on O-linked glycosylation, allowing in-depth analysis 

of both O-glycan structures and the occupancy of O-glycosylation sites.  Levery and Clausen 

group published systemic analysis of O-glycopeptides in trypsin-digested proteins from CHO 

cells (21). Zhang group recently published site-specific extraction of O-linked glycopeptides in 

trypsin-digested tissues (31). However, no data has been available for the TR region of mucin-1 

protein yet due to the resistance of TR region to trypsin digestion. Muller et al. used Arg-C-

specific endopeptidase clostripain to digest human milk MUC1, which generated heterogenous 

icosapeptides starting with the PAP sequence. O-glycosylation sites were localized by post-

source decay matrix-assisted laser desorption ionization mass spectrometry or by solid phase 

Edman degradation (32). Sihlbom et al. used LC-MS with electron-capture dissociation (ECD) 

fragmentation method to analyze clostripain-digested icosapeptides, and could localize the O-
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glycoylation sites in heterogenous icosapeptides (33). However, the separation of isomeric 

icosapeptides could not be achieved by liquid chromatography.  

 

In this study, we tested the efficacy of pronase from Streptomyces griseus in digesting synthetic 

MUC1 glycopeptides, and generated short glycopeptides library containing 8 to 11 amino acids.  

 

Methods 

Synthesis of RPAPGST(Tn)APPAHG and RPAPGS(Tn)TAPPAHG. Antigenic epitopes for 

antibody binding are mostly shorter than 10 amino acids. We chose to use two synthetic 13-

residue glycopeptides, RPAPGST(Tn)APPAHG and RPAPGS(Tn)TAPPAHG, as the starting 

material for generating glycopeptides shorter than 10 amino acids. The chemical synthesis of 

glycopeptides was as described (3) using fluorenylmethyloxycarbonyl (Fmoc)-protected amino 

acids as the building blocks. The purity of synthetic glycopeptides were examined by reversed-

phase HPLC and MS determination of molecular masses.  

 

Pronase digestion of MUC1 glycopeptides. Glycopeptides were digested by pronase from 

Streptomyces griseus (Roche Diagnostics, Germany) according to the manufacturer’s protocol. 

In brief, 5 µg glycopeptides were digested in 100 µL Tris buffer (50 mM, pH 7.6) with 5 mM 

CaCl2 and 10 mg/mL pronase at 50 °C for 12 hours. The pronase was inactivated by heating to 

100 °C for 5 minutes. The digests were desalted by a home-made C18 reverse chromatography 

column, before analyzed by mass spectrometry.  

LC-MS/MS analysis of pronase digests of RPAPGST(Tn)APPAHG and 

RPAPGS(Tn)TAPPAHG 
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The pronase digests of both RPAPGST(Tn)APPAHG and RPAPGS(Tn)TAPPAHG were 

analyzed on an Orbitrap Fusion Lumos MS (Thermo Scientific, San Jose, CA, USA) coupled 

with a nano-ESI source and a Dionex Ultimate 3000 RSLCnano HPLC system.  

 

A C18 (Agilent ZORBAX 300SB, 5 μm, 300 Å) pre-column (360 μm o.d. × 200 μm i.d., 7 cm 

long) was used for sample loading. Chromatographic separation was performed on a 75-cm-long 

analytical column (360 μm o.d. × 75 μm i.d.) packed with the same C18 particles with the pre-

column; buffer A is composed of 99.9% H2O and 0.1% FA, and buffer B is composed of 99.9% 

ACN and 0.1% FA. The flow rate of the mobile phase was 300 nL/min with a multi-step gradient 

starting with 4% B: 8% B, 4 min; 30% B, 49 min; 100% B, 4 min; 100% B, 3 min. 

  

MS spectra were acquired as follows: mass resolution 60 k; m/z range 375-1800, max ion 

injection time 50 ms, automatic gain control (AGC) target 4e5, microscans 1, RF lens 40%. 

MS/MS spectra were acquired with the following settings: data-dependent mode, cycle time 3 s, 

isolation width 1.2 Th, first mass 100, ETD activation time 200 ms, ETD reagent target 2e5, 

ETD reagent injection time 200 ms, supplemental activation 35%, mass resolution 30 k, max ion 

injection time 200 ms, AGC target 5e4, microscans 1, dynamic exclusion 30 s, included charge 

states 2-7. The ESI conditions were as follows: spray voltage 2.2 kV, capillary temperature 

320 °C. 

 

Database search and peptide identification 

Database search and peptide identification from the LC-MS/MS datasets of the full-length 

synthetic peptides and their pronase digests were carried out using ProteinGoggle; the detailed 
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interpretation steps have been published elsewhere (34-39). Briefly, a customized peptide database 

was created for the full-length RPAPGS(Tn)TAPPAHG and RPAPGST(Tn)APPAHG,  as well as 

their pronase digests with GalNAc as a dynamic modification on either S or T, containing 

theoretical isotopic envelopes information of both the precursor and fragment ions (a, b, c, x, y, 

and z). Matched precursor and fragment ions were searched with the following 

IPACO/IPMD/IPAD parameters: 40%/15ppm/100%, 20%/15 ppm/50%.  

 

Results  

Synthesis and detection of GalNAc-modified MUC1 antigen epitopes centering GSTA motif.  

The shortest glycopeptides of MUC1 tandem repeat region that have been detected in the past were 

icosapeptides (20-residue glycopeptides) prepared from MUC1 protein digests by Arg-C-specific 

endopeptidase clostripain (32-33).  However, antibody-binding epitopes are often shorter than 10 

amino acids. We previously tested a 13-residue glycopeptide, RPAPGS(Tn)TAPPAHG,  which 

contains antibody binding sites for 16A (3), and synthesized its isomer RPAPGST(Tn)APPAHG.  

 

The glycopeptide RPAPGS(Tn)TAPPAHG was confidently detected as shown in the MS spectrum 

(Figure 1A) with IPAD value within 5% and IPMD value within 5 ppm. 18 matched fragment ions 

were observed in the MS/MS spectrum (Figure 1B, *=GalNAc), among which 8 contain GalNAc 

(as shown in the red box). We detected c6* (m/z 786.40936) and z7 (m/z 634.30573), the two 

theoretical glycosite-determining fragment ions.  

 

We also detected the glycopeptide RPAPGST(Tn)APPAHG (Figure 2A) with IPAD and IPMD 

values lower than 4% and 4 ppm, respectively. Also observed in this peptide included 18 matched 
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fragment ions in the MS/MS spectrum (Figure 2B, *=GalNAc),  among which 9 contain GalNAc 

(as shown in the read box) including c6 (m/z 583.33026) and z7* (m/z 837.38580). 

 

A MS/MS library of MUC1 antigen epitope glycopeptides with 8 to 11 amino acids.  

We further analyzed the pronase digests of chemically synthesized 13-residue glycopeptides. In 

contrast to trypsin, or Arg-C-specific endopeptidase clostripain, which are site-specific, the 

pronase cleaves peptide-bonds without sequence-specificity. The cleaved glycopeptides could be 

detected as listed in Table 1.  

 

For the pronase digests of RPAPGS(Tn)TAPPAHG, the 11-, 10- and 9-residue glycopeptides were 

successfully identified with unambiguous glycosite localization (Table 1). The 11-residue was 

observed with 9 matched fragment ions (Figure S1); b6*/c6* and y5/z5 are the four theoretical 

glycosite-determining fragment ions, and c6-1+* was actually observed. The 10-residue was 

observed with 11 matched fragment ions (Figure S2); b6*/c6* and y4/z4 are the four theoretical 

glycosite-determining fragment ions, and c6-1+* was actually observed. The 9-residue was 

observed with 10 matched fragment ions (Figure S3); b4*/c4* and y5/z5 are the four theoretical 

glycosite-determining fragment ions, and c4-1+* was actually observed. 

 

For the pronase digests of RPAPGST(Tn)APPAHG, the 11-, 10-, 9- and 8-residue glycopeptides 

were successfully identified with unambiguous glycosite localization (Table 1) as well. The 11-

residue was observed with 6 matched fragment ions (Figure S4); b6/c6 and y5*/z5* are the four 

theoretical glycosite-determining fragment ions, and c6-1+ was actually observed. The 10-residue 

was observed with 5 matched fragment ions (Figure S5); b6/c6 and y4*/z4* are the four theoretical 
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glycosite-determining fragment ions, and c6-1+ was actually observed. The 9-residue was 

observed with 14 matched fragment ions (Figure S6); b4/c4 and y5*/z5* are the four theoretical 

glycosite-determining fragment ions, and b4-1+, c4-1+ and y5-1+* were actually observed. The 

8-residue was observed with 8 matched fragment ions (Figure S7); b4/c4 and y4*/z4* are the four 

theoretical glycosite-determining fragment ions, and b4-1+ and c4-1+ were actually observed. 

 

Discussion 

Feasibility to distinguish MUC1 glycopeptide isomers shorter than 10 amino acids by LC-

MS methods. Our data showed that it is feasible to distinguish glycosite isomers of glycopeptides 

by LC-MS/MS method. The signature glycosite-determining fragment ions together with 

differential retention time can clearly separate the paired glycosite isomers of 

RPAPGS(Tn)TAPPA vs. RPAPGST(Tn)APPA, RPAPGS(Tn)TAPP vs. RPAPGST(Tn)APP, and 

APGS(Tn)TAPPA vs. APGST(Tn)APPA (Table 1).  

 

Feasibility to generate short MUC1 glycopeptide libraries by pronase. The TR region of 

MUC1 is resistant to trypsin digestion. Previous attempts to digest MUC1  by Arg-C-specific 

endopeptidase clostripain could generate heterogenous icosapeptides, but isomeric 20-residue 

glycopetides could not be separated by liquid chromatography (32-33).  To generate minimal 

epitope length glycopeptides for LC-MS identification, we digested the 13-residue glycopeptides 

by pronase from Streptomyces griseus. We could generate 9-, 10- and 11-residue short 

glycopeptide isomers which could be clearly identified by LC-MS/MS.  
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Among the pronase digests of RPAPGST(Tn)APPAHG, the 7-residue APGS(Tn)TAP was well 

observed in the MS spectrum (Figure S8A), and 8 matched fragment ions were observed in its 

EThcD MS/MS spectrum (Figure S8B); b4*/c4* and y3/z3 are the four theoretical glycosite-

determining fragment ions, but none of them was observed. Among the pronase digests of 

RPAPGST(Tn)APPAHG, the 7-residue APGST(Tn)AP was well observed in the MS spectrum 

(Figure S9A), and 7 matched fragment ions were observed in its EThcD MS/MS spectrum (Figure 

S9B); , b4/c4 and y3*/z3* are the four theoretical glycosite-determining fragment ions, but none 

of them was observed. 

 

The 12-residue digest of both RPAPGS(Tn)TAPPAHG and RPAPGST(Tn)APPAHG,  and the 8-

residue digest of the former were not identified in the current study; most likely, they are not 

abundantly produced during pronase digestion. Alternatively, it might be due to their inefficient 

ionization.  

  

In summary, our data established the LC-MS/MS identities of a clinically-relevant MUC1 

glycopeptide neoantigen epitope centering GSTA motif. A library of short MUC1 glycopeptides 

centered on GSTA motif was created, which is a critical step for analysis of such antigen epitopes 

in real biological samples.  
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Figure legends 

 

Figure 1. MS and MS/MS spectra for RPAPGS(Tn)TAPPAHG. (A) The isotopic envelope 

fingerprinting map of the precursor ion. Red squares indicate theoretical mass spectra, and black 

bars indicate experimental mass spectra. (B) The annotated MS/MS spectrum with the graphical 

fragmentation map; the fragment ions containing GalNAc are marked in red box. The glyco-site 

determining fragment ions are c6-1+* (*=GalNAc, m/z 786.40936) and z7-1+ (m/z 634.30573). 

Red bars indicate that the experimental mass spectra match with the theoretical mass spectra.  

 

Figure 2. MS and MS/MS profiles for RPAPGST(Tn)APPAHG. (A) The isotopic envelope 

fingerprinting map of the precursor ion. Red squares indicate theoretical mass spectra, and black 

bars indicate experimental mass spectra.  (B) The annotated MS/MS spectrum with the graphical 

fragmentation map; the fragment ions containing GalNAc are marked in red box. The glyco-site 

determining ions are c6-1+ (m/z 583.33026) and z7-1+* (*=GalNAc, m/z 837.38580). Red bars 

indicate that the experimental mass spectra match with the theoretical mass spectra. 
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Table 1. Short glycopeptides from pronase digests of RPAPGS(Tn)TAPPAHG and RPAPGST(Tn)APPAHG  
  

Amino acid  
sequence Sequence length Site-determining 

product ions 
MS-MS 
profile 

Retention time 
(min)  

RPAPGS(Tn)TAPPA 11 c6-1+* (m/z 786.41089) Figure S1 15.24 
-GS(Tn)TA- RPAPGS(Tn)TAPP 10 c6-1+* (m/z 786.40985) Figure S2 11.11  

APGS(Tn)TAPPA 9 c4-1+*(m/z 533.25671) Figure S3 12.17  
RPAPGST(Tn)APPA 11 c6-1+ (m/z 583.33124) Figure S4 11.15  
RPAPGST(Tn)APP 10 c6-1+ (m/z 583.33008) Figure S5 11.10 

-GST(Tn)A- 
APGST(Tn)APPA 9 

b4-1+ (m/z 313.15085) 
c4-1+ (m/z 330.17761) 
y5-1+* (m/z 659.32452) 

Figure S6 12.00 
 

APGST(Tn)APP 8 b4-1+ (m/z 313.15097) 
c4-1+ (m/z 330.17856) Figure S7 12.86 

 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/617308doi: bioRxiv preprint 

https://doi.org/10.1101/617308


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/617308doi: bioRxiv preprint 

https://doi.org/10.1101/617308


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/617308doi: bioRxiv preprint 

https://doi.org/10.1101/617308

