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Abstract 23 

We present a working model of the compensatory eye movement system. We challenge the model 24 

with a data set of eye movements in mice (n=34) recorded in 4 different sinusoidal stimulus 25 

conditions with 36 different combinations of frequency (0.1-3.2 Hz) and amplitude (0.5-8°) in each 26 

condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), 27 

optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions 28 

(the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model 29 

successfully reproduced the eye movements in all conditions, except for minor failures to predict 30 

phase when gain was very low. Most importantly, it could explain the non-linear summation of VOR 31 

and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition 32 

to our own data, we also reproduced the behavior of the compensatory eye movement system found 33 

in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions 34 

of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and 35 

characteristics of drift in the dark. Our model is based on ideas of state prediction and forward 36 

modeling that have been widely used in the study of motor control. However, it represents one of the 37 

first quantitative efforts to simulate the full range of behaviors of a specific system. The model has 38 

two separate processing loops, one for vestibular stimulation and one for visual stimulation. 39 

Importantly, state prediction in the visual processing loop depends on a forward model of residual 40 

retinal slip after vestibular processing. In addition, we hypothesize that adaptation in the system is 41 

primarily adaptation of this model. In other words, VOR adaptation happens primarily in the OKR 42 

loop. 43 

 44 
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Introduction 46 

Optimal control is a widely used paradigm in current models of motor behavior  (Frens and Donchin, 47 

2009; Haar and Donchin, 2019 [preprint]; Parrell et al., 2019 [preprint]; Shadmehr and Krakauer, 48 

2008). Optimal control suggests that the motor system operates in a "full feedback" mode: generating 49 

motor commands in response to the best guess regarding the current situation as opposed to using a 50 

pre-defined plan (Todorov and Jordan, 2002). However, it has proved very difficult to build optimal 51 

control models that make specific predictions for real, physiological motor circuits. In this paper, we 52 

address this gap by building a working quantitative model (Fig 1) of the compensatory eye movement 53 

system (CEM) starting from the ideas developed in the Frens and Donchin state predicting feedback 54 

control (SPFC) scheme (Frens and Donchin, 2009).  55 

Compensatory eye movement is a general term for several reflexes whose goal is to maintain a stable 56 

image on the retina during movements of the head by moving the eyes in the opposite direction 57 

(Delgado-Garcı́a, 2000). In other words, these reflexes serve to reduce retinal slip (movement of the 58 

visual image across the retina). The CEM system has a number of properties that make it a popular 59 

candidate for quantitative modeling of sensorimotor processes (Lisberger, 2009). First, its goal, 60 

minimizing retinal slip, is clear and invariant over time. Second, the dynamics of the system as a whole 61 

are close to linear. Third, the output only has three degrees of freedom. Moreover, horizontal CEM can 62 

be isolated from the other two degrees of freedom and treated as a system with a single degree of 63 

freedom. This is commonly done in the experimental literature, and it is our approach as well. However, 64 

since rotations are non-commutative, expanding the model to three dimensions is not trivial. 65 

We chose to model and perform experiments in mice because mice, being afoveate, lack a confounding 66 

smooth pursuit system. In afoveate animals like mice, the CEM comprises two reflexes: the vestibulo-67 

ocular reflex (VOR) uses vestibular input to predictively compensate retinal slip and the optokinetic 68 

reflex (OKR) is driven by the retinal slip itself. The two reflexes have roughly complementary 69 
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properties: the OKR performs well in low velocities and the VOR works well at high frequencies. The 70 

existence of these reflexes allows accurate compensation of the retinal slip velocity in normal behavior. 71 

However, a challenge for any model of the CEM is to explain the non-linear interaction between VOR 72 

and OKR. In many conditions, the combined action, with a gain of almost exactly one, is much less 73 

than the sum of the two reflexes driven separately.  74 

One possible explanation for their non-linear summation is that the OKR is capable of predicting the 75 

retinal slip that remains after the VOR. This is at the core of the model that we present. The current 76 

model is essentially hierarchical, with the vestibular and the visual components of the CEM handled 77 

in two distinct loops (see Fig 1). This is close to the traditional view of CEM which also incorporates 78 

two, more or less separate, mechanisms for the VOR and OKR (Wakita et al., 2017). The VOR operates 79 

in a partially open-loop fashion with feedback used to drive only the forward model of the eye without 80 

 

Figure 1. General layout of the model. Green areas are vestibular, orange areas are optokinetic. 

Hexagons represent Forward Models, ellipses are State Estimators. Dashed arrows indicate 

processes in the real world, solid arrows are neural processes. Details of the model are specified 

in the text and supplementary material. 
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modifying processing of the vestibular state itself. The OKR loop, on the other hand, incorporates 81 

forward models of the eye, the visual input, and also the VOR system. That is, the OKR not only 82 

predicts current retinal slip based on models of the environment and the eye movements, it also 83 

incorporates a model of the residual retinal slip that remains after the actions of the VOR loop.  84 

 We wanted a model that reproduces the main characteristics of mouse vVOR (rotation of the animal 85 

in the light, providing simultaneous visual and vestibular stimulation), without needing to carefully 86 

tweak the model parameters. Furthermore, the same set of parameters should then result in good 87 

predictions of responses in VOR, OKR and additional conditions, i.e. suppressed VOR (sVOR; 88 

simultaneous rotation of the animal and its visual surroundings), and responses to sum-of-sines (SOS) 89 

stimuli. Furthermore, in order to test the relation between the different pieces of the model and the 90 

underlying anatomy, lesions in specific parts of the model should mimic actual lesions in the associated 91 

brain structures.  92 

We also modeled adaptation. We postulate that the primary adaptation of the CEM system is in the 93 

OKR part of the system. This is consistent with experimental findings (as reviewed in the discussion) 94 

and also with our hypothesis that the OKR loop is more dependent on forward model prediction than 95 

the VOR Thus, adaptation of the CEM system (at least to first approximation) is mostly adaptation of 96 

the OKR model of VOR inaccuracies (Fig 1; Post-VOR Slip). An additional test of our model is that 97 

it should be possible to set the value of ζ adaptively, thus mimicking VOR adaptation  98 

Finally, in order to compare our model to data, we collected from mice in a large set of conditions 99 

(VOR, OKR, vVOR, sVOR, SOS), frequencies and amplitudes. Such a data set was lacking in the 100 

literature so that our contribution in this work, beyond a model that fits all existing data, is a 101 

comprehensive data set showing OKR behavior across a complete array of stimuli. 102 

103 
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Materials and Methods 104 

Model 105 

The model was implemented in Matlab (version 2016a; The MathWorks, Natick, MA, USA) and 106 

calculations were performed via matrix multiplication with a time step of 1 ms. Details are provided 107 

in the Supplementary Material.  108 

VOR: The mouse VOR uses vestibular input from the semi-circular canals (labyrinth) to compensate 109 

head movement (Delgado-Garcı́a, 2000). Vestibular afferents from the labyrinth project directly to VN 110 

with a small delay (2ms; Sohmer et al., 1999). Their activity accurately reflects head velocity at high 111 

frequencies but not at low frequencies (Robinson, 1981) due to filtering properties of the vestibular 112 

labyrinth (Yang and Hullar, 2007). Thus, in modeling VOR, the processing is quite simple (green areas 113 

in Fig 1). Since the system has no access to the actual head velocity, we use the vestibular signal as an 114 

approximation of the head velocity. Neither system dynamics nor the oculomotor command affect head 115 

dynamics. Note, therefore, that this model currently does not distinguish between active and passive 116 

head movements, i.e. it does not incorporate efference copy or proprioceptive information about head 117 

movement. 118 

The job of the second part of the control loop is to estimate the retinal slip that will be uncompensated 119 

by the VOR (Post-VOR Slip) and then compensate for it. Post-VOR slip arises from two sources: from 120 

changes in the velocity of the visual stimulus and from head movements not compensated by the VOR. 121 

These signals represent the predicted retinal slip for which the OKR needs to correct. The combination 122 

of this predicted retinal slip combined with an estimate of how much the OKR is moving the eye, gives 123 

the OKR’s forward model prediction of uncompensated retinal slip (right orange hexagon in Fig 1). 124 

OKR: In the mouse, the OKR originates in velocity sensitive neurons of the retina, which project 125 

through the Accessory Optic System (AOS) and Nucleus Reticularis Tegmenti Pontis (NRTP) to the 126 

vestibular nucleus (VN) and the vestibulo-cerebellum (Gerrits et al., 1984; Glickstein et al., 1994; 127 
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Langer et al., 1985). The VN output is sent to the brainstem nuclei, which drive the extra-ocular 128 

muscles. In the case of horizontal eye movements, these are the abducens nucleus (Ab), the oculomotor 129 

nucleus (OMN) and nucleus prepositus hypoglossi (NPH; Büttner-Ennever and Büttner, 1992).The 130 

OKR has a species-dependent response delay of 70-120 ms (van Alphen et al., 2001; Collewijn, 1969; 131 

Winkelman and Frens, 2006) primarily caused by the visual processing in the pathway from retina to 132 

VN (Graf et al., 1988). The retinal afferents saturate at high velocities (Oyster et al., 1972; Soodak and 133 

Simpson, 1988), causing non-linearities in the OKR in this range (van Alphen et al., 2001; Collewijn, 134 

1969). Thus, the OKR is ineffective in compensating high velocity (and thus often high frequency) 135 

visual stimuli. 136 

In our model, the OKR system models the effect of VOR as a linear correction for the sensed head 137 

velocity. That is, it assumes that VOR compensates for some fraction of the head movement. Thus, our 138 

forward model estimate of movement of the visual surrounding (Post-VOR Slip; left orange hexagon 139 

in Fig 1) will be updated by a factor proportional to head acceleration (See also Eq 29 in Supplementary 140 

text). The specific constant of proportionality,   , is discussed in the section on VOR adaptation below.  141 

As one can see in Figure 1, state estimation produces estimates of both Post-VOR slip, and 142 

uncompensated retinal slip (oval boxes). Post-VOR slip is retinal slip after VOR compensation and 143 

uncompensated slip is that remaining after the action of both systems. The state estimator approximates 144 

a Kalman filter, where gain was chosen by hand to match the data instead of being set at the Kalman 145 

gain (see Supplementary Material, Eq 42). Thus, through the model architecture, vestibular input only 146 

affects our estimate of the head velocity, and retinal input affects both our estimate of retinal slip and 147 

our estimate of uncompensated retinal slip. 148 

  149 
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VOR adaptation 150 

VOR adaptation occurs when gaze consistently fails to compensate head movement (Blazquez et al., 151 

2004; Schonewille et al., 2010; Shin et al., 2014). In a laboratory environment, a rotating visual 152 

environment can lead such failure (as described in the Methods below). This causes persistent changes 153 

in the VOR, such that retinal slip is reduced in the new situation. In our model, such a mismatch would 154 

affect the proportionality constant ζ. This is because the OKR system’s assumption that retinal slip is 155 

the result of inaccuracies in the VOR loop (see Supplementary Material).  156 

Parameters 157 

In the model only a few parameters were set to match the data. They were set to match data in the 158 

vVOR condition and then the same parameters were used for all conditions. Most variables were either 159 

taken from literature, or experimentally derived by us in separate experiments. Interestingly, it turned 160 

out that the model produced very similar behavior across a wide range of values for most parameters 161 

although it was sensitive to a few parameters (see table 1). As much as possible, parameters were 162 

determined from the literature or from our own data. For example, we determined the maximum VOR 163 

and OKR gains from our own data. We used the response to high frequency stimulation to set the 164 

maximum gain of the VOR in the model and the response to low velocity stimulation to set the 165 

maximum gain of the OKR in the model. The form of the non-linearity in retinal slip was fit to 166 

published results (Oyster et al., 1972; Soodak and Simpson, 1988). On the other hand, the filter of the 167 

vestibular afferents was shaped to achieve the best fit to the data. Ultimately, the filter that fit our data 168 

best was also compatible with the literature. We used a first order high pass filter with a time constant 169 

of 4 s (Yang and Hullar, 2007). Similarly, drift velocity and VOR adaptation speed were fit to data and 170 

later found to be compatible with the literature (Schonewille et al., 2010; Stahl et al., 2006). 171 

 172 
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Animals 174 

In order to test the model we recorded CEM in 13 C57Bl/6J mice (Charles River, Wilmington, MA, 175 

USA). We employed four different paradigms i.e. OKR, VOR, sVOR, and vVOR and in each condition 176 

we tested a wide range of frequency and amplitude combinations. Details on the experiments are 177 

described in the Supplementary Material. Additionally, we measured the drift of the eye back to a 178 

central position in the dark (N=6) and the rate of adaptation of the VOR (N=7), full details of the 179 

methods are described in the supplementary material. 180 

Prior to all eye movement recordings, mice underwent surgery to prepare them for head fixation and 181 

were allowed sufficient time to recover, details are provided in the supplementary material and the full 182 

procedure is described in van Alphen (2009).  183 

 

Figure 2. Schematic representation of the experimental setup. (A) Top view. A mouse in the setup, 

with its left eye in the center and surrounded by three screens on which the visual stimuli are 

projected. The visual stimuli were programmed and displayed in such a way that from the point of 

view of mouse it appeared as a virtual sphere. (B) Front view. A mouse placed in front of a hot 

mirror, which enabled the infrared camera underneath the table to record the eye movements. 
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During an experimental session, mice were immobilized by placing them in a plastic tube with the head 184 

protruding and the head fixation attached to the turntable with the eye in the central position. Eye 185 

movements were recorded via an infra-red video system (Iscan ETL-200, Iscan, Burlington, MA, USA) 186 

at a frequency of 120 Hz. Visual stimuli were presented using a modified projector (Christie Digital 187 

Systems, Cypress, CA, USA) displaying a panoramic field of 1592 green dots on virtual sphere fully 188 

surrounding the animal. Rotation of the sphere around the vertical axis provided the moving stimuli. 189 

Vestibular stimulation was provided via a motorized turntable Mavilor-DC motor 80 (Mavilor Motors 190 

S.A., Barcelona, Spain) on which the mouse and eye movement recording system were mounted. 191 

Further details are provided in the supplementary material and a schematic representation of the 192 

stimulus and eye movement recording apparatus in Figure 2. 193 

The VOR adaptation experimental paradigm consisted of an identical stimulus setup with the animal 194 

undergoing 6 VOR trials (1 min duration, 1 Hz, 5º) to measure the gain alternating with 5 sVOR trials 195 

(5 min duration, 1 Hz, 5º) to induce adaptation. 196 

Data Analysis 197 

Every mouse was tested once in each condition, and each stimulus consisted of at least 5 cycles. Full 198 

details of the analysis details are provided in the supplementary material. Briefly, following filtering 199 

and removal of fast phase eye movements gain and phase data was calculated by a Bayesian fitting 200 

procedure in OpenBugs (Version 3.2.3, http://www.openbugs.net, [Lunn et al., 2009] ) and Matlab 201 

curve fitting routines, for single sinusoid stimuli and for SoS stimuli respectively. The Matlab code 202 

and data required for replication of the analysis presented in this paper is available on the Open 203 

Science Framework website (https://osf.io/feq7c/). 204 

  205 
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Results 206 

Responses to sinusoidal stimulation 207 

The behavioral data that we present are in 208 

agreement with the values that have been 209 

previously published for the C57BL/6 210 

mouse strain (van Alphen et al., 2010; 211 

Faulstich et al., 2004; Schonewille et al., 212 

2011; Stahl et al., 2000). The VOR (Fig 213 

3) in the dark responded to high 214 

frequency stimulation, and the OKR (Fig 215 

4) was mainly active in response to low 216 

velocity stimuli (van Alphen et al., 2001). 217 

The vVOR (Fig 5) was more or less 218 

veridical over the whole stimulus range 219 

while suppression in the sVOR (Fig 6) 220 

paradigm mainly happened at low 221 

frequency/velocity conditions. 222 

In Figure 3 we show a comparison of 223 

experimental and simulated VOR. We 224 

see that there is a good match between 225 

simulation and average experimental 226 

response over the whole stimulus range. 227 

First, a high gain at high frequencies and lower gain at low frequencies is clearly observable. 228 

Figure 3. Summary of VOR data and simulation. In 

panel A the upper row displays results for 1° stimuli, the 

lower row for 2° stimuli. The panels show the stimulus 

in black (left: 0.2Hz; right 0.8Hz), with the simulated 

response (blue) and the mean measured responses 

(red). Shaded red regions represent the standard 

deviation (SD) of the population. Panel B are Bode plots 

for Gain (top panels) and Phase (bottom panels) for the 

simulated response (blue), individual mice with SD (red 

dots).Crosses in the Phase plots indicate conditions 

where the response was too small to determine a phase 

reliably. The left and right sides of Panel B represent 

bode plots for 1° stimuli and 2° stimuli respectively. 

Other stimulus conditions fitted equally well. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/617365doi: bioRxiv preprint 

https://doi.org/10.1101/617365
http://creativecommons.org/licenses/by-nc-nd/4.0/


  State Prediction Model of CEM 

 
12 

Furthermore, we see a phase lead at low 229 

frequencies which diminishes with increasing 230 

stimulus frequency.  231 

Figure 4 follows the same format as Figure 3 but 232 

compares simulation to experimental results for 233 

the OKR response. The simulation nicely 234 

predicts the main features of the OKR response. 235 

The gain decreases and the phase lag increases 236 

with increasing stimulus velocity. 237 

Figure 5 shows how well simulations predict 238 

experimental data for combined visual and 239 

vestibular stimulation (vVOR). In both the 240 

simulation and experimental data, we observe 241 

high gain and almost no phase lead or lag 242 

between response and stimulus. These results 243 

show that VOR and OKR have complementary 244 

results, which allows the combined system to produce excellent compensation of the retinal slip. 245 

Figure 6 depicts how the model fits experimental data generated during sVOR – suppression of the 246 

VOR response with visual input. The response in high frequencies looks very similar to that in VOR 247 

because OKR is not responsive in high frequencies (see Fig. 4), and hence cannot suppress vestibular 248 

triggered response. At low frequencies, there is a very small response, because VOR has low gain and 249 

is further suppressed by OKR. At these low frequencies, where the gain is low and variable, the model 250 

systematically misrepresents the phase of the eye movement. 251 

In order to examine the overall quality of fit in each of the four experimental conditions above, we 252 

calculated the Z-scores of the overall fitting quality. These are displayed in Figure 7. Note how the 253 

Figure 4. Summary of OKR data and 

simulation. This figure follows the format of 

Fig 3. Note that the phase response of stimuli 

with Gains < 0.25 could often not reliably be 

determined. 
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overall fit quality is good (“cool” colors 254 

in the heat map), with some poorer fits in 255 

the low frequency/high amplitude range 256 

of the sVOR condition. Because of the 257 

low amplitudes and high variability, the 258 

phase offset of the model at the lower 259 

frequencies does not lead to large Z-260 

scores. 261 

In addition to the comparison of model 262 

and data in terms of Z-scores (Fig 7), we 263 

also used the Bayesian estimates to 264 

generate probabilities for the model 265 

response falling outside the range of the 266 

behavior of a ‘typical mouse’. These 267 

tests were carried out for every 268 

frequency and amplitude combination 269 

and assessed the similarity of gain and phase separately, a combined probability was then generated 270 

from the product of these. The results of these tests are presented in the supplementary material. 271 

Overall the model responds within the range of a typical mouse for both gain and phase individually 272 

and when combined.  273 

  274 

Figure 5. Summary of vVOR data and simulation. This 

figure follows the format of Fig 3. Across the whole 

frequency range tested in both amplitudes there was a 

very good match of model to experimental data. 
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Model Dynamics 275 

The interaction of the different parts of the model in one of the conditions (vVOR, amplitude 2, 276 

frequency 0.2 Hz) are shown in Figure 8. The figure shows one cycle of the activity in each of the 277 

different areas being modeled during the steady state response to this stimulus. The top two boxes 278 

show that in this condition, the head is being rotated but the eyes are moving to keep the retinal slip 279 

at 0. The head rotation passes through the system in a feedforward manner to drive the vestibular 280 

controller. Additionally, this controller is modulated by knowledge of the eye position and velocity, 281 

driven by the forward model integration of the vestibular command. The figure also shows how the 282 

head rotation drives an estimate of the retinal slip that would remain uncompensated by the VOR 283 

Figure 6. Summary of sVOR data and simulation. 

This figure follows the format of Fig 3. Note that 

the phase response of stimuli with Gains < 0.25 

could often not reliably be determined. The 

pattern of the response in the behavioral data is 

clearly captured by the simulation. 

 

Figure 7. Summary of comparison of model and 

data for all amplitude and frequency 

combinations. The four panels depict the degree 

to which the model response matched the 

experimental data for the four conditions. The 

degree of similarity is expressed in terms of the 

number of standard deviations the model 

response was away from the mean behavioral 

response, cooler colors indicate a closer match. 

Across all amplitude and frequencies tested the 

model reproduces the experimental data well, 

with the possible exception of high amplitude, 

low frequency sVOR. Grey regions indicate 

conditions not measured in the experimental data 
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controller. This is labeled post-VOR slip. Post-VOR slip in turn drives the activity of the OKR 284 

controller. Note that in this condition, the system estimates that the VOR will over-compensate for 285 

the head rotation and the OKR controller generator actually generates a command that is roughly in 286 

counter-phase with that of the VOR controller. The success of the vVOR in generating eye 287 

movements that fully compensate for the head movement are the result of a balance between the 288 

VOR signal and the OKR signal. Without the balancing OKR signal, the gain of the VOR would 289 

need to be lowered to achieve veridical tracking, which would compromise the quality of the VOR. 290 

Figure 8 also shows that in this situation the OKR system has stabilized, such that retinal slip 291 

prediction error is 0. If there were prediction error, generated by either a transient visual or vestibular 292 

perturbation, this would drive an increase in the post-VOR slip which would then cause a transient 293 

Figure 8. An example of the model dynamics for one cycle of the simulation in the vVOR 

condition (Stimulation amplitude of 2 degrees at a frequency of 0.2 Hz) at a time by which the 

system has reached a steady state. The layout matches the model schematic presented in Figure 1. 

In each box the blue line represents the output of the computation performed, the green or orange 

line represents the appropriate stimulus, vestibular and visual respectively. In the Supplement we 

display the full model dynamics for the VOR and OKR conditions in isolation, respectively, for the 

same frequency and amplitude of stimulation.  
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increase in the OKR command to correct for the extra slip. The OKR system thus serves in two 294 

complementary roles: it generates a feedforward correction for the inaccuracies of the VOR system 295 

(the size of which is learned through adaptation, as described below) and it generates an error driven 296 

correction for unexpected retinal slip. The figure thus demonstrates the balance between the VOR 297 

command, post-VOR slip and OKR command that are necessary to achieve veridical tracking in the 298 

vVOR condition. Figures in the supplementary results show dynamic plots for other stimulus 299 

conditions and other frequencies and amplitudes, but it is this interaction which is the key innovation 300 

of our model. 301 

 

Figure 9. Summary of the model response to Sum of Sines stimulation for the model with normal 

retinal saturation (A) and with the saturation of retinal input removed (B). The response is 

described in terms of gains and lags relative to the gain and lag recorded in response to the 

single frequency component presented in isolation. A linear system will produce only relative 

gains of 1 and relative delays of 0, indicated by dashed horizontal lines on each plot. The pattern 

of nonlinearities produced by the full model (A) matches closely the nonlinearities found in 

behavioral data in response to the same stimuli (Sibindi et al 2016). Figure 6 of Sibindi et al 

(2016) is reproduced with consent as a supplement to this figure (Figure 7-figure supplement 1). 

The removal of retinal saturation eliminates the non-linearities expressed in the relative gains of 

the OKR and sVOR but those expressed in the relative lags of VOR and sVOR remain intact. 

Please note that the values for relative gain for the 0.6 Hz component of the 0.6/0.8 and 0.6/1.0 

Hz Sum of Sines in sVOR (panel A) are greater than 2 and the values are indicated on the bars. 
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Sum of Sines 302 

When the mouse OKR responds to sum-of-sines (SoS) stimuli, we have previously reported relative 303 

gain suppression of the lower of two frequencies in the stimulus. Conversely, in sVOR, results showed 304 

gain enhancement in the lower frequency component. In both sVOR and VOR, an overall decrease in 305 

phase lead was observed. For more details see (Sibindi et al., 2016). When applying these stimuli to 306 

the model, the main pattern of  effects is reproduced. Thus, we find qualitatively similar changes in 307 

both the relative gain and delay of the constituting frequencies (Fig 9A). Importantly, removal of retinal 308 

saturation eliminates the non-linearities expressed in the gain of the response (Fig 9B).  309 

VOR Adaptation 310 

Perhaps counterintuitively, VOR adaptation occurs as a result of changes in the OKR's model of VOR. 311 

Adaptation modifies the OKR's prediction of post-VOR slip. Thus, adaptation in our model involved 312 

allowing the parameter ζ to vary in response to retinal slip prediction error using gradient descent. As 313 

derived in the supplementary material, the gradient is in the direction that decorrelates head 314 

acceleration and retinal slip prediction error. The minimum error had a broad basin of attraction. Thus, 315 

regardless of the starting value of ζ, it always converged to the same value of -0.6, if the stimulation 316 

frequency was kept constant at 1 Hz. The value to which ζ converged depended on stimulus frequency 317 

but not amplitude. Nevertheless, for a broad range of frequencies ζ assumed a value around -0.6. 318 
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The adaptation protocol reduced the gain of the VOR in mice to around 50% of its original value (Fig 319 

10), comparable to that which has been previously described in literature (Schonewille et al., 2011).  320 

Effects of lesions 321 

In the model we simulated a lesion of the flocculus and a lesion of the NPH. The way in which this 322 

should be done in the model depends on the role that is ascribed to either structure (see Discussion).  323 

 

Figure 10. Time course of gain decrease adaptation of the VOR in response to repeated sVOR 

stimulation. The decrease in gain measured experimentally (red) with confidence limits 

representing SEM (shaded region) matches that produced by the model (blue line) in response to 

the same paradigm. Simulating a flocculus lesion in the model (purple line) by removing the four 

forward models produces a complete abolishment of adaptation, whereas an NPH lesion (orange 

line) left the adaptation intact. 
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Flocculus lesions 324 

We modeled a lesion of the flocculus by removing all the Forward Model boxes (Hexagon boxes in 325 

Figure 1). Figure 11A shows the result. The OKR is virtually absent. Meanwhile VOR gain is 326 

increased, and VOR phase increases at low frequencies. Following a model floccular lesion, the VOR 327 

did not adapt (Fig 10).  328 

NPH lesions 329 

If one believes the NPH to be part of the controller (Green et al., 2007), a lesion of the NPH would 330 

mean removing the inputs of the two outer hexagonal Forward Model boxes of Figure 1. A lesion of 331 

the flocculus would then be setting the values of all Forward Model boxes to a constant value of 0.  332 

Figure 11. The effect of simulated lesions of the flocculus (A) and NPH (B) in the model on 

compensatory eye movements. The intact (blue line) and lesioned model response are summarized 

in Bode plots for the four conditions with the gain and phase presented in the left and right columns 

respectively. Following a simulated flocculus lesion removal of the forward model stage produces 

an increase in the VOR gain and phase and an almost complete loss of the OKR response. Due to 

the loss of the OKR component the response in the vVOR and sVOR conditions is almost identical. 

Similarly, the greatest effect of a lesion of the NPH was on the OKR response with a large decrease 

in gain and decrease in phase lag 
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Alternatively, if one believes the NPH is the oculomotor integrator (Cannon and Robinson, 1987), an 333 

NPH lesion means setting the output of (outer, hexagonal [Fig 1]) integration boxes to 0. A lesion then 334 

only affects the two inner FM boxes of Figure 1 (“post-VOR slip” and “uncompensated slip”). We 335 

tested both manipulations. 336 

Both types of lesion of the NPH resulted in exactly the same result. This is not surprising, since they 337 

are equivalent to setting the input to the integration step to 0, or setting the output to 0.  Both produced 338 

a small effect on the VOR with a decrease in gain at low frequencies, reflecting the mainly feed forward 339 

nature of response. OKR in contrast was greatly affected with a large decrease in gain (Figure 11B). 340 

As expected (see discussion), the lesion also had an effect on the drift of the eyes back to the center in 341 

the dark, decreasing the time constant from 2.83s to 0.31s. Stahl et al (2006) report a time constant on 342 

the order of 5s for the neural integrator in C57BL/6 mice, although there was considerable variation 343 

between mice and over time.  344 

Cheron et al  (1986a, 1986b) made lesions in the NPH of cats. They show that such a lesion reduces 345 

low frequency VOR responses and completely abolishes OKR. However, the gain and phase 346 

measurements do not depict the full nature of the changes in the response to OKR. When applying low 347 

velocity stimuli, the OKR in our model becomes noisy and dominated by oscillations at the time points 348 

in which stimulus velocity is highest (Fig 12).  349 

In our model, NPH lesions do not affect adaptation to the sVOR stimulation at 1Hz (Fig 10), because 350 

the individual reflexes at that frequency are relatively unaffected, and the site of plasticity is not 351 

lesioned.  352 

Effect of Lesions on Dynamics 353 

To better understand how the different lesions affect the internal dynamics of the model, Figure 12 354 

presents the post-VOR slip and the activity of the visual, vestibular and combined controllers in each 355 
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of the lesion conditions for each of the four different stimulus conditions. There are a number of key 356 

findings. First, both the floccular and NPH lesion have the same effect on the vestibular command. 357 

This is because both lesions impact the vestibular command by eliminating forward model estimation 358 

of eye eccentricity. This leads to a decreased amplitude and increased phase lag in the vestibular 359 

command. Meanwhile, it can be clearly seen that the NPH lesion primarily affects the magnitude of 360 

the OKR. 361 

  362 

Figure 12. Summary of the dynamics of key components of the model in all four stimulation 

conditions (VOR, OKR, vVOR and sVOR) for the full model (blue) and the simulated Flocculus 

(purple) and NPH lesions (orange). The first column of plots represents the output of the VOR 

controller, second column displays the forward model of Post-VOR Slip, the third and fourth 

columns depict the commands produced by the OKR controller and the Plant respectively. In all 

plots the relevant stimulus is also displayed. 
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Discussion 363 

Brief summary of results 364 

Frens and Donchin (2009) proposed that CEM can be modeled by an SPFC framework where specific 365 

functional roles can be ascribed to specific nuclei in the CEM circuitry. Here, we measured –for the 366 

first time- VOR, OKR, vVOR and sVOR over a large range of frequencies and amplitudes in the same 367 

animals. We then implement the SPFC framework in a detailed computational model which can, with 368 

a single set of parameters, mimic the behavior of OKR and VOR (Fig 3, 4 and 7). With the same set of 369 

parameters, the model also reproduces vVOR, sVOR (Fig 5, 6 and 7) and non-periodic SoS-stimuli 370 

(Fig 9). Furthermore, it successfully predicts the effects of lesions (Fig 11 and 12) and has adaptive 371 

behavior, similar to VOR learning (Fig 10). 372 

The strength of this model is that it has relatively few critical parameters (see table 1) and that the 373 

critical parameters can be straightforwardly experimentally derived. This is an advantage over other 374 

SPFC-like models that address other motor systems (Shadmehr and Krakauer, 2008). 375 

Key to the model are two distinct circuits for VOR and OKR. The VOR loop is relatively simple, and 376 

mainly consists of an integration step. In traditional models (for review see Glasauer, 2007), the OKR 377 

responds to actual retinal slip. However, due to the relatively long delay of the visual processing, the 378 

OKR response would then typically respond late. OKR state estimation in our model resolves this by 379 

predicting retinal slip. Both the VOR and the OKR loop contribute to this internal estimate of 380 

(uncompensated) retinal slip. This combined contribution is necessary, since the OKR assumes that the 381 

vestibular system will only partially resolve the retinal slip. While the reality may be more complex, 382 

the idea that the OKR models the VOR was the only way that we could explain the relatively high 383 

gains of both the OKR and VOR systems in isolation with the veridical gain of the two systems 384 

combined.  385 

 386 
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Finally, our model implements adaptation as a recalibration of this OKR estimate of VOR slip 387 

compensation. This helps explain why floccular lesions have a stronger direct effect on OKR but also 388 

disrupt VOR adaptation.  389 

The non-linear response to SoS stimulation 390 

In addition to reproducing the response to sinusoidal stimulation in a wide range of conditions, the 391 

model also matched responses to SoS-stimuli that are identical to those previously used by (Sibindi et 392 

al., 2016). Strikingly, two non-linearities reported in the results of that study were reproduced: The 393 

first is that when confronted with a stimulus that consists of two non-harmonic optokinetic sinusoids, 394 

the amplitude of the lower frequency is suppressed, independent of the absolute value of the constituent 395 

frequencies. This then also results in changes in the amplitudes in vVOR and sVOR conditions. The 396 

second is that the lag of the response to the lower frequency is larger, resulting in a delayed overall 397 

response. This can be seen for both VOR, OKR and its combinations. 398 

The model has one non-linearity specifically built in: the saturation of the visual motion sensitive 399 

neurons in the retina (see Eq 8 in the Supplementary Material). Explicitly removing this saturation 400 

eliminated the gain decrease and delay increase of the OKR and vVOR, but left the increased delays 401 

in the VOR and sVOR unaffected (Fig 9). 402 

These modeling results support the hypothesis that Sibindi et al. used to explain their results: increased 403 

delays may be a result of the circuit properties. That is, they suggest the forward model fails to predict 404 

upcoming retinal slip in complex stimuli. Our results also support their hypothesis that the gain changes 405 

are probably the result of non-linear retinal processing. 406 

  407 
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The role of the flocculus 408 

The flocculus acts as a forward model for both the VOR and the OKR loop. However, the role it plays 409 

in each reflex is completely different. The flocculus is not critical for VOR performance, as animals 410 

lacking Purkinje cells do have an intact VOR although the amplitude of the response is significantly 411 

higher (van Alphen et al., 2001). While our model does include a forward model and state estimator 412 

for head velocity, this is only a formal result of the structure of the model. In fact, our model ignores 413 

the results of the forward model and uses the sensory information exclusively to determine head 414 

velocity. Thus, the role of the forward model (green hexagon in Fig 1) in this system is actually only 415 

to integrate eye velocity into eye position. For the OKR loop the forward model helps to overcome the 416 

delay in the OKR feedback loop, and it is crucial to provide information about the estimated post-VOR 417 

slip. 418 

We mimicked lesioning the flocculus by removing the output of the forward models. This removed 419 

the capability of the system to predict upcoming retinal slip. As a result, the optokinetic response was 420 

virtually abolished whereas VOR gain substantially increased (Fig 11A). Lurcher-mice, a mutant 421 

strain that lacks Purkinje cells, have substantially lower OKR gains than their wild type littermates 422 

(van Alphen et al., 2002). Lurcher-mice results are also similar to a floccular lesion in our model in 423 

that VOR-gain is increased. Results on VOR gain in acute, non-genetic floccular lesions are mixed 424 

(Rambold et al., 2002).  425 

We can understand the results showing increased VOR gain in Lurcher mice using our model: the 426 

OKR generally acts to suppress the VOR and a floccular lesion releases this suppression. This 427 

interpretation leads to the further prediction that floccular lesions will reduce the effect of visual 428 

suppression of the VOR, increasing gains in the sVOR. This is true in our model as well as being 429 

compatible with the literature (Belton and McCrea, 2000; Takemori and Cohen, 1974; Zee et al., 430 

1981). 431 
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The change in phase of VOR response that is seen in Lurcher mice (van Alphen et al., 2002) can be 432 

modeled  only if we include the VOR integration stage in the flocculus. This supports the view of 433 

Green et al (2007) that the NPH provides an efference copy that is integrated in the flocculus (see 434 

below). 435 

The role of the NPH 436 

Our model provides a potential resolution to a debate about the role of the NPH in eye movement 437 

generation. In Robinson's inverse-model framework, the NPH is thought to act as the neural integrator 438 

for horizontal eye position. Such an integrator is necessary to provide the abducens nucleus with both 439 

velocity and position commands that are needed to overcome the low-pass filtering properties of the 440 

plant (Robinson, 1981). This view has been widely adopted by researchers in the oculomotor system. 441 

A critical finding supporting this view is from Cannon and Robinson (1987) showing that lesions of 442 

the NPH cause the eye to drift towards the center of the oculomotor range. This is compatible with the 443 

loss of an integrator that opposes the elastic restoring forces of the plant. However, more recently Green 444 

et al. (2007) showed that the burst tonic neurons of the NPH have activity that is nearly identical to 445 

that of the motor neurons in the abducens nucleus. Furthermore, these neurons have direct projections 446 

to the flocculus (Belknap and McCrea, 1988; Langer et al., 1985; McCrea and Baker, 1985). On the 447 

basis of these findings, they proposed that the NPH provides efference copy input to a cerebellar 448 

forward model (Ghasia et al., 2008; Green et al., 2007). This view was also incorporated in our SPFC 449 

(Frens and Donchin, 2009). Thus, in our model, an NPH lesion removes input to the forward models. 450 

However, when we lesion the NPH projection in our simulation (by removing efferent copy to the 451 

forward model or by removing its output), we found that we had reproduced the Cannon and Robinson 452 

(1987) result: the time constant of the drift was reduced. Hence, a lesion of the efference copy 453 

projection produces the same results as those thought to support the idea that NPH is an integrator. It 454 
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seems that the Canon and Robinson (1987) results are compatible with both models while recent 455 

anatomical and physiological findings support the idea of efferent copy. 456 

VOR Adaptation 457 

Within our framework, VOR adaptation happens through adaptive changes in the forward model of 458 

VOR used by OKR. OKR assumes that VOR will correct a certain fraction of sensed head velocity. 459 

Determining the proportionality constant robustly led to the same value regardless of stimulus 460 

amplitude over a wide range of frequencies. When challenged with an adaptation stimulus, the model 461 

gradually changed its gain. Of course, the rate of adaptation could be set arbitrarily. Our setting led to 462 

an adaptation speed that is very similar to what we experimentally found in mice under identical 463 

experimental conditions. To our knowledge, we are the first to suggest that VOR adaptation reflects 464 

adaptation of a forward model of VOR output. However, the idea is compatible with the recent 465 

suggestion that VOR adaptation is driven by the motor consequence of retinal slip rather than the slip 466 

itself (Shin et al., 2014). Floccular lesions in our model abolish VOR adaptation, which is in line with 467 

the literature (Schonewille et al., 2010). NPH lesions do not affect adaptation at 1 Hz in our model, but 468 

to the best of our knowledge there is no literature to corroborate this finding. 469 

Although our model is capable of adaptation, we believe that adaptation in the biological system is 470 

probably more complex than that in our model. Biological adaptation seems to reflect plasticity at 471 

multiple sites with multiple time constants (Clopath et al., 2014; Gao et al., 2012; Porrill and Dean, 472 

2007). The introduction of more realistic adaptation and testing adaptation at higher and lower 473 

frequencies is an important future extension of the current model.  474 

Relationship to Other Models 475 

The CEM system is a popular candidate for computational modelling due to the known anatomical 476 

substrates and the restricted degrees of freedom. Theories of motor control are primarily based on one 477 
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of two main architectures. One theory suggests that the motor system relies on generating an ideal 478 

"desired movement" or "desired trajectory" that serves as a basis for subsequent control. Such an 479 

architecture faces a number of key challenges: generating the desired trajectory, translating it into 480 

motor commands, and correcting for deviations during online control. At the heart of such a system is 481 

an "inverse model" which translates desired movement into motor commands (Jordan and Rumelhart, 482 

1992). The literature in the CEM system contains a long tradition of such models (for example: Clopath 483 

et al., 2014; Glasauer, 2007; Kawato and Gomi, 1992; Lisberger, 2009; Robinson, 1981). In general, a 484 

desired motor command is fed to the brainstem, which then acts as an ‘inverse plant’, i.e. it processes 485 

the command in order to overcome the low-pass properties of the extraocular muscles and tissues that 486 

are connected to the eye. 487 

The key innovation in our model is the use of recurrent cerebellar-vestibular nuclei loops which enable 488 

the model to function correctly in the presence of considerable motor and sensory noise and in the 489 

presence of significant delays in sensory feedback. There exists anatomical evidence for such loops 490 

(Büttner-Ennever and Büttner, 1992) and proposals for their functional significance have been made 491 

previously (Porrill et al., 2004).  492 

Since the optimal control framework was originally proposed as an approach to understanding 493 

vertebrate motor systems, models of this sort have been implemented in the control of various motor 494 

tasks. The implementations closest to our model are those that attempt to describe coordinated head 495 

and eye movements during gaze shifts (Sağlam et al., 2011, 2014; Todorov and Jordan, 2002). One 496 

somewhat similar model has been proposed to describe the CEM system (Haith and Vijayakumar, 497 

2007).The Haith model is built largely to address adaptation to changing dynamics, an issue not 498 

addressed by our data or our model. Additionally, the Haith model is not confronted with actual data. 499 

In sum, our model is unique in a number of respects: (1) the extensive data with which it is challenged, 500 

including lesion data and non-sinusoidal data, (2) the idea that one of the main drivers of adaptation is 501 
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compensation of the OKR system for predicted VOR error, (3) the development of a fully realized 502 

recurrent model of the CEM system in the spirit of the optimal control feedback framework. 503 

  504 
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Table 1 637 

 Value Eq. Meaning Is it critical? How was it set? 

dt 1 ms  Time step   

pT  0.5 sec 1, 2, 

15, 

17, 

24, 

33, 

38 

Leaky integrator time 

constant for motor nuclei 

No (Stahl and Simpson, 1995; 

Stahl et al., 2015) 

vT  4 sec 3, 15 Low pass filter constant for 

the vestibular inputs 

Yes Fit to data. Close to value 

found for actual vestibular 

afferents by Yang and Hullar 

2007 (3 sec). 

V  2 ms 5, 20 Vestibular sensory delay No  

Va  0.1 6, 16 Vestibular sensory noise 

proportionality constant 

No Middle of the stable range 

maxR  0.65 deg/sec 8 Retinal saturation Yes Oyster et al, 1972 

R  70 ms 9, 

20, 

31 

Visual processing delay Yes Van Alphen, 2001 

Ra  0.1 10, 

16 

Visual sensory noise 

proportionality constant 

No Middle of the stable range.  

ua  0.1 15, 

16 

Motor noise No Middle of the stable range 
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Ζ -0.6 29, 

33, 

38, 

48 

Assumed VOR inaccuracy No Fit to match VOR 

performance in the dark. 

V  1 22, 

42 

Kalman gain of vestibular 

input 

No Set so VOR is not eliminated 

by floccular lesion 

T  0.05 30, 

42 

Kalman gain for the effect of 

retinal slip prediction error 

on assumed external motion 

(post-VOR retinal slip) 

No Fit to data 

,R k  0.05 31, 

35, 

42 

Kalman gain for the effect of 

retinal slip prediction error 

on estimate of 

uncompensated retinal slip 

No Fit to data 

  1

150e  

44 Discount parameter for cost 

function 

No Fit to produce credible drift in 

the dark 

  2 44 Weight of position factor in 

cost function 

No Fit to produce credible drift in 

the dark 

 100,000  Number of terms kept in 

infinite cost function sum 

No Arbitrary 

 638 

Table 1. Overview of all parameters used in the model, their values, the equations they are used 639 

(described in Supplementary Material), and a short description of their meaning. The last two columns 640 

describe whether they are critical, and how they were set. We determined how critical the parameters 641 

were, by varying them over an order of magnitude, and observing the changes in results. 642 

  643 
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Supplementary Material  

Title: A neuroanatomically grounded optimal control model of the compensatory eye movement 644 

system. Holland et al.  645 

1 Overview of Model 646 

This section describes the details of the model of the CEM described in the main text. The description 647 

provides all of the equations used in sufficient detail for the model to be implemented, although the 648 

actual Matlab code is available on the Open Science Framework website (https://osf.io/feq7c/). The 649 

model was implemented in Matlab R2016a (The MathWorks, Natick, MA).  The time step for the 650 

simulation used was 1 ms. 651 

 652 

This section is divided into subsections that describe the implementation of the plant and the control 653 

system. In the section on the plant, we describe both the effector and input implementations. The 654 

effector implementation is a model of how firing in the oculomotor nuclei affects muscle activation, 655 

and how that drives eye movement. The inputs we model are the vestibular and the retinal inputs to the 656 

system. The description of the control system is divided into three parts: the actual state dynamics; the 657 

system’s estimate of state; and the transformation of state estimate into motor command. 658 

1.1 The plant 659 

In this section we describe the dynamics of eye movement as a function of the firing rate of neurons in 660 

motor nuclei (OMN/AB) that project to eye muscles.  Output of the OMN/AB innervates the horizontal 661 

rectus muscles, which are responsible for horizontal eye movements. These nuclei are reciprocally 662 

activated and project to muscles that move the eyes in opposite directions. Hence eye velocity depends 663 
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on the difference between OMN and AB activities.  The transfer function of these nuclei for the monkey 664 

has been described using the formula (Robinson, 1981): 665 

p
E CuT E    (1) 666 

(Where E  is eye position, u  is motor command from the OMN/AB, and C and pT  are the gain and 667 

time constants, respectively). The motor commands from the two nuclei were not separately modelled, 668 

but rather their activity was represented in a combined manner as the sum of two oppositely signed 669 

command signals. 670 

Eq. (1) describes a leaky integrator with leakage time (in s). In monkey, pT has been estimated at 0.24s 671 

and in rabbits it can be estimated from the work of Stahl and Simpson (1995)  and more recently for 672 

mice in Stahl et al. ( 2015) to be 0.5s. We ran our simulation both with 0.24 spT   and with 0.5 spT 673 

, and saw no difference in the results. For this paper, we present results using 0.5spT  (see Table 1). 674 

For the purpose of the model, we absorbed the constant C  into the definition of u , so that our motor 675 

command was specified in °/s rather than in units of firing rate: 676 

 

 

677 

  (2) 678 

 679 

1.2 Sensory Signals 680 

Compensatory eye movements are driven by two different sensory signals – vestibular and retinal.  In 681 

this section we describe the biological processes behind these sensory signals and the numerical models 682 

that can be used to describe them.  683 
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 684 

1.3 Vestibular input 685 

Vestibular input is created by the semicircular canals in the inner ear.  We transformed the head velocity 686 

to sensory signal in three steps: linear filtering, velocity-sensitive transformation, and delay. At high 687 

frequencies, canals sense head rotation velocity with high accuracy. However due to the physical 688 

properties of the sensor, the accuracy is not good at low frequencies  689 

  (Robinson, 1981). Thus, the semicircular canals can be best described as a high pass filter that acts 690 

on head velocity: 691 

(1)(1) 1

v

V H
T

V      (3) 692 

Where  1
V  is the first stage of the neural signal generated by the velocity sensitive vestibular afferents 693 

(as opposed to V , the internal representation of head velocity) that are driven by the actual rotational 694 

head velocity, H ,  and VT  is the filter constant that defines the effective sensitivity range of the 695 

afferents. The value of VT  differs between species. In mice this constant was measured in Yang and 696 

Hullar (2007). While they fit their data using a fairly complex transfer function (here reproduced in its 697 

original Laplace-domain notation): 698 

   
 

0.033.0
0.09 0.2 1

3.0 1 0.007 1

s
s

s s


 
  (4) 699 

A first order approximation of the formula, and neglecting the leading constant, gives us Eq. (3). Over 700 

the relevant frequency range, the two functions are nearly identical, with 3secvT 
 
for regular 701 

afferents of the horizontal semi-circular canal that project to the vestibular nucleus. Van Alphen et al. 702 

(2001) found that a lower time constant is needed to explain VOR experimental data. It is possible that 703 

additional filtering in the input synapses of the vestibular nucleus explains the difference between the 704 
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constant measured in the afferents and that seen behaviorally. However. we found that our behavioral 705 

data was best matched by a constant very close to that found by Yang and Hullar (2007), 4secvT  .  706 

Subsequently, we introduced a delay and added noise:   707 

 
,

1

V
k V kk V nV




   (5) 708 

The vestibular delay ( 2 msV  ) represents the physical response time of the semi-circular canal and 709 

the neuronal transmission delay (Sohmer et al., 1999) . The noise ( ,V kn ) has a standard deviation 710 

proportional to the size of the vestibular signal (with constant of proportionality Va , with the tilde,∼, 711 

meaning “distributes as” and  2,N    is the normal distribution with mean   and variance 2 ):  712 

𝑛𝑉,𝑘 ∼ 𝑁(0, 𝑎𝑉
2𝑉̇𝑘

2)  (6) 713 

Since vestibular inputs depend only on head movement and head movement is determined by the 714 

experiment, the behavior of the system has no effect on vestibular inputs. Thus, we calculated these 715 

signals offline before running the simulations and introduced them directly as input. 716 

1.3.1 Retinal Input 717 

Visual information is provided by motion sensitive neurons in the retina  (Yoshida et al., 2001). Those 718 

neurons sense local velocity of the image on the retina (often called retinal slip). In our experiments, 719 

the entire retina experiences the same retinal slip, and it is equal to:  720 

k k k kR H E T     (7) 721 

Where R  is retinal slip velocity, in °/s, T  the velocity of the visual surroundings in °/s, and E  is the 722 

velocity of the eye relative to the head (generated as described above in Eq. (2).  723 
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The retinal motion sensitive neurons are linear in a limited range. In rabbits, sensitivity peaks at about 724 

0.6 °/s (Oyster et al., 1972), with neuronal firing rates increasing through this range, but then dropping 725 

off  for higher velocities. At 10 °/s the neurons are unresponsive.  Neurons in the AOS (the retinal 726 

target driving OKR) have shown similar properties (Soodak and Simpson, 1988) .  Currently available 727 

data does not give the precise saturation point for the motion processing system of the mouse. In order 728 

to fit our data, our model assumes saturation of max 0.65 deg/secR   and a piece-wise linear response 729 

function, representing a population code of neurons that individually drop off at values between 0 and 730 

Rmax:  731 

 
max max

max max

max max

k k

k k

k

R

R R R R

h R R R

R R R

  


 
  

  (8) 732 

The processing of visual signals adds substantial delay to the retinal feedback (Collewijn, 1969). Our 733 

model uses the value of 70 msR   proposed for the delay in mice (van Alphen et al., 2001) : 734 

  ,R R kRk kR h R n



     (9) 735 

With kR


 the current internal representation of retinal slip, and ,R kn  being the retinal noise, which has 736 

standard deviation proportional to the retinal activation (with a constant of proportionality
2

Ra ): 737 

𝑛𝑅,𝑘 ∼ 𝑁(0, 𝑎𝑅
2𝑅𝑘

2)  (10) 738 

1.3.2 Full system dynamics 739 

The above descriptions of the oculomotor plant and the retinal and vestibular input are combined to 740 

make a nearly linear state equation for the plant. Thus, we use a standard linear systems formulation 741 

(Frens and Donchin, 2009) with the state of the system at time k , kx  , undergoing a particular dynamics 742 

specified by the matrix A . In addition, the state is influenced by three factors: the command signal, ku743 
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, affects the state through a matrix, B  , that specifies how each part of the command signal influences 744 

each element of the state; the external input, kz , represents the influence of the external world on the 745 

state; also, the state is influenced by noise, kn . Finally, this state leads to sensory input (often called 746 

the observation), ky , through a matrix, D . Altogether, this leads to what is called the system equations: 747 

1k k k k

k k

kx Bu z n

y Dx

Ax

   


  (11) 748 

These system equations are linear. Each piece of this equation is treated in detail in the paragraphs that 749 

follow. 750 

The state at time step k is represented by the following vector:  751 

, , , , 1 70 1 2k k k k V k V k k k R k R k k k k k kx H H V E E T T E E R R R V V   
   

 

  (12) 752 

The state includes time-delayed versions of the retinal and vestibular sensory signals. kR  represents 753 

the retinal input being generated at this instant (based on the current eye velocity) and 1kR   through 754 

70kR   represent increasingly delayed versions. The observation matrix, Eq. (20), is such that only the 755 

fully delayed retinal slip, 70kR  , is available to the state estimation.  The vestibular input is not affected 756 

by the behavior of the system, so it was generated offline according to Eq. (3) and delayed by 2 ms 757 

according to Eq. (5).  758 

kz  is the external input and includes the change in the actual head velocity, vestibular sensory signal, 759 

and movement of the visual stimulus. These signals can all be generated offline before running the 760 

simulation. The vector can be written as:  761 

 0 0 0 0 0 0 0 0 0 0 0 0 0k k k kz H V T      (13)   762 
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kn  is the noise in the system. It affects eye velocity as well as vestibular and retinal input, so it can be 763 

written as: 764 

 0 0 0 0 0 0 0 0 0 0 0 0k V u u Rn n n n n  (14)  765 

In modelling the noise, we opted for model simplicity over realistic modelling of the noise. We 766 

followed the general idea in Todorov (2004) and Harris and Wolpert (1998) of having the size of the 767 

noise be proportional to the signal. Vestibular noise and retinal noise have already been described in 768 

Eqs. (6) and (10) respectively. The standard deviation of the motor noise is similarly proportional to 769 

the motor command (with constant of proportionality ua ) 770 

𝐸̇𝑘+1 = 𝑢𝑘 −
1

𝑇𝑝
𝐸𝑘 + 𝑛𝑢  772 

𝑛𝑢 ∼ 𝑁(0, 𝑎𝑢
2𝑢𝑘

2)  (15) 771 

We ran the model with different constants of proportionality for the noise ( ua , Ra  and Va ) up to 0.5 773 

and did not see a change in the results. Given that we have no available data on amount of sensory or 774 

motor noise in the system we used values well in the middle of stable range, i.e.: 775 

  
a

u
= a

R
= a

V
= 0.1  (16) 776 

A is the matrix describing the state dynamics and is written as:   777 

 778 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0

P

P

dt

dt

T

dt

dt

A
T



 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (17) 779 

Rows 2, 3 and 7 (velocity of the surroundings and of the head and the vestibular signal) are all just 780 

equal to 0. This reflects the fact that these variables are controlled by the inputs and not part of the 781 

dynamics of the system, in our model. Row 4 (eye position) simply includes the change in eye position 782 

caused by eye velocity (column 5), which needs to be scaled by 0.001d   because eye velocity is in 783 

units of °/s and the time step is 1 millisecond.  It is worth noting that row 8 also describes eye dynamics 784 

(just like row 4). These representations are separated because in the internal controller they reflect 785 

different estimates. The simulation code keeps them in register by replacing them with the sum of the 786 

two values on each time step. Row 5 (and row 9) describe the tendency of the eye to drift back to center 787 

(the position dependent part of Eq. (2)). Row 10 says that current retinal slip is equal to head velocity 788 

plus eye velocity minus stimulus velocity (Eq. 7). The rest of the dynamics matrix (rows 13 through 789 

78, not shown) simply shifts previous measured retinal input backwards in time    790 
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(e.g.  1k kR R  , 1 2k kR R  ). 791 

State transition is not, however, strictly linear. This non-linearity is represented by the function  kh Ax792 

in Eq. (8) so that,  793 

 1 , , , , 1 69 70 1 2( )k k k k V k V k k k R k R k k k k k k k kh Ax H H V E E T T E E h R R R R R V V     
   

(18) 794 

Where   h R  describes the saturation of the retinal sensory signal (Eq. (8)). That is, every element of 795 

the state vector is preserved by h  except the retinal slip which saturates.  796 

Since the motor command, ku , is a scalar, the control matrix B of Eq. (11) is a vector with the same 797 

size as the state. Because the command affects eye velocity directly, the only non-zero element of B is 798 

in the row representing eye velocity. Units are adjusted so that 1 unit of motor command (neural 799 

activation) causes an acceleration of 1 °/ms, so B  is:   800 

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
B

 
  
 

  (19) 801 

The second equation in Eq. (11) describes the observation, which is the part of the state available to 802 

the controller. The observation vector, ky , contains delayed retinal and vestibular inputs. Thus, it can 803 

be calculated linearly using the observation matrix D  (which is simply a 2x82 matrix of zeros with 804 

ones at locations (1, 82) and (2, 80) for vestibular and retinal input respectively). The D  matrix is 805 

applied to the retinal slip after saturation, and we also add in sensory noise at this stage.  806 

 
 

T T

V
V

k k

RR

k V k

kk R

V V
y Dh x

Rh R

 









 





 

   
    

     

  (20) 807 
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1.3.3 Control system 808 

In this section we describe an optimal feedback controller for the compensatory eye movement system. 809 

This controller includes a forward model and a process of combining forward model prediction with 810 

sensory input, called state estimation. We will use the hat notation, x̂ , for estimates produced by the 811 

forward model and the tilde notation, x , for the combined state estimate. 812 

The operation of the controller can be described globally with the following equations:  813 

  
1

1

1

1 1

1

ˆ

ˆˆ

k k

k

k

k kkk

k

x

x A x Bu

x K y h D x

u Lx





 

 

 

  

 

  (21) 814 

The first equation says that the forward model uses the previous state estimate and the previous motor 815 

command to generate a prediction of the next state. The second equation says that the estimate of the 816 

next state is generated by correcting this prediction for discrepancies between predicted and 817 

experienced retinal slip. The last equation says that motor command will be a linear function of the 818 

state. The tags on some symbols result from the fact that the controller's internal representation of state 819 

is different from the actual system state. Thus, A is the internal representation of system dynamics and 820 

D selects the appropriate sensory inputs from the internal system state. 821 

1.3.4 VOR control 822 

Our model assumes, as described in the main text, that VOR and OKR involve separate neural 823 

processing. Thus, it will be clearest if the operation of each is described separately, and then the 824 

combined matrix equations will be easier to follow. 825 

The architecture of the VOR is the same as the overall architecture of the system:  826 
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 
V, 1 V V, V V,

V, 1 VV, 1

V,

V

V 1

1

V, 1

ˆ

ˆˆ
k

k k k

k k

k k

k

x A x B u

x K D x

u

x V

xL



 









 

  

 

  (22) 827 

In the case of VOR, since we have no access to the actual head velocity, we use the vestibular signal 828 

as an approximation of the head velocity. Thus, the state needs only have five elements:  829 

, , ,

ˆ ˆ ˆˆ ˆˆ
V k k k k V k V kx H H V E E 

  
 (23) 830 

The forward model is quite simple. The head velocity is not affected by either system dynamics or 831 

command (row 1 of Eq. 24 and the first 0 in Eq. 25). Eye movements have the usual plant dynamics 832 

(rows 4 and 5, which are taken from Eq. 2) and are affected directly by the motor command (the 1 in 833 

the third fifth position of Eq. 25): 834 

1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 1

10 0 0 0

V

P

dt

A
dt

T

 
 
 
  
 
 
 
  

   (24) 835 

 0 0 0 0 1VB    (25) 836 

The observation matrix returns the estimated head velocity (which is what we expect the vestibular 837 

input to be):  838 

 0 1 0 0 0VD    (26) 839 

This is compared to the actual vestibular input, kV . Because a floccular lesion does not eliminate VOR 840 

performance, we set  0 1 1 0 0VK  . That is, the sensory feedback completely replaces the 841 
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forward model in our knowledge of head velocity. The role of the forward model in this system is 842 

actually to integrate eye velocity into eye position.  843 

Finally, the actual motor command is generated (see below for how these values are determined) using 844 

the equation 𝑢𝑉,𝑘+1 = −𝐿𝑉 ∙ 𝑥̃𝑉  with  0 0.972 0 1.77 0.000233VL    so that, ultimately:  845 

V, 1 V, V, V,
0.972 1.77 0.000233

k k k k
u H E E


      (27) 846 

1.3.5 OKR control 847 

The job of the second part of the control loop is to estimate uncompensated retinal slip and compensate 848 

for it. Uncompensated visual slip arises from three sources: changes in the velocity of the visual 849 

stimulus, noise in the system, and head movements not compensated by the VOR. Importantly, the 850 

system cannot distinguish changes in the velocity of the visual stimulus from noise in the system. We 851 

use the symbol kR
   for the system’s estimate of all three of these quantities together: the retinal slip 852 

uncorrected by VOR. We also call this the post-VOR slip, and it represents how much the visual 853 

environment would be moving in the absence of OKR.  854 

The OKR’s prediction of uncompensated retinal slip is thus the difference of two quantities: the post-855 

VOR slip and the estimate of how much the OKR is moving the eye,
,

ˆ
R kE :  856 

,

*ˆˆ
k R k kR E R    (28) 857 

The OKR system assumes that some amount of head movement will be compensated for by the VOR. 858 

Its estimate of uncompensated visual input generated by sensed head velocity is proportional to the 859 

actual sensed head velocity. Our forward model estimate of uncompensated post-VOR retinal slip will 860 

be different from our previous estimate because it is updated by a factor proportional to head 861 

acceleration:  862 
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 1

* *

1

ˆ ˆˆ
k kk kR R H H

      (29) 863 

(where   is the constant of proportionality and is discussed in the section on VOR adaptation below). 864 

We then use a Kalman filter to incorporate sensory prediction error and produce a final estimate of 865 

post-VOR retinal slip:  866 

 ,

* *

1 1
ˆ

k
T kR Rk k kR R K R R



       (30) 867 

, kT RK represents the appropriate term in the Kalman gain matrix (specified fully below). Our data was 868 

best fit by using 0.6    and , 0.05
kT RK 

 
which means that that OKR has a tendency to 869 

overcompensate for head rotation and that it estimates that 5% of unexpected retinal slip represents 870 

real movement of the visual surroundings. Note that Eq. (30) also uses 
RkR 



  and 
kR  which are the 871 

currently available retinal slip and its estimate while Eq. (28) and Eq (29) used ˆ
kR
 which is the estimate 872 

of the retinal slip happening right now. This estimate will be delayed for 70 ms before it becomes 873 

available as
kR  . For the ease of the reader a supplement to Figure 1 (Figure S1-figure supplement 1) 874 

includes a version of the model schematic with the various forms of retinal slip and its estimates 875 

labelled.   876 

With this understanding in place, we can describe the OKR control system. It has the same overall 877 

architecture as the full system: 878 

  
R , 1 R R , R R ,

R , 1 TR , 1

R

,R R R , 1

R ,, 11 R

1
ˆ

ˆ

ˆ

k k k

k kk R

k

k

k

k

x A x B u

x K R h D x

u xL

x  

 





 

 

  

 

  (31) 879 

With function h  representing the saturation of the retinal input (Eq. (8)). The state vector includes 880 

everything needed to calculate retinal slip, movement of the visual world, and head acceleration:  881 
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*

, , , 1 69 70

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
R k k k k k k R k R k k k k k kx H H V T T E E R R R R R  

 
  

 (32) 882 

The forward dynamics matrix,
RA , look like this:  883 

 

884 

 885 

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

R
P

dt

dt

dt

A T
















  
































 


  (33) 886 

These rows accomplish: calculation of uncompensated post-VOR retinal slip (row 8, implementing Eq. 887 

(29)), shifting of current vestibular input to previous vestibular input (rows 4-5), modelling of the eye 888 

plant (rows 6-7, implementing Eq. (2)), calculation of the current uncompensated retinal slip (row 9, 889 

implementing Eq. (28)). The rest of the 
RA  matrix takes care of the delay of the estimated retinal slip.  890 
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The 
RB  matrix simply copies the motor command into the eye velocity vector, just as with the VOR 891 

system: 892 

 0 0 0 0 0 0 1 0 0 0 0 0RB   (34) 893 

In calculating state estimation for the OKR system, we must take into account the non-linearity of the 894 

retinal processing before comparing the predicted retinal slip to the sensory input. We first use the 895 

matrix 
RD to select only the predicted uncompensated retinal slip,

69
ˆ

kR 
 , from the state vector, as in Eq. 896 

(26) but with a larger state vector. Then, the predicted uncompensated retinal slip is cut off with the 897 

saturation function of the retinal input, as specified in Eq. (8). This can be compared to the true retinal 898 

input 
k RR 




, providing retinal slip prediction error. The retinal slip prediction error updates the 899 

estimated state values of post-VOR retinal slip and uncompensated retinal slip. Our data was best fit 900 

by using: 901 

 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05RK   (35) 902 

Finally, the motor command is generated by using the equation 𝑢𝑅,𝑘+1 = −𝐿𝑅 ∙ 𝑥̃𝑅  just like in the case 903 

of VOR (again, see below for derivations), with 904 

 0 0 0 0 0 1.77 0.000233 0.972 0 0 0 0RL    so that the motor command is: 905 

, 1 , , ,
0.972 * 1.77 0.000233

R k R k R k R k
u R E E


     (36) 906 

1.3.6 The combined controller: forward model 907 

To produce a combined system, as described in Eqs. (21), in our calculations we simply combine the 908 

descriptions of the OKR and VOR systems above. The only state variable that overlaps in the two 909 

systems is the head velocity. However, this poses no difficulties.  910 
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*

, , , , 1 69 70 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
k k k k V k V k k k R k R k k k k k k k kx H H V E E T T E E R R R R R V V    

 
  

 (37) 911 

And the dynamics and command matrixes can be copied from the two systems described above (the 912 

last sets of rows just shift the retinal slip and vestibular input back in time):  913 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

dt

dt

Tp

dt

dt

A
Tp







  



0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(38) 914 

The internal representation of the command is two dimensional, with separate command for the VOR 915 

(dimension 1) and OKR (dimension 2), and each is added into the appropriate eye velocity: 916 

  917 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
B

 
   

 
 (39) 918 
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1.3.7 The combined controller: state estimation 919 

In the second equation of the set in Eq. (21), the observation matrix, D , selects the vestibular and 920 

retinal input appropriately: 921 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D

 
   

 
 (40) 922 

Note that the first row of D  is different than the first row of D . This difference comes from the fact 923 

that the internal system maintains an ongoing estimate of head velocity that is influenced by the input 924 

while the real system does not maintain such an ongoing estimate. The only representation of the 925 

delayed head velocity is the actual delayed head velocity.  h x  applies the retinal saturation non-926 

linearity,  h R  from Eq. (8), to the retinal slip and does not change the vestibular input:  927 

  (41) 928 

Parameters of the Kalman gain were selected by hand to match the data. We assumed that vestibular 929 

input only affects our estimate of the head velocity, H , and that retinal input affects both our estimate 930 

of post-VOR retinal slip, *

kR , and our estimate of overall uncompensated retinal slip kR  and its delayed 931 

versions. This gave the Kalman gain matrix the following form:  932 

, , , ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

V V

T R k R k R k R k

K
 

    

 
  
 

 (42) 933 

We set 
V to 1, in order match the experimental finding that floccular lesion does not eliminate VOR. 934 

We set the other values to match the behavioral data. That is, the larger the value of 
T  and ,R k , the 935 

more quickly new retinal input affects our estimates. When the Kalman gains for the visual system are 936 

too large, noise reverberates in the system, leading to an explosion of noise in the OKR at low 937 
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frequencies. When they are too low, the system does not manage visual following. Balancing these two 938 

considerations, we got the best match for our data with , ,69 ,68 ,1 ,0 0.05T R k R R R R           939 

.  940 

1.3.8 The combined controller: cost function 941 

We assumed that the primary goal of the optimal controller of the CEM in afoveate species (like rabbit 942 

and mouse) is to minimize motion of the visual field on the retina in order to stabilize the retinal image. 943 

We make the assumption that this cost is considered separately for VOR and OKR because we are 944 

assuming that these reflexes are supported by separate neural substrates.  945 

Thus, the overall cost of the system can be broken down into two parts, vestibular and retinal:  946 

  
C = C

V
+ C

R
  (43) 947 

Each of the two sub costs is concerned with a different retinal slip: 
VC relates to

V,k kH E , retinal slip 948 

due to uncompensated head motion, while 
RC  relates to *

R,k kR E , retinal slip due to uncompensated 949 

motion of the visual environment. In addition to the cost associated with retinal slip, each cost function 950 

includes a cost associated with eye eccentricities (this can be considered an “action” cost since eye 951 

eccentricity leads to extra muscle activity and energy expenditure). Finally, both cost functions 952 

discount future costs, as is common for an infinite horizon feedback controller: Thus, the two cost 953 

functions required for creating the two motor commands are:  954 

  

  

2 2

V V, V,

0

2
2

R R , R ,

0

*

k

k k k

k

k

k k k

k

C E H E

C E R E

 

 













  

  





  (44) 955 
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The parameter   balances between eccentricity and retinal slip costs. The parameter   is the discount 956 

parameter Bradtke (1993) used to reduce the influence of increasingly distant costs. These two 957 

parameters were needed to match the drift of the eyes in the dark and were set to 2   and 
1

150e  . 958 

For simplicity we approximated the infinite sum in Eq. (44) with a finite sum; we kept  the first 100,000 959 

terms. 960 

1.3.9 The combined controller: the motor command 961 

If our system had a linear plant (L), quadratic cost function (Q) and independent, identically distributed 962 

(i.i.d.) Gaussian noise, it would be called an LQR system (Åström and Murray, 2008). For such 963 

systems, it can be proven that the optimal controller can be separated in two independent parts – an 964 

observer and a simple controller – using the Ricatti equations (Lancaster and Rodman, 1995). We do 965 

not go into the details of these equations here, but we note that the CEM system, as described above, 966 

is not linear (because of non-linearities in the inputs) and does not have i.i.d. noise (since we use signal 967 

dependent noise). Nevertheless, the convenience of the LQR formulas has led to their frequent use in 968 

systems that are close to being LQR (Burns and Ou, 1994; Lopez-Martinez et al., 2004). Previous 969 

experience is that this leads to nearly optimal controllers, and we followed this strategy here.  970 

However, before we apply Ricatti equations, we make one additional assumption. We assume that for 971 

the purposes of this solution, the controller assumes full correction of the head velocity by the VOR 972 

system. That is, we set 0  in the matrix A , Eq. (38). 973 

Applying the equations of Lancaster and Rodman (1995) to our system, Eq. (21), we derive a solution 974 

for the control policy, L . 975 

0 0.972 0 1.77 0.000233 0 0 0 0 0

0 0 0 0 0 0 0 1.77 0.000233 0.972
L

 
  

 

 (45) 976 

This can be more clearly written in terms of the final results for the motor commands:  977 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/617365doi: bioRxiv preprint 

https://doi.org/10.1101/617365
http://creativecommons.org/licenses/by-nc-nd/4.0/


  State Prediction Model of CEM 

 

 
55 

 
, 1 , , ,

0.972 * 1.77 0.000233
R k R k R k R k

u R E E

     978 

V, 1 V, V, V,
0.972 1.77 0.000233

k k k k
u H E E


      (46)   979 

The first term in both Eqs (46) compensates for retinal slip. The second term combines compensation 980 

for the "drift to center" generated by the elastic properties of the plant (Eq.(2)). This activity is 981 

apparently generated by the "neural integrator" produced by the firing of the tonic and burst-tonic 982 

premotor cells (Robinson, 1981). Experimental results presented in this article and in other works 983 

(Cannon and Robinson, 1987) show the elastic properties of the plant are not fully compensated for by 984 

the controller; i.e. the neural integrator is leaky, and this leakage has a much higher time constant than 985 

the elastic term of the plant.  986 

1.3.10 VOR adaptation 987 

The parameter ζ (introduced in Eq.(29)) represents the extent to which the OKR system assumes head 988 

movements will go uncompensated. We model CEM adaptation as adaptation of this parameter so as 989 

to accurately predict retinal slip. The forward model prediction of retinal slip is given by Eq. (28). 990 

Where we recall that the star indicates that this is the estimate of the retinal slip that is we predict that 991 

is happening right now (post-VOR slip), as opposed to the estimate of the available retinal slip (with a 992 

70 ms delay) which is indicated by ˆ
kR . 993 

We want to minimize the error in retinal slip prediction error (Figure 1-figure supplement 1):  994 

, 70 70( )R k k kZ R h R

     (47) 995 

We employ a decorrelation approach to adaptation (Porrill et al., 2013) and update ζ based on a factor 996 

proportional to the correlation of head acceleration and retinal slip prediction error.  997 
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 new d 1 2ol ,

ˆ ˆ
k kR kZ H H 
 
     (48) 998 

Where   specifies the rate of adaptation.  For the results presented here ζ was updated every 4 cycles 999 

of the stimulus (although this value is not critical and adaptation functions correctly with a wide range 1000 

of update schedules) and was set to match the rate of adaptation in the experimental data: 0.018  .  1001 

Experimental Methods 1002 

1.4 Animals 1003 

In order to test the model we recorded CEM in 13 C57Bl/6J mice (Charles River, Wilmington, MA, 1004 

USA). All mice were housed on a 12h light / 12h dark cycle with unrestricted access to food and water. 1005 

Experiments were performed during their light phase. All experiments were performed with approval 1006 

of the local ethics committee and were in accordance with the European Communities Council 1007 

Directive (86/609/EEC). 1008 

1.5 Surgery 1009 

Animals were prepared for head fixation by attaching two metal nuts to the skull using a construct 1010 

made of a micro glass composite. The full procedure is described in van Alphen et al. (2009). Mice 1011 

were given at least 3 days following surgery to recover before the start of any experimental paradigm. 1012 

1.6 Stimulus setup  1013 

Optokinetic stimuli were created using a modified Electrohome Marquee 9000 CRT projector (Christie 1014 

Digital Systems, Cypress CA, USA) with a spatial resolution of at least 0.1 degrees and a temporal 1015 

resolution of 0.01 s.  The average luminance was kept constant at 17.5 cd/m2.  The stimuli were 1016 

projected via mirrors onto three transparent anthracite-colored screens (156*125 cm), which were 1017 
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placed in a triangular formation around the recording setup (Fig 2A). This created a green monochrome 1018 

panoramic stimulus fully surrounding the animal. The stimuli were programmed in C++ and rendered 1019 

in openGL. They each consisted of 1592 green dots (2 degrees diameter) equally spaced on a virtual 1020 

sphere with its center at eye height above the center of the table. Moving stimuli were generated by 1021 

rotating the virtual sphere around its vertical axis in sinusoidal patterns of different frequency and 1022 

amplitude, so that all the dots moved coherently and in phase. 1023 

 1024 

Vestibular stimulation was given by means of a motorized (Mavilor-DC motor 80, Mavilor Motors 1025 

S.A., Barcelona, Spain) vestibular table that had its axis aligned with the center of the visual stimulus. 1026 

The driving signal of both the visual and vestibular stimulation, which specified the required position, 1027 

was computed and delivered by a CED Power1401 data acquisition interface (Cambridge Electronic 1028 

Design, Cambridge, UK) with a resolution of 0.1 º and 0.01 s. 1029 

1.7 Eye movement recordings 1030 

Mice were immobilized by placing them in a plastic tube, with the head pedestal bolted to a restrainer 1031 

that allowed translations in three dimensions such that the eye of the mouse was placed in the center 1032 

of the visual stimulus and thus above the rotation axis of the turn table, in front of the eye position 1033 

recording camera. 1034 

 1035 

Eye movements were recorded with an infrared video system (Iscan ETL-200, Iscan, Burlington, MA, 1036 

USA). Images of the eye were captured at 120 Hz with an infrared sensitive CCD camera [see van 1037 

Alphen et al. (2009) for more details]. To keep the field of view as free from obstacles as possible, the 1038 

camera and lens were mounted under the table surface, and recordings were made with a hot mirror 1039 

that was transparent to visible light and reflective to infrared light (Fig. 2B). The eye was illuminated 1040 
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with two infrared LEDs at the base of the hot mirror. The camera, mirror and LEDs were all mounted 1041 

on an arm that could rotate about the vertical axis over a range of 26.1º (peak to peak). Eye movement 1042 

recordings and calibration procedures were similar to those described by  Stahl et al. (2000). Eye 1043 

position was stored, along with the stimulus traces on hard disk for offline analysis.  1044 

1.8 Experimental Paradigms 1045 

1.8.1 Optokinetic Reflex 1046 

The OKR (N=9) was tested using visual stimuli, while the mouse was kept stationary.  We presented 1047 

sinusoidal stimuli containing a wide range of frequencies (0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 Hz) and 1048 

amplitudes (0.5, 1.0, 2.0, 4.0, 6.0 and 8.0º), all about the earth vertical axis. 1049 

1.8.2 Vestibulo-ocular Reflex 1050 

The VOR (N=9) was tested with vestibular stimulation in the dark. Stimulus amplitudes and 1051 

frequencies were identical to those used for the OKR, except that stimuli with a peak velocity higher 1052 

than 60 º/s were discarded, because of mechanical considerations. Again, only rotations about the 1053 

vertical axis were made. 1054 

1.8.3 Visually enhanced VOR and suppressed VOR 1055 

The vVOR (N=9) and the sVOR (N=6) protocols were identical to the VOR stimulation, except for the 1056 

visual stimulation. During vVOR the visual stimulus was on, but stationary; during sVOR the visual 1057 

stimulus was on and moved in phase and at the same amplitude as the turn table. 1058 

 1059 

These four stimulus protocols were presented blockwise in 1 or 2 experimental sessions. Within each 1060 

protocol the stimulus conditions were presented in random order to prevent effects of either learning 1061 

or fatigue. All stimuli were presented for at least 5 cycles. The other protocols were performed 1062 

separately. 1063 
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1.8.4 Non-periodic stimulation 1064 

For non-periodic stimulation we opted to give Sum-of-Sine (SoS) stimuli. In these SoS conditions, the 1065 

two constituent frequencies were chosen that had no harmonic relation. Four SoS frequency 1066 

combinations were used in this study: 0.6/0.8 Hz, 0.6/1.0 Hz, 0.8/1.0 Hz and 1.0/1.9 Hz. Amplitude 1067 

was either one or two degrees for each frequency component. Either both frequencies had the same 1068 

amplitude (both 1º or both 2º) or they had different amplitude (one at 1º and the other at 2º). This led 1069 

to a total of 24 types of stimuli in each of the OKR, VOR, vVOR and sVOR SoS conditions.  1070 

8 mice were used in this paradigm and they all performed all conditions. 1071 

1.8.5 Drift in the dark 1072 

In order to compute the plant time constant (see Supplementary Material, eq 15), we needed the 1073 

mouse eye to drift in the dark from an eccentric position to the center of the oculomotor range. To do 1074 

so, a visual scene moved slowly horizontal, thus making the eye move eccentrically. Subsequently, 1075 

the light was turned off, and the mouse was in complete darkness. We then recorded the drift of the 1076 

eye towards the center. By fitting an exponential function to this drift, the plant time constant was 1077 

calculated. 6 mice were measured over a range of drift amplitudes between 4 and 10 degrees, the 1078 

number of drift repetitions was on average around 6 per amplitude per mouse.  1079 

1.8.6 VOR adaptation 1080 

VOR gain down adaptation (N=7) experiments consisted of 6 testing sessions and 5 training trials. 1081 

Duration of each testing / training trial was 60s / 300s respectively. Sinusoidal (1 Hz, 5°) vestibular 1082 

stimulation was applied in the dark for the testing sessions. During training sessions vestibular 1083 

stimulation was accompanied by optokinetic sinusoidal stimulation of the same amplitude, phase and 1084 

frequency (thus resulting in a stable head fixed visual surrounding). 1085 

1.9 Data Analysis 1086 

The Matlab (Matlab; The MathWorks, Natick, MA) code required for replication of the analysis 1087 

presented in this paper is available on the Open Science Framework website (https://osf.io/feq7c/). 1088 

Measured eye responses were analyzed offline. Position signals were transformed into velocity signals 1089 

by a Savitski-Golay differentiating filter (cut-off frequency 50 Hz with a 3° polynomial) and were then 1090 

smoothed with a median Gaussian filter (width 50 ms). Nystagmus fast phases and saccades were 1091 

removed with a velocity threshold of 150°/s and with an FIR Butterworth low pass filter optimized to 1092 

the stimulus frequency (cutoff at 3x stimulus frequency). There were two primary outcome measures 1093 

in this study: gain and phase.  1094 
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Gain and phase was extracted from the sinusoidal data by fitting a sinusoid and then using the gain and 1095 

phase of the fit. The fit was done using a hierarchical Bayesian analysis using OpenBugs (Version 1096 

3.2.3, http://www.openbugs.net, [Lunn et al., 2009]). The precise details of the model used, as well as 1097 

the parameters supplied to the OpenBugs algorithm, are provided below. In brief, the data for each trial 1098 

for each mouse was assumed to be the result of a specific gain and phase specific to that trial, generated 1099 

according to a distribution of gains and phases that were specific to the mouse. This distribution was, 1100 

itself, generated according to hyper-parameters that characterize the population of mice. In addition, 1101 

the noise in each trial was the result of a noise distribution characteristic of the mouse, which was 1102 

generated according to hyper-parameters that characterized the population. Because our data was 1103 

messy -- some mice had far more noise than others and some mice provided much more stable 1104 

recording of eye movements than others -- the Bayesian approach allowed to incorporate all of the data 1105 

in a robust manner, discounting the noisy or incomplete data when making estimates of the population 1106 

parameters. Ultimately, we show the 95% high density intervals for the gain and phase of the individual 1107 

mice in the bode plots (Figures 3-6B). 1108 

In order to summarize the mouse population in Figures 3-6A we generated 10,000 samples of posterior 1109 

predictive mice. That is, for each of the 10,000 Bayesian samples, we selected an amplitude and phase 1110 

according to the parameters for the mouse population, and then used that amplitude and phase to 1111 

generate sinusoidal data. We used these 10,000 ‘typical’ mouse sinusoids to define a region of typical 1112 

behavior. We characterized this region using the mean and standard deviation of these movements at 1113 

each time step. 1114 

To summarize the similarity of the model response and the mouse population as a single value for 1115 

each stimulus condition we employed Z-scores. Using the typical behavior we then calculated a Z-1116 

score by subtracting the model response at each time point from the center of the region of typical 1117 

behavior and dividing by the standard deviation. This Z-score was then averaged across time points 1118 

for each condition.  1119 

For the non-periodic data, gain and phase information were obtained by fitting two sine waves to the 1120 

stimuli and the data in custom-made Matlab curve fitting routines using the least squares method.  1121 

 1122 

For all experiments the fits of the sine waves to the eye movement data provided the amplitude and 1123 

phase of the eye movements. The gain was calculated as the ratio of the amplitude of eye movement 1124 

compared to the amplitude of the stimulus, phase was calculated by subtracting the phase of the 1125 

stimulus from the movement. Thus, a positive phase value indicates a leading eye position signal. 1126 
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Statistics 1127 

Our statistics are geared to test whether the model behaves “similarly” to a typical mouse. This is 1128 

different from the standard statistical test for effects and is also different from newly developed 1129 

procedures that test for equivalence. We chose to test the confidence with which we could claim that 1130 

model behavior lay within a “region of typical behavior” defined as the region within which 95% of 1131 

mice are likely to fall. Thus, our p values represent the confidence with which we can make this 1132 

statement. 1133 

For each condition, the gain and the phase of the model’s behavior were compared to the posterior 1134 

predictive distribution of gains and phases of the mice. That is, for each Bayesian sample, we took 1135 

the population mean and the population standard deviation for the gain. This gave us, for each 1136 

Bayesian sample, an estimate of the mouse typical parameter value, from the mean minus 1.96 times 1137 

the population standard deviation to the mean plus 1.96 times the population standard deviation. We 1138 

determined the percentage of samples for which the value of the gain in the model lay within this 1139 

typical region. We used this as a measure of the posterior predictive probability that our model gain 1140 

was similar to those of a typical mouse. We used an identical procedure for the phase. 1141 

Bayesian Fitting Procedure 1142 

The gains and phases of the single sine experimental data were estimated using a Bayesian fitting 1143 

procedure using OpenBugs (version 3.2.3). The model used is specified in full form below: 1144 

model{ 1145 

 for( rat in 1 : n.Rats ) { 1146 

  for( bin in 1 : n.Bins ) { 1147 
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   for( rep in 1 : n.Reps ) { 1148 

    Vel[rep , bin , rat] ~ dnorm(sint[bin , rat], tau.Vel.rat[rat]) 1149 

   } 1150 

   sint[bin , rat] <- A.rat[rat] * sin(w * dT * bin - phi.rat[rat]) 1151 

  } 1152 

  A.rat[rat] ~ dnorm(A.mu, A.tau)C(0,) 1153 

  phi.rat[rat] ~ dnorm(phi.mu, phi.tau)C(-π,π) 1154 

  tau.Vel.rat[rat] ~ dgamma(tau.Vel.shape, tau.Vel.scale) 1155 

 } 1156 

 A.mu ~ dunif(A.mu.lower, A.mu.upper) 1157 

     A.tau ~ dgamma(A.tau.shape, A.tau.scale) 1158 

 phi.mu ~ dnorm(phi.mu.mu, phi.mu.tau)C(-π,π) 1159 

 phi.tau ~ dgamma(phi.tau.shape, phi.tau.scale) 1160 

} 1161 

The fitting procedure was run with a burn-in of 500 samples, and then actual sampling of 10,000 1162 

samples in each of 3 chains. The initial values of the amplitude and phase of the fits were estimated 1163 

from the data and each chain was initialized with a different precision (an order of magnitude between 1164 

each). Convergence was assessed by manual inspection of the overlap of the chains and of the 1165 

smoothness and overlap of the histograms for the posterior distribution of each parameter. 1166 

 1167 
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Figure Supplements 1222 

 1223 

Figure 1-figure supplement 1. Schematic representation of the model architecture with the different 1224 

internal and external representation of retinal slip indicated in blue rectangles adjacent to the 1225 

corresponding arrows. The color and shape coding of the figure is maintained from Figure 1 in the 1226 

main text. 1227 

 1228 

Figure 3-figure supplement 1. Examples of a sinusoid fitted to the model output (blue) and the mean 1229 

measured response (red line) in response to a VOR stimulation (black line). The shaded red region 1230 
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represents the standard deviation of the population. The upper panels display the response to a 1° 1231 

stimulus and the bottom panels correspond to a 2° stimulus. In both cases the left and right panels 1232 

display the response to a 0.2 Hz and 0.8 Hz stimulus respectively. The format of the plots matches that 1233 

of Figure 2 with the model output now represented with a fitted sinusoid (no longer including the high 1234 

frequency noise included in the raw model output) for more direct comparison to the behavioral data 1235 

which also represents the output of fitting sinusoids to the behavioral data. 1236 

 1237 

Figure 4-figure supplement 1. Examples of a sinusoid fitted to the model output (blue) and the mean 1238 

measured response (red line) in response to a OKR stimulation (black line). The shaded red region 1239 

represents the standard deviation of the population. The stimuli presented match that of Figure 4 and 1240 

Figure 3-figure supplement 1. 1241 
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 1242 

Figure 5-figure supplement 1. Examples of a sinusoid fitted to the model output (blue) and the mean 1243 

measured response (red line) in response to a vVOR stimulation (black line). The shaded red region 1244 

represents the standard deviation of the population. The stimuli presented match that of Figure 5 and 1245 

Figure 3-figure supplement 1. 1246 

 1247 

Figure 6-figure supplement 1. Examples of a sinusoid fitted to the model output (blue) and the mean 1248 

measured response (red line) in response to a sVOR stimulation (black line). The shaded red region 1249 
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represents the standard deviation of the population. The stimuli presented match that of Figure 6 and 1250 

Figure 3-figure supplement 1. 1251 

 1252 

 1253 

 1254 

 1255 

Figure 7-figure supplement 1. Summary of the statistical testing representing the probability that the 1256 

model response falls outside the range of a ‘typical mouse’ in terms of gain (A), phase (B) and the 1257 

combined probability (C). Overall, despite deviations in gain or phase in a minority of individual 1258 

conditions, the model response is indistinguishable from the experimental data as indicated by the 1259 

‘cool’ colors in the combined probability graph. Full details of each individual test performed are 1260 

available as tables in the source data for this figure.  1261 
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 1262 

Figure 8-figure supplement 1. An example of the model dynamics for one cycle of the simulation in 1263 

the VOR condition (Stimulation amplitude of 2 degrees at a frequency of 0.2 Hz) at a time by which 1264 

the system has reached a steady state. The layout matches the model schematic presented in Figure 1265 

1. In each box the blue line represents the output of the computation performed, the green or orange 1266 

line represents the appropriate stimulus, vestibular and visual respectively.  1267 

 1268 

Figure 8-figure supplement 2. An example of the model dynamics for one cycle of the simulation in 1269 

the OKR condition (Stimulation amplitude of 2 degrees at a frequency of 0.2 Hz) at a time by which 1270 
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the system has reached a steady state. The layout matches the model schematic presented in Figure 1271 

1. In each box the blue line represents the output of the computation performed, the green or orange 1272 

line represents the appropriate stimulus, vestibular and visual respectively. 1273 

 1274 

 1275 

Figure 9-figure supplement 1.  Summary of the behavioral response of c57BL/6 mince (n=8) to Sum 1276 

of Sines stimulation. The response is described in terms of gains and lags relative to the gain and lag 1277 

recorded in response to the single frequency component presented in isolation. A linear system will 1278 

produce only relative gains of 1 and relative delays of 0, indicated by dashed horizontal lines on 1279 

each plot. The pattern of nonlinearities produced is similar to that produced by the full model 1280 

(Figure 7A). This figure is directly reproduced from Sibindi et al. (2016; Figure 6). 1281 

 1282 
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