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Abstract 

 

As next-generation sequencing (NGS) and liquid biopsy become more prevalent in research 

and clinic, there is an increasing need for better methods to reduce cost and improve 

sensitivity and specificity of low-frequency mutation detection (Alternative Allele 

Frequency, AAF < 1%). Here we propose a likelihood-based approach, called Low-

Frequency Mutation Detector (LFMD), which combines the advantages of duplex sequencing 

(DS) and bottleneck sequencing system (BotSeqS) to maximize the utilization of duplicate 

sequence reads. Compared with the existing state-of-the-art method DS, our method achieves 

higher sensitivity (improved by ~16%), comparable specificity (< 4 × 10−10 errors per base 

sequenced) and lower cost (reduced by ~70%) without involving additional experimental 

steps, customized adapters or molecular tags. LFMD is useful in areas where high precision 

is required, such as drug resistance prediction and cancer screening. In addition, this method 

can also be used to improve power of other variant calling algorithms by making it 

unnecessary to remove polymerase chain reaction (PCR) duplicates. 
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Low-frequency mutation, liquid biopsy, drug resistance, cancer diagnosis, mitochondria 

heterogeneity, mosaic somatic mutation 

 

Introduction 

 

Low-frequency mutations (LFMs) are defined as mutations with allele frequency lower than 

1% in an individual’s DNA or mixed DNA. It can indicate early stages of cancer[1-3], 

Alzheimer’s Disease (AD)[4] and Parkinson’s Disease (PD)[5], study aging[5, 6], identify 

disease-causing variants[7], predict potential drug resistance[8], diagnose mitochondrial 

disease before tri-parental in vitro fertilization[9], and track the mutational spectrum of viral 

genomes, malignant lesions, and somatic tissues[8, 10]. To effectively improve signal-to-

noise ratio (SNR) and detect LFMs, researchers have developed methods with stringent 

thresholds, complex experimental procedures[4, 11], single cell sequencing[12-15], circle 

sequencing[16], o2n-seq[17], and more precise analytic models[6, 18-20]. The bottleneck 

sequencing system[21] (BotSeqS) and duplex sequencing[22, 23] (DS) utilize duplicate reads 

generated by polymerase chain reaction (PCR), which are discarded by other methods, to 
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achieve much higher accuracy. However, current methods still have some limitations in 

detecting LFMs. 

  

Disadvantages of single cell sequencing and circle sequencing 

 

For single cell sequencing, DNA extraction is laborious and exacting, with point mutations 

and copy number biases introduced during the amplification of small amounts of fragile 

DNA. To increase specificity, only variants shared by at least two cells are accepted as true 

variants[15]. At present, this method is not cost-efficient and cannot be used in large-scale 

clinical applications because a large number of single cells need to be sequenced to identify 

rare mutations. 

 

Circle sequencing only utilizes a single strand of DNA, so its specificity is limited by the 

error rate of PCR. It controls errors to a rate as low as 7.6 × 10−6 per base sequenced[16] 

while DS can achieve 4 × 10−10 errors per base sequenced[22]. 

 

Disadvantages of BotSeqS 

 

In contrast, BotSeqS uses endogenous molecular tags to group reads from the same DNA 

template and construct double-strand consensus reads. As a result, it can detect very rare 

mutations (<10-6) while being cheap enough to sequence the whole human genome[21]. 

However, it requires highly diluted DNA templates before PCR amplification to reduce 

endogenous tag conflicts and ensure sufficient sequencing of each DNA template. Thus, it 

has a high specificity with poor sensitivity. Also, it discards clonal variants and small 

insertions/deletions (InDels) to limit false positives. 

 

Disadvantages of DS 

 

Another promising method to eliminate tag conflicts is Duplex sequencing (DS), which 

ligates exogenous random molecular tags (also known as barcode, unique molecular 

identifier, UID or UMI) to both ends of each DNA template before PCR amplification. 

Although sensitive and accurate, much sequencing data is wasted on sequence tags, fixed 

sequences and a large proportion of read families that contain only one read pair, which arose 

from a sequencing error on a tag. Since random molecular tags are synthesized with 
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customized adapters, batch effects might occur during DNA library construction. 

Additionally, DS only works on targeted small genome regions[6, 22] rather than on the 

whole genome.  

 

Disadvantages of Tag clustering 

 

To solve the problem induced by the errors on tags, multiple methods have been developed to 

cluster similar tags[24-26], where one or two mismatches are allowed in merging two tags. 

Although tag clustering does improve the sensitivity, it is still not a straightforward way to 

solve the problem. Inappropriate tag clustering might occur because unstable synthesis of 

random tags can result in distinct but similar tags. 

 

A new approach 

 

To avoid the aforementioned problems, we present here a new, efficient approach that 

combines the advantages of BotSeqS and DS. The method uses a likelihood-based model[6, 

18, 27] to dramatically reduce endogenous tag conflicts. Then it groups reads into read 

families and constructs double-strand consensus reads to detect ultra-rare mutations 

accurately while maximizing the utilization of duplicate read pairs. This simplifies the DNA 

sequencing procedure, saves data and cost, achieves higher sensitivity and specificity, and 

can be used in whole genome sequencing. In addition, our new method offers a statistical 

solution to the problem of PCR duplication in the basic analysis pipeline of NGS data and 

can improve sensitivity and specificity of other variant calling algorithms without specific 

experimental designs. As the price of sequencing is falling, the depth and the rate of PCR 

duplication are rising. The method we present here might help deal with such high-depth data 

more accurately and efficiently.  

 

Results 

 

Intuitively, to distinguish LFMs (signal) from background PCR and sequencing errors 

(noise), we need to increase the SNR. To increase SNR, we need to either increase the 

frequency of mutations or reduce sequencing errors. Single cell sequencing increases the 

frequency of mutations by isolating single cells from the bulk population, while BotSeqS and 
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DS reduce sequencing errors by identifying the major allele at each site of multiple reads 

from the same DNA template. In this paper, we only focus on the latter strategy. 

 

To group reads from the same DNA template, the simplest idea is to group properly mapped 

reads with the same coordinates (i.e., chromosome, start position, and end position) because 

random shearing of DNA molecules can provide natural differences, called endogenous tags, 

between templates. A group of reads is called a read family. However, as the length of DNA 

template is approximately determined, random shearing cannot provide enough differences to 

distinguish each DNA template. Thus, it is common that two original DNA templates share 

the same coordinates. If two or more DNA templates shared the same coordinates, and their 

reads are grouped into a single read family, it is difficult to determine, using only their 

frequencies as a guide, whether an allele is a potential error or a mutation. Thus, BotSeqS 

introduced a strategy of dilution before PCR amplification to dramatically reduce the number 

of DNA templates in order to reduce the probability of endogenous tag conflicts. And DS 

introduced exogenous molecular tags before PCR amplification to dramatically increase the 

differences between templates. Thus, BotSeqS sacrifices sensitivity and DS sequences extra 

data: the tags. 

 

Here we introduce a third strategy to eliminate tag conflicts. It is a likelihood-based approach 

based on an intuitive hypothesis: that if reads of two or more DNA templates group together 

due to endogenous tags, a true allele’s frequency in this read family is high enough to 

distinguish the allele from background sequencing errors. The overview of the LFMD 

pipeline is shown in Figure 1. 

 

Figure 1. Overview of the LFMD pipeline. The Y-shaped adapters determine read 1 (purple 

bar) and 2 (green bar). The directions of reads determine +/- strands. So after the first cycle of 

the PCR amplification, the Watson and Crick families are well defined. Then within a read 

family, true alleles (green dots) and accumulated PCR errors (blue dots) are detected via the 

likelihood-base model and given a combined error rate. Sequencing errors (red dots) are 

eliminated. Combining single-strand consensus sequences (SSCSs) of paired read families, 

high-quality double-strand consensus sequence (DCSs) with estimated error rates are 

generated and used in the downstream analysis. 
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Simulated data 

 

We used Python scripts developed by the Du Novo[28] team to simulate mixed double-strand 

sequencing data. Although the simulation may not be entirely realistic, the results are still 

useful to evaluate the performance and the potential drawbacks of LFMD and DS. Because 

the underlying true mutations are known, the true positives and false positives can be 

calculated. We found that DS made two false positive rare variant calls due to mapping 

errors, which were not made by LFMD because it skipped the realignment step. In the 

meanwhile, LFMD is much more sensitive than DS according to Figure 2 and Table S1. The 

specificity of LFMD is slightly higher than that of DS shown in Table S2. The simulated 

mutations are listed in Table S7. 

 

Figure 2. The sensitivity of DS and LFMD. SNV, single nucleotide variant; INS, small 

insertion; DEL, small deletion; AAF, alternative allele frequency. 
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Mouse mtDNA 

 

To evaluate the performance of LFMD in real data, we compared LFMD with DS on a DS 

dataset of mouse mtDNA: SRR1613972. A comparison of DS and LFMD pipelines is shown 

in Figure S4. We controlled almost all parameters to be the same in DS and LFMD and then 

compared the results although LFMD can achieve much higher sensitivity if we set the 

minimum number of supporting reads in each read family as 2 (DS suggests the parameter as 

3 to balance sensitivity and specificity). We found that mapping quality influenced the 

performance of both methods. To reduce the influence of mapping quality, we only use 

unique proper mapped read pairs to call mutations. The results are shown in Table 1.  

 

Table 1. The number of mutations identified by DS and LFMD. The results are based on all 

unique proper mapped reads of the mouse mtDNA. “DS_only” and “LFMD_only” represent 

mutations only identified by DS or LFMD respectively. “Overlap” is shown for mutations 

found by both DS and LFMD. 

 

  DS_only Overlap LFMD_only DS_only/Overlap LFMD_only/Overlap 

A>C 0 8 4 0.00% 50.00% 

A>G 0 72 8 0.00% 11.11% 

A>T 0 28 4 0.00% 14.29% 

A>del 0 2 0 0.00% 0.00% 

A>ins 0 3 1 0.00% 33.33% 

C>A 0 8 3 0.00% 37.50% 
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C>G 0 2 0 0.00% 0.00% 

C>T 0 57 8 0.00% 14.04% 

C>del 0 2 2 0.00% 100.00% 

C>ins 0 4 0 0.00% 0.00% 

G>A 1 19 6 5.26% 31.58% 

G>C 0 4 0 0.00% 0.00% 

G>T 0 2 3 0.00% 150.00% 

G>del 0 1 1 0.00% 100.00% 

G>ins 0 1 1 0.00% 100.00% 

T>A 0 11 2 0.00% 18.18% 

T>C 0 82 10 0.00% 12.20% 

T>G 1 10 0 10.00% 0.00% 

T>del 1 7 0 14.29% 0.00% 

T>ins 0 1 0 0.00% 0.00% 

Total 3 324 53 0.93% 16.36% 

 

We investigated the discordant mutations one by one. The DS_only mutations are all false 

positives due to read mapping errors (MT:7G>A and MT:3418T>del) and low sequencing 

quality (MT:5462T>G). The mapping errors are from the following: 1) DS assigns highest 

base quality for all bases of DCS[22] even though the base is ’N’ and 2) DS introduces more 

‘N’ in DCS reads because the minimum proportion of “true” bases in a read family is set to 

0.7 by default (it can be set to 0.5 to improve sensitivity). 

 

Among the 53 LFMD_only mutations, 2 insertions and 3 deletions are missed by DS due to 

mapping errors of DCS, and 48 SNVs are not detected by DS due to three technical reasons: 

1) sequencing and PCR errors on tags lead to smaller read families in DS, decreasing its 

sensitivity; 2) DS discards some low complexity tags; 3) DS assumes “true” mutations should 

occupy most reads (proportion >= 0.7) in the reads family, although this assumption is 

unreasonable considering PCR errors in the first PCR cycle.  

 

In summary, the discordant mutations in this dataset are mainly false positives and false 

negatives of DS. All LFMD_only mutations are manually checked and well supported by 
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read families under the same criteria of DS considering 1 or 2 sequencing or PCR errors on 

tags. Therefore, LFMD achieves higher sensitivity and specificity in this dataset. 

 

Twenty-six human mtDNA samples from Prof. Kennedy’s laboratory[4] 

 

We compared the performance of DS and LFMD on 26 samples from Prof. Scott R. 

Kennedy’s laboratory. Only unique proper mapped reads were used to detect LFMs. The 

majority of LFMs were detected by both tools. Almost all LFMs detected only by DS are 

false positives due to alignment errors of DCS, while LFMD outputs BAM files directly and 

avoids alignment errors (Supplemental Material, Figure S4). LFMs only detected by LFMD 

are well supported by raw reads if considering PCR and sequencing errors on molecular tags. 

As a result, LFMD is much more sensitive and accurate than DS. The improvement of 

sensitivity is about 16% according to Table S3. 

 

YH cell line 

 

We sequenced the YH cell line (passage 19) in 8 independent experiments to evaluate the 

stability of LFMD. The experimental details can be found in the Materials part. The results 

are highly consistent in terms of numbers of mutations detected (range 61~68) shown in 

Figure 3 and Supplemental Materials, Table S4. Under the hypothesis that true mutations 

should be identified from at least two samples, we detected 68 “true” mutations and the mean 

true positive rate (TPR) and false discovery rate (FDR) are around 91.36% and 2.36%, 

respectively. Due to the high specificity and relative low sensitivity of LFMD, all mutations 

are almost impossible to be false positive, and the above TPR and FDR only indicate the 

consistency of parallel experiments. 

 

Figure 3. Distribution of mutations found in mtDNA of YH cell lines compared with human 

Revised Cambridge Reference Sequence (rCRS). 
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ABL1 data 

 

Using the duplex sequencing method in 2015, Schmitt et al. analysed an individual with 

chronic myeloid leukaemia who relapsed after targeted therapy with the drug, Imatinib (the 

Short Read Archive under accession SRR1799908). We analyzed this individual and found 5 

extra LFMs. Two of them are in the coding region of the ABL1 gene and change amino acids: 

E255G and V256G. In the drug resistance database of COSMIC[29], we found that 1) 

E255VDK, change of the 255th amino acid, is associated with resistance to the drugs 

Dasatinib, Imatinib, and Nilotinib; and 2) V256L is related to resistance to the drug Imatinib. 

Although the directions of amino acid changes, in this case, are not the same as those in the 

database, these two additional LFMs still infer potential resistance to the drug Imatinib and 
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provide an additional explanation for the clinical relapse of leukemia. In the meanwhile, the 

prediction of potential drug resistance of Dasatinib and Nilotinib is of certain guiding 

significance for clinical application. The annotation results of 5 LFMs are shown in 

Supplemental Materials, Table S5. 

 

Discussion 

 

LFMD is still expensive for target regions >2 Mbp in size because of the need for high 

sequencing depth. However, as the cost of sequencing continues to fall, it will become more 

and more practical. In order to sequence a larger region with lower cost, the dilution step of 

BotSeqS can be introduced into the LFMD pipeline. Because LFMD can deal with tag 

conflicts, the dilution level can be decreased 1 or 2 magnitudes to increase the sensitivity. 

Additional experiments will be done soon. 

 

Only accepting random sheared DNA fragments, not working on short amplicon sequencing 

data, and only working on pair-end sequencing data are known limitations of LFMD. 

Moreover, LFMD’s precision is limited by the accuracy of the alignment software. Although 

tags are excluded in the model of LFMD, LFMD still has the potential to utilize tags and deal 

with amplicon sequencing data. The basic assumption in our model, that error rates are the 

same in all three directions, is not close enough to reality according to experimental data at 

present. These remain issues may be solved in the next version of LFMD. 

 

To estimate the theoretical limit of LFMD, let read length be 100bp and the standard 

deviation (SD) of insert size be 20bp. Furthermore, let N represent the number of read 

families across one point. Then, N = (2 * 100) * (2 * 3 * 20) = 24000 if only considering 

±3	SD. As the sheering of DNA is not random in the real world, it is safe to set N as 20,000. 

Ideally, the likelihood ratio test can detect mutations whose frequency is greater than 0.2% in 

a read family with Q30 bases. Thus, the theoretical limit of minor allele frequency is around 

1e-7 (= 0.002 / 20000). 

 

LFMD reduces the cost dramatically mainly because it discards tags. First, for a typical 

100bp read, the lengths of the tags and the fixed sequences between the tag and the true 

sequence are 12bp and 5bp respectively. So (12+5) / 100 = 17% of data are saved if we 

discard tags directly. Second, the efficiency of targeted capture decreases by about 10 to 20% 
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because of the tags and the fixed sequences, according to in-house experiments. Third, 

LFMD can work on short read data (PE50) of BGISEQ and then 30 to 40% of the cost can be 

saved because of the cheaper sequencing platform. Totally, the cost can be reduced by about 

70%. 

 

Based on the concept of molecular tags, Du novo[28], UMI-tools[26] and others have made 

significant improvements since 2012. In contrast, LFMD shows a completely different 

approach that discards tags in the first place. It is essential to report an alternative path which 

shows potential advantages. As DS data and high-depth conventional whole genome 

sequencing data accumulated in public databases, LFMD provides opportunities for further 

mining of existing datasets. 

 

Conclusion 

 

To eliminate endogenous tag conflicts, we use a likelihood-based model to separate the read 

family of the minor allele from that of the major allele. Without additional experimental steps 

and the customized adapters of DS, LFMD achieves higher sensitivity and specificity with 

lower cost. LFMD is useful in areas that require ultra-high precision, such as prediction of 

drug resistance and early screening of cancer. It is a general method that can be used in 

several cutting-edge areas and its mathematical methodology can be generalized to increase 

the power of other NGS tools.  

 

Methods and Materials 

 

Subject recruitment and sampling 

 

A lymphoblastoid cell line (YH cell line) established from the first Asian genome donor[30] 

was used. Total DNA was extracted with the MagPure Buffy Coat DNA Midi KF Kit 

(MAGEN). The DNA concentration was quantified by Qubit (Invitrogen). DNA integrity was 

examined by agarose gel electrophoresis. The extracted DNA was kept frozen at -80°C until 

further processing. 

 

Mitochondrial genome DNA isolation 
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Mitochondrial DNA (mtDNA) was isolated and enriched by double/single primer set 

amplifying the complete mitochondrial genome. The samples were isolated using a single 

primer set (LR-PCR4) by ultra-high-fidelity Q5 DNA polymerase following the protocol of 

the manufacturer (NEB) (Table S6). 

 

Library construction and mitochondrial whole genome DNA sequencing 

 

For the BGISeq-500 sequencing platform, mtDNA PCR products were fragmented directly 

by Covaris E220 (Covaris, Brighton, UK) without purification. Sheared DNA ranging from 

150bp to 500bp without size selection was purified with an Axygen™ AxyPrep™ Mag PCR 

Clean-Up Kit. 100 ng of sheared mtDNA was used for library construction. End-repairing 

and A-tailing was carried out in a reaction containing 0.5 U Klenow Fragment 

(ENZYMATICS™   P706-500), 6 U T4 DNA polymerase (ENZYMATICS™ P708-1500), 

10 U T4 polynucleotide kinase (ENZYMATICS™ Y904-1500), 1 U rTaq DNA polymerase 

(TAKARA™ R500Z), 5 pmol dNTPs (ENZYMATICS™ N205L), 40 pmol dATPs 

(ENZYMATICS™ N2010-A-L), 1 X PNK buffer (ENZYMATICS™ B904) and water with 

a total reaction volume of 50 µl. The reaction mixture was placed in a thermocycler running 

at 37°C for 30 minutes and heat-denatured at 65°C for 15 minutes with the heated lid at 5°C 

above the running temperature. Adaptors with 10bp tags (Ad153-2B) were ligated to the 

DNA fragments by T4 DNA ligase (ENZYMATICS™ L603-HC-1500) at 25°C. The ligation 

products were PCR amplified. Twenty to twenty-four purified PCR products were pooled 

together in equal amounts and then denatured at 95°C and ligated by T4 DNA ligase 

(ENZYMATICS™ L603-HC-1500) at 37°C to generate a single-strand circular DNA library. 

Pooled libraries were made into DNA Nanoballs (DNB). Each DNB was loaded into one lane 

for sequencing. 

 

Sequencing was performed according to the BGISeq-500 protocol (SOP AO) employing the 

PE100 mode. For reproducibility analyses, YH cell line mtDNA was processed four times 

following the same protocol as described above to serve as library replicates, and one of the 

DNBs from the same cell line was sequenced twice as sequencing replicates. A total of 8 

datasets were generated using the BGISEQ-500 platform. MtDNA sequencing was performed 

on the BGISeq-500 with 100bp paired-end reads. The libraries were processed for high-

throughput sequencing with a mean depth of ~60000x. 
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The data that support the findings of this study have been deposited in the CNSA 

(https://db.cngb.org/cnsa/) of CNGBdb with accession code CNP0000297. Analysis codes 

used in this paper can be accessed at https://github.com/RainyEricYe/LFMD. 

 

Likelihood-based model 

 

We aim to identify alleles at each potential heterozygous position in a read family (grouped 

according to endogenous tags). Then based on those heterozygous sites, we split the mixed 

read family into smaller ones, and compress each one into a consensus read. Finally, we 

detect mutations based on all consensus reads, which have much lower error rates than 0.1%. 

 

First, we define a Watson strand as a read pair for which read 1 is the plus strand while read 2 

is the minus strand. A Crick strand is defined as a read pair for which read 1 is the minus 

strand while read 2 is the plus strand. The plus and minus strands are also known as the 

forward and reverse strands according to the reference genome. Read 1 and 2 are derived 

from raw pair-end fastq files. Thus a read family which contains Watson and Crick strand 

reads simultaneously is an ideal read family because it is supported by both strands of the 

original DNA template. Second, we select potential heterozygous sites which meet the 

following criteria: 1) the minor allele is supported by both Watson and Crick reads; 2) minor 

allele frequencies in both Watson and Crick read family are greater than approximately the 

average sequencing error rate, often 1% or 0.1%; 3) low-quality bases (<Q20) and low 

quality alignments (<Q30) are excluded. Finally, we calculate the genotype likelihood in the 

Watson and Crick family independently in order to eliminate PCR errors during the first PCR 

cycle. 

 

At each position of a Watson or Crick read family, let 𝑋 denote the sequenced base and 𝜃 the 

allele frequencies. Let 𝑃 𝑥 𝜃  be the probability mass function of the random variable 𝑋, 

indexed by the parameter 𝜃 = 𝜃+, 𝜃-, 𝜃., 𝜃/ /, where 𝜃 belongs to a parameter space Ω. Let 

𝑔 ∈ 𝐴, 𝐶, 𝐺, 𝑇 , and 𝜃7 represent the frequency of allele 𝑔 at this position. Obviously, we 

have boundary constraints for	𝜃: 𝜃7 ∈ 	 0, 1  and 𝜃7 = 1. 

 

Assuming 𝑁 reads cover this position, 𝑥; represents the base on read 𝑖 ∈ 1, 2, … , 𝑁 , and 𝑒; 

denotes sequencing error of the base, we get 
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𝑃 𝑥; = 𝑔 𝜃 = 𝑃 𝑛𝑜	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔	𝑒𝑟𝑟𝑜𝑟	|	𝑡ℎ𝑒	𝑏𝑎𝑠𝑒	𝑖𝑠	𝑔 ∙ 𝑃(𝑡ℎ𝑒	𝑏𝑎𝑠𝑒	𝑖𝑠	𝑔)
+ 𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔	𝑒𝑟𝑟𝑜𝑟	𝑤𝑖𝑡ℎ	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛	|	𝑡ℎ𝑒	𝑏𝑎𝑠𝑒	𝑖𝑠	𝑛𝑜𝑡	𝑔
∙ 𝑃(𝑡ℎ𝑒	𝑏𝑎𝑠𝑒	𝑖𝑠	𝑛𝑜𝑡	𝑔) 

= 1 − 𝑒; 	𝜃7 +
𝑒;
3
1 − 𝜃7  

	

So the log-likelihood function can be written as 

ℓ 𝜃 = log𝑃 𝑥; 𝜃
Y

;Z[

= log 1 − 𝑒; 	𝜃7 +
𝑒;
3
1 − 𝜃7

Y

;Z[

, 𝑔 = 𝑥; 

 
Thus, for each candidate allele 𝑔, under the null hypothesis 𝐻]:	𝜃7 = 0, 𝜃 ∈ Ω, and the 

alternative hypothesis 𝐻[:	𝜃7 ≠ 0, 𝜃 ∈ Ω, the likelihood ratio test is 

𝑡7 = −2 ℓ] 𝜃 − ℓ[ 𝜃 	~	𝜒[b 

 

However, as 𝜃7 = 0 lies on the boundary of the parameter space, the general likelihood ratio 

test needs an adjustment to fit 𝜒[b. Because the adjustment is related to calculation of a 

tangent cone[31] in constrained 3-dimensional parameter space, and the computation is too 

complicated and time-consuming for large scale NGS data, here we use a simplified, 

straightforward adjustment[32] presented by Chen et al in 2017. (Details in Supplemental 

materials) 

 

Interestingly, we finally arrive at a general conclusion that the further adjustment of 𝜒[b is not 

helpful in similar cases although the asymptotic distribution we use is not perfect when 𝑁 is 

small (e.g., N<5). Alternative approaches might be derived in the future. We also compared 

theoretical P-values with empirical P-values from Monte Carlo procedures (Supplemental 

Material, Figure S1), explored the power of our model under truly and uniformly distributed 

sequencing errors (Supplemental Material, Figure S2), and evaluated the accuracy of allele 

frequency (Supplemental Material, Figure S3). The simulation results support the theoretical 

conclusion sufficiently when P-value is equal or less than 10^-3. 

 
Because the null and alternative hypotheses have two and three free variables respectively, 

the Chi-square distribution has 1 degree of freedom. The P-value of the allele 𝑔 can then be 

given 

𝑃7 = 1 − cdf 𝑡7  
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where cdf(𝑥) is the cumulative density function of the 𝜒[b distribution. If 𝑃7is less than a 

given threshold α, the null hypothesis is rejected and the allele 𝑔 is treated as a candidate 

allele of the read family. 

 

Although 𝑃7 cannot be interpreted as the probability that 𝐻],7 is true and allele 𝑔 is an error, 

it is a proper approximation of the error rate of allele 𝑔 when 𝑃7 ≤ 10hi. We only reserve 

alleles with 𝑃7 ≤ 𝛼 in both Watson and Crick families and substitute others with “N”. Then 

Watson and Crick families are compressed into several single-strand consensus sequences 

(SSCSs). The SSCSs might contain haplotype information if more than one heterozygous 

sites were detected. Finally, SSCSs which are consistent in both Watson and Crick families 

are claimed as double-strand consensus sequences (DCSs). 

 

For each allele on a DCS, let 𝑃k 𝑔  and 𝑃l 𝑔  represent the relative error rates of the given 

allele 𝑔 in the Watson and Crick family respectively, and let 𝑃kl 𝑔  denote the error rate of 

the allele 𝑔 on the DCS. Thus, 

𝑃kl 𝑔 = 	𝑃k 𝑔 +	𝑃l 𝑔 −	𝑃k 𝑔 𝑃l 𝑔  

 

For a read family which proliferated from 𝒏 original templates, a coalescent model can be 

used to model the PCR procedure[33]. The exact coalescent PCR error rate is too 

complicated to be calculated quickly, so we tried to give a rough estimate. According to the 

model, a PCR error proliferates and its frequency decreases exponentially with the number of 

PCR cycles, 𝒎. For example, an error that occurs in the first PCR cycle would occupy half of 

the PCR products, an error that occurs in the second cycle occupies a quarter, the third only 

1/8, and so on. As we only need to consider PCR errors which are detectable, the coalescent 

PCR error rate is defined as the probability to detect a PCR error whose frequency ≥ 2h𝒎/𝒏, 

and it is equal to or less than 

1 −	(1 − 𝑒𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒	𝑝𝑒𝑟	𝑐𝑦𝑐𝑙𝑒)bsh[ 

 

Let 𝑒tlu 𝑔  denote the coalescent PCR error rate and 𝑃tlu 𝑔  the united PCR error rate of the 

double strand consensus allele. Then we get 

𝑃tlu 𝑔 ≈ 𝒏 ∗ 𝑒tlu 𝑔 b 
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Because the PCR fidelity ranges from 10-5 to 10-7, we get  𝑃kl 𝑔 𝑃tlu 𝑔 ≈ 0, then the 

combined base quality of the allele on the DCS is 

𝑄 𝑔 = 	−10 log[] 𝑃kl 𝑔 + 𝑃tlu 𝑔  

 

 

Then 𝑄 𝑔  is transferred to an ASCII character, and a series of characters make a base 

quality sequence for the DCS. Finally, we generate a BAM file with DCSs and their quality 

sequences. 

 

With the BAM file which contains all the high-quality DCS reads, the same approach is used 

to give each allele a P-value at each genomic position which is covered by DCS reads. 

Adjusted P-values (q-values) are given via the Benjamin-Hochberg procedure. The threshold 

of q-values is selected according to the total number of tests conducted and false discovery 

rate (FDR) which can be accepted.  

 

A similar mathematical model was described in detail in previous papers by Ding et al[6] and 

Guo et al[18].  Ding et al. used this model to reliably call mutations with frequency > 4%. In 

contrast, we use this model to deal with read families rather than non-duplicate reads. In a 

mixed read family, most of the minor allele frequencies are larger than 4%, so the power of 

the model meets our expectation. 

 

For those reads containing InDels, the CIGAR strings in BAM files contain I or D. It is 

obvious that reads with different CIGAR strings cannot fit into one read family. Thus, 

CIGAR strings can also be used as part of endogenous tags. In contrast, the soft-clipped part 

of CIGAR strings cannot be ignored when considering start and end positions because low-

quality parts of reads tend to be clipped, and the coordinates after clipping are not a proper 

endogenous tag for the original DNA template. 
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