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Abstract 

 

In this paper, using word2vec, we demonstrate that proteins domains may have semantic  

“meaning” in the context of multi-domain proteins. Word2vec is a group of models which 

can be used to produce semantically meaningful embeddings of words or tokens in a vector 

space. In this work we treat multi-domain proteins as “sentences” where domain identifiers 

are tokens which may be considered as “words”. Using all Interpro (Finn, Attwood et al. 

2017) eukaryotic proteins as a corpus of “sentences” we demonstrate that Word2vec 

creates functionally meaningful embeddings of protein domains. We additionally show how 

this can be applied to identifying the putative functional roles for Pfam (Finn, Coggill et al. 

2016) Domains of Unknown Function. 

 

Introduction 

 

Word2vec (Mikolov 2013) is a group of models which can be used to learn the embeddings 

of words in a continuous vector space given a corpus of sentences. Often Natural Language 

Processing (NLP) tasks consider words as sets of unrelated tokens, subjecting them to no-

more rigorous analysis than frequency counting. While this is mathematically and 

computationally convenient it ignores the fact that most words have degrees of similarity, 

such as verbs with differing tenses, adverbs with differing endings or words which share the 

same suffixes. Word2vec aims to produce embeddings of words in a vector space where 

distance in the vector space correctly encodes the degree to which words or terms are 

similar or can be used in similar semantic context. Although a great degree has been written 

about these methods it remains unclear exactly why these models are performant 

(Goldberg 2014). Nevertheless they show good performance in the task of clustering words 

with related semantic meaning, interested readers should consult the following paper for 

further details (Mikolov 2013). Since lexical word embeddings have become popular, they 

have been adapted and applied directly to protein and gene sequences. prot2vec, gene2vec 

and seq2vec are examples of such methods (Asgari and Mofrad 2015, Yang, Wu et al. 2018). 

 

Proteins are often composed of discrete domains. These are either conceptualised as sub-

sequences of independent protein sequences which share homology (and by extension 

evolutionary origin) (Finn, Coggill et al. 2016). Or alternatively domains may be considered 

structurally, where they are subsections of the proteins which are compact, independently 

folding and observed to be shared between a variety of proteins (Andreeva, Howorth et al. 

2014, Cheng, Schaeffer et al. 2014, Dawson, Lewis et al. 2017). An extension of the 

observation that proteins can be decomposed in to sets of domains is the hypothesis that 

domains act as sub-functional units and when composed together a protein’s given 

combination of domains is what gives rise to the protein’s specific function (Das and Orengo 

2015, Nepomnyachiy, Ben-Tal et al. 2017). In the following study we show that protein 

domains can be embedded in a “semantically” meaningful vector space and that this 

embedding space reflects meaningful information about the functional roles (in terms of GO 

term assignments) of the protein domains. 
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In the following work we briefly discuss the use of Word2vec in protein domain functional 

inference. Protein function prediction has received a great deal of attention in the preceding 

20 years (Friedberg 2006) and a great number of function prediction methods have been 

developed. Many of these make use of sequence search using some manner of nearest 

neighbour functional assignment (Watson, Laskowski et al. 2005, Loewenstein, Raimondo et 

al. 2009). As the field has progressed work has been done to integrate more sophisticated 

statistical methods and models with many contemporary methods leveraging machine 

learning with ensemble or meta-prediction methodologies. Current state of the art in 

protein function is measured by the Critical Assessment In Function Annotation (CAFA) 

community experiment (Radivojac, Clark et al. 2013). In this experiment groups attempt to 

predict experimentally validated Gene Ontology (GO) terms (Consortium 2017) over a blind 

set of unannotated protein sequences. Thus far, performance and progress in this task 

indicates that protein function prediction remains a challenging problem in the field of 

bioinformatics. 

 

Method 

 

Datasets 

We downloaded Interpro 62 (Finn, Attwood et al. 2017) with the associated GO and protein 

domain assignments. The files were parsed to extract only the Eukaryotic proteins and their 

GO and Pfam protein assignments. The following work looks only at eukaryotic proteins as 

there are few multidomain proteins in the bacteria and archaeal kingdoms, as such little 

domain context information would be available for proteins from those kingdoms. Only GO 

assignments with the following evidence codes were retained: EXP, IBA, IDA, IEP, IGC, IGI, 

IMP and IPI. This eliminates all the high throughput and more tenuous computational 

annotation assignments. The resulting dataset contains 9,030,650 eukaryotic proteins, 

which have domain assignments 11,355 of the available Pfam domain families and these 

proteins are associated with annotations from 2,358 GO Terms. 

 

Not all regions within each protein have been assigned to domains. In large part because 

not all domains are known and assigned but also because many Eukaryotic proteins possess 

regions of intrinsic disorder (Walsh, Giollo et al. 2015), regions of low complexity or coiled 

coiled sequences. All such unassigned regions were compiled (see below). As Word2vec 

analyses words based on the semantic context of neighbouring words representing 

unassigned regions in our corpus preserves important domain context information. 

 

These data were then used to derive which Pfam domains are seen to be associated to 

which GO terms. For every Pfam domain we associated all GO terms assigned to all the 

proteins the Pfam domain was observed in. This assigns a varied bag of GO terms to each 

Pfam domain and this bag of terms can be viewed as representing the spectrum of observed 

functional diversity for that Pfam domain. 

 

Unassigned sequence region assignments 

 

The fasta sequence database for Interpro 62 was masked using pfilt for both coiled coil and 

low complexity regions using pfilt (Jones 1999). Disordered regions were derived directly 

from the Interpro disorder annotations. Gap regions which did not contain disorder 
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annotations, coiled-coil or low complexity sequence were assigned given the length of the 

unassigned regions. These remaining gap regions were binned into size bins based on their 

lengths (see figure 1). The majority of gap regions are around 100 residues in length, as the 

typical structural domain size is around 100 residues 5 gap types were created to represent 

unassigned regions of various sizes which are approximate multiples of the typical domain 

size, see table 1. All non-domain regions: gaps, disordered, low complexity and coiled-coil 

regions were then compiled as a set of adjunct domain-like sequence regions to 

complement the PFAM domain assignments.  

 

Gap Region ID Size (residues) 

G100 20-100 

G200 101-200 

G300 201-300 

G400 301-400 

G500 401- >500 

Table 1: Names and sizes of gap pseudo-domains  

 

 
Figure 1: Distribution of gap regions (regions without Pfam domain assignments) in interpro Eukaryotic 

sequences. 
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Figure 2: The example of the domain and saequence region assignement. Pfam domains and disorder regions 

are derived from Interpro annotations. Low Complexity and Coiled Coil regions are calculated by Pfilt and gaps 

are assigned given their size. 

 

 
Figure 3: Compiling protein “sentences”. Interpro compiles assignments of domains on Uniprot protein 

sequences. We take only the Pfam domain assignments and complement those with assignments of Disorder, 

Low Complexity (LC) and coiled-coil (CC) regions. These are then tokenised to create a corpus of “sentences”. 

The corpus can then be used as input to word2vec. The output is a vector space which places each token at a 

point within that space, here stylised in 2D. Tokens which appear in similar syntactic contexts in the corpus 

should be placed near one another in the vector space. 
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Building the word embedding 

 

To build word2vec embeddings we treat protein sequences and their domain assignments 

as “sentences”. The Pfam IDs and other sequence region assignments are used as 

tokens/pseudo-words in such a pseudo-sentence. For instance a typical protein may be 

converted to a sentence such as “PF00170 PF003534 G200 LowComplexity PF00678”. Which 

would indicate two leading Pfam domains followed by a gap region up to 200 residues, a 

region of low complexity sequence finally terminating in a Pfam domain (see figure 2). We 

compile such sentences for every Eukaryotic protein in Interpro62 and this set of sentences 

becomes the corpus we use to create the word embedding. 

 

Python library genism (https://radimrehurek.com/gensim/) was used to create the 

word2vec model from the corpus using the default parameters. This means the embedding 

uses the skip-gram algorithm and model to build the embedding. This process is illustrated 

in full in figure 3. For the benchmark below an all-against-all distance matrix of domains was 

derived.  

 

Benchmark 

 

We are interested in whether word2vec embeds Pfam domains in a manner which is 

biologically meaningful. This would in turn would indicate that there is some manner of 

semantic meaning in the positioning or sequence context for protein domains. To 

investigate the embedding, initially we attempted to project the domain vectors into three 

dimensions (data not shown) using Multi Dimensional Scaling. However the resulting 

projection did not yield any trivially interpretable result. 

 

An alternative means of investigating whether the embedding is biologically meaningful 

would be to establish if functionally related domains are placed near one another in the 

embedding. To investigate this we assigned GO terms to the Pfam domains. This was done 

by allowing Pfam domains to inherit all GO terms assigned to the proteins each Pfam 

domain is observed in. Although this is somewhat lossy, as GO annotations reflect protein 

functions, each domain’s “bag” of GO terms will reflect the functional diversity for the 

domain. 2,358 GO terms were assigned over the 11,355 Pfam domains observed in the 

Eukaryotic proteins. These assignment could then be used for a nearest neighbour 

benchmark test. 

 

Results 

 

Nearest Neighbour Performance 

 

Performance in nearest neighbour functional annotation was calculated to assess whether 

the vector embedding of domains displayed any meaningful structure. That is, domains with 

similar functionality were placed near one another in the embedding. Each domain was in 

turn considered by inheriting the GO terms from its K nearest neighbours and comparing 

these predicted terms to the known terms assigned via Interpro annotations. Table 2 gives 

the precision and Mathew’s Correlation Coefficients (MCC) scores for the nearest neighbour 

benchmark. The MCC value indicates the predicted terms are non-random (greater than 0) 
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which in turn suggests that there is some meaningful structure in the embedding of 

domains in a vector space.  

 

Word2vec is trained to embed human language words in a vector space such that words 

which occur in similar semantic contexts are close to one another in the vector space. That 

our domain embedding is non-random implies that multidomain proteins exhibit some form 

of semantic structure. That is, certain domains appear in contexts near or adjacent to other 

domains and it may be possible to learn grammar-like rules which govern this. 

 

It is worth noting that increasing the number of neighbours (increasing K) which functional 

roles can be inherited from degrades performance in this function-annotation task. Domains 

are typically involved in a large number of possible different protein functions. By increasing 

the number of neighbours GO terms can be inherited from the number of false positives is 

greatly increased and so performance degrades. 

 

K Nearest 

Neighbours 

Mean Precision Mean Accuracy Mean MCC 

1 0.33 0.99 0.28 

3 0.19 0.98 0.23 

5 0.15 0.98 0.22 

10 0.10 0.96 0.19 
Table 2: Mean precision and accuracy and Mathew’s Correlation Coefficients given nearest neighbour 

inheritance of GO terms.  

 

Per Ontology Results 

 

MCC values were also calculated for each of the three GO Ontologies (see table 3). Of the 

2,358 GO terms used to annotate Eukaryotic sequences in Interpro: 1,018 are from the 

Molecular Function Ontology, 1,026 are from the Biological Process Ontology and 314 from 

the Cellular Component Ontology. The MCC values indicate different functional inheritance 

performance for each ontology with, unusually, the cellular component ontology being the 

best predicted set of terms. In the context of the vector embedding this may imply that the 

simple syntax contained in the domain orderings contains some additional information 

about where a protein is located within the cell. Of course these figures may also just reflect 

the degrees to which the prediction classes (True Positive, True Negative, etc…) are 

balanced for each of the ontologies. 

 

Ontology MCC 

Biological Process 0.27 

Molecular Function 0.30 

Cellular Component 0.34 
Table 3: MCC values for K=1 nearest neighbour inheritance of GO terms, calculated for each separate GO 

ontology. 

 

In general we suspect the MCC calculated may underestimate the quality of the domain 

embedding. Using GO assignment to genes to annotate domains is inherently noisy. GO 

annotations may not be good descriptors of the specific role a domain plays within a given 
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protein. Within the context of a multidomain proteins domains provide specific sub 

functionality such as providing a catalytic site, presenting one or more small molecule 

binding sites, providing membrane anchoring. It seems plausible if domains were annotated 

at a finer grained level, that better reflected these more specific roles, then the nearest 

neighbour assignment would return better results. The lack of a computer readable 

“domain ontology” remains an barrier for large scale studies of domain functionality and 

evolution. 

 

Vector mathematics on the domain embedding 

 

One observation of semantic embeddings of natural languages is that arithmetic operations 

on the vectors have semantic or lexical meanings, one classic example being King – Man + 

Woman = Queen. We wished to investigate if simple vector arithmetic or translations for 

the protein domain embedding might have similar lexical meaning.  

 

In the King to Queen example (see figure 4), subtracting Man from King takes you to a space 

in the embedding with the meaning of man “removed” such that adding the Woman vector 

will take you to Queen. We can perform similar vector subtractions for the domain 

embedding. In this context we would treat a domain’s set of GO terms as equivalent to its 

“meaning”, although, as discussed, this is a very lossy way to conceptualise the meaning of a 

domain. Nevertheless if we subtract two domain vectors we would hope the third vector is 

in a space where the remaining set of GO terms is the set difference of the two domains. 

 

 
Figure 4: Example demonstrating semantically meaningful vector algebra. In A) four terms are placed in the 

vector space. If we subtract the Man vector from King (graph B), we move to an undefined point in the vector 

space. Adding the Woman vector (C) moves to the Queen vector.  

 

We took the most common 20 Pfam domains, removing the one that isn’t present in 

eukaryotes and in turn subtracted all possible domain vectors. For the resulting third vector 

we found the nearest domain and tested the GO term overlaps with the initial two domains. 

In nearly all cases the resulting domain has minimal GO term overlaps with its parents. It is 

clear that this operation moves us to a region in the vector space where the domains’ 

“meaning” is profoundly altered, much as removing Man from King might be thought of as 

moving to a gender neutral space. What is not clear is what is the functional meaning of this 

in protein domain terms. 

 

To investigate whether we could find more meaningful movements in the vector space we 

looked instead for translations in the vector space between mutually exclusive binary 

annotations. King and Queen are typically used as mutually exclusive labels that straddle 
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some conceptual binary assignment (i.e. gender) and much the same is true of many GO 

terms. For instance in the Cellular Component Ontology annotation terms such as 

Intracellular and Extracellular might be viewed as a similar mutually exclusive binary. 

 

We chose three binary cellular component term pairs; Intracellular (GO:0005622) vs 

Extracellular (GO:0005615), Nucleus (GO: 0005634) vs Cytoplasm (GO: 0005737) and 

Cytoplasm (GO: 0005737) vs transmembrane (GO: 0009279). For each pairing we identified 

proteins with domains annotated exclusively with one term and not the other term. Then 

for the first term we calculated the vector which moves from the location of the domain 

with the first term to the closest domain annotated with the second term. As with the prior 

analysis not having a detailed domain ontology prevents us from knowing if this closest 

domain is the most appropriate domain to move to. This led to a population of translation 

vectors which we could test to measure if the translation from a domain with one term to a 

domain with the other term was always vector oriented in a similar direction. We compared 

all Intracellular to Extracellular vectors in an all against all fashion and did the same for the 

other two pairs of terms (see Figure 5). If the translation is persevered in the vector space 

we would expect that all the vectors to have a small angle of deflection between them. In 

the transmembrane case there was no such alignment and not trend in the angles between 

the vectors. In both the Intracellular to Extracellular and the Nucleus to Cytoplasmic cases 

there is a clear distribution which peaks around 1.5 radians, indicating that in general the 

translation is commonly orthogonal and isn’t preserved in the vector space. However the 

intracellular to extracellular histogram shows a small leading tail below 1 radian (see figure 

6) indicative of a small population of vectors which do approach alignment. And indeed we 

are able to find small numbers of genes in Interpro which share Pfam domains and  where 

the difference is a substitution of an intracellular annotated domain for an extracellular 

domain such as G3I6X9 and A0A0L6WZ71 or I3L0A0 and G7Y5H3. 

 

Figure 5: Comparing translation vector from one binary GO property to another. A) Putative vector embedding 

of Intracellular (blue dots) and Extracellular (orange crosses) labelled domains. B) Vectors which translate each 
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intracellular domain to its closest Extracellular labelled domain. C) Vectors are extracted and pooled D) Angle 

between each vector is compared to find vectors that point in the same direction. 

 

 

 
Figure 6: Histogram of transformation vector angles. For intracellular to extracellular.  

 

 

Domains of Unknown Function 

 

As the word2vec embedding has some meaningful structure with regards GO term 

inheritance we can also use a nearest neighbour approach to suggest putative sets of GO 

terms that each eukaryotic Pfam Domain of Unknown Function (Pfam DUFs) may take part 

in. Our corpus of eukaryotic genes contained annotations from 3,918 DUFs. Using a single 

nearest neighbour inheritance method 1,292 of these domains could be assigned new GO 

terms (i.e. their nearest neighbour in the embedding was annotated and was not a gap or 

other sequence region). On average each DUF gets 11 novel GO terms assigned. In figure 7 

the distribution of terms indicates that the majority of DUFs receive only a handful of 

putative GO assignments. We suggest that such assignments could be used as starting 

points for Pfam domain annotations and with relatively fewer terms to confirm in most 

these shouldn’t make such annotation tasks more onerous or obfuscated. We make these 

annotations available (see supplementary material) and note they could make a starting 

point for future annotation of these domain in Pfam. 
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Figure 7: Frequency of the number of GO terms assigned to DUFs 

 

Discussion 

 

Applying word2vec to protein domains, making the assumption that multi-domain proteins 

are sentence-like, reveals that domains display some manner of semantic or lexical 

structure. Given this it should be possible in future to elucidate statistical rules for domain 

placement in multi-domain proteins which in turn would have applications in protein design 

and modelling. Though whatever statistical propensities for domain placement that may 

exist may be commonly or trivially ignored by evolution. 

 

Additionally word2vec was trained and designed to work over very large corpuses of human 

language. The nine million Eukatyotic Interpro sequences used in this study may represent 

too small a corpus of “sentences” to develop a higher quality embedding of word-tokens. 

Additionally multi-domain proteins typically have fewer than six domains whereas human 

sentences are frequently longer. This means sequential sets of domains are unlikely to be 

sufficiently analogous sentences which may also hinder the performance of the vector 

embedding. All these issue may be address by retraining or developing a new word2vec-like 

method better optimised for domain embeddings of sets of protein domains. 

 

Using GO annotations to annotate domains is necessarily noisy. It is not clear that they are 

the best way to encode the lexical “meaning” of a domain in its multi-domain context. In 

future a finer grained annotation of domains’ sub-functional roles will be necessary to 

correctly interpret the lexical meaning of arithmetic transformations of vectors in the 

embedding space. Nevertheless this work does open up the tantalising possibility that 
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protein domains have contextual lexical meaning that could be used to derive rules for 

multidomain protein evolution. 

 

Code & Data 

 

All code is available on github and the domain assignments, genism model, token distance 

matrix and DUF assignements are available via our webserver 

https://github.com/psipred/domain_word2vec_scripts 

https://bioinfadmin.cs.ucl.ac.uk/downloads/word2vec/ 
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