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Best-compromise nutritional menus for childhood obesity

Abstract

Childhood obesity is an undeniable reality and has shown a rapid growth in many countries. 

Obesity at an early age not only increases the risks of chronic diseases but also produces a problem 

for the whole healthcare system. One way to alleviate this problem is to provide each patient with 

an appropriate menu that can be defined with a mathematical model. Existing mathematical 

models only partially address the objective and constraints of childhood obesity; therefore, the 

solutions provided are insufficient for health specialists to prepare nutritional menus for 

individual patients. This manuscript proposes a multiobjective mathematical programming model 

to aid healthy nutritional menu planning to prevent childhood obesity. This model enables a plan 

for combinations and amounts of food across different schedules and daily meals. This approach 

minimizes the major risk factors of childhood obesity (i.e., glycemic load and cholesterol intake). 

In addition, it considers the minimization of nutritional mismatch and total cost. The model is 

solved using a deterministic method and two metaheuristic methods. To complete this numerical 

study, test instances associated with children aged 4-18 years old were created. The quality of the 

solutions generated using the three methods was similar, but the metaheuristic methods provided 

solutions in less computational time. The numerical results indicate proper guidelines for 

personalized plans for individual children. 

Keywords: Childhood obesity; Obesity health care; nutritional planning; multiobjective 

optimization.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/


3

1. Introduction

Childhood obesity has shown a rapid growth in many countries, but this growth can be partially 

mitigated via optimization mathematical models. This noncommunicable disease is a major 

concern in public health because being obese at an early age increases the risks of cardiovascular, 

pulmonary, metabolic, gastrointestinal, skeletal, psychological and other diseases in adulthood 

[1][2][3]. Also, evidence reveals a positive correlation between obesity/being overweight in 

childhood and these conditions in adulthood [4]. Therefore, interventions during childhood have 

great potential because healthy eating habits can be developed during this stage [5]. To address 

this problem, a health professional must specify the combination and amount of food that the 

patient should consume at different meal times during the day to ensure the appropriate intake of 

the nutrients of interest during the planning period. These facts introduce a particular type of 

operational research problem called the Nutritional-Menu Planning Problem (NMPP). The NMPP 

is an NP-Hard problem [6] and, in practical terms, the usual method to solve it consists of 

manually constructing menus through a trial-and-error process that is extremely inefficient and 

does not guarantee an appropriate menu for each patient.

NMPP variants approached by mathematical models have different objective functions. Stigler 

[7] and Dantzig [8] were the first to propose the goal of minimizing the total cost of the diet 

problem. Bas [9] studied the minimization of a risk factor for patients with high glycemic load 

and metabolic diseases. Orešković, Kljusurić, and Šatalić [10] maximized the palatability of a 

menu based on patient preferences by assigning a weight to the objective function in the specific 

case of vegetarian menus. Masset et al. [11] and Okubo et al. [12] minimized the difference 

between the quantities currently ingested and the recommended amount while satisfying 

nutritional requirements. Complementary diets for 6- to 24-month-olds [13] and the planning of 

nutritional menus at a school in Southeast Asia for 13- to 18-year-olds were studied considering 

total cost minimization [14]. In some situations, cost minimization alone is insufficient to obtain 

the proper diet. Other objectives are also relevant, which leads to the multiobjective NMPP that 

we denote as MO-NMPP.

Several MO-NMPP studies have been conducted. A multiobjective model represents the real 

problem addressed by the NMPP more completely. Koroušić [6] [15] addressed both economic 

and aesthetic aspects when generating food menus. The multiobjective model optimizes cost, 

functionality, seasonality, and other aspects such as flavor, consistency, color, temperature, shape 

and method of preparation. Donati et al. [16] presented a multiobjective model to generate diets 

at the lowest cost while minimizing the environmental effect of its production, measured as 

equivalent carbon dioxide emissions and land and water use. Van Mierlo, Rohmer and Gerdessen 

[17] studied a similar situation that minimized fossil fuel depletion instead of cost minimization. 
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They found that the existing models for MO-NMPP are focused on general issues that are valid 

for an obese individual. However, childhood obesity treatments must consider the child's 

development. Thus, it is not advisable to provide notably restrictive diets in terms of calories 

because children are developing. Besides, the recommended menu must encourage the 

development of healthy eating habits while minimizing exposure to risk factors such as energy-

dense, high-fat, high-sugar and high-salt foods. Furthermore, an appropriate glycemic load and 

an average daily cholesterol intake are necessary. Moreover, the minimum nutritional mismatch 

between the nutritional contributions provided by the menu and the amount recommended by 

specialized organizations is an essential condition that the best compromise solution must satisfy. 

By including all of these components in the original multiobjective problem, we introduce the 

Multiobjective Nutritional-Menu Planning Problem for Childhood Obesity (MO-NMPP-CHO).

This paper proposes an approach for the MO-NMPP-CHO that considers the minimization of 

the main risk factors for the development of chronic childhood obesity. The concept of nutritional 

mismatch is considered, which slightly relaxes the constraints. Also, to avoid limiting the 

applicability of the menus to sectors with less economic income, the classic objective of 

minimizing the average daily cost of the menu was considered, which adds to the nutritional 

constraints suggested by specialized organizations. With the help of a specialist, we created a set 

of numerical instances that were solved using a deterministic method and two metaheuristic 

methods.

The remainder of this paper is organized as follows. Section 2 introduces the proposed 

multiobjective mathematical programming model that seeks to control and prevent childhood 

obesity. Next, different techniques to solve the problem are summarized in section 3. Section 4 

includes the numerical experimentation and discussion. Finally, section 5 presents the main 

conclusions of this study.

2. A multiobjective approach for MO-NMPP-CHO

This section presents the model for the MO-NMPP-CHO. The proposed approach minimizes 

the main risk factors for the development of the chronic diseases associated with childhood 

obesity, nutritional mismatch and the average daily cost of the generated menus. The definitions 

of the parameters and variables present in the model are summarized in Table 1.
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Table 1: Parameters and decision variables for the MO-NMPP-CHO model

Type Symbol Description
A Number of fatty acids considered, a = 1,…, A;
G Number of food groups considered, g = 1,…, G;

I (k, j) Number of meals that can be served of dish j during mealtime k, i = 1..., I (k, j);
J (k) Number of dishes to be served during mealtime k, j = 1,…, J (k);

K Number of mealtimes considered, k = 1,…, K;
L Number of days considered for menu planning, l = 1,…, L;
M Number of macronutrients considered, m = 1,…, M;
V Number of vitamins considered, v = 1,…, V;

Sets and 
subindices

H Number of minerals considered, h = 1,…, H.
𝐶𝑘𝑗𝑖 Cost of food i of dish j at mealtime k;

𝐶𝐺𝑘𝑗𝑖 Units of estimated glycemic load by food portion i of dish j at mealtime k;
𝐴𝑀𝑁𝑘𝑗𝑖𝑚 Grams of macronutrient m by portion of food i of dish j at mealtime k;

𝐸𝑀𝑚 Kilocalories contributed by gram of macronutrient m;
𝑃𝐸𝑀𝑆𝑚/𝑃𝐸𝑀𝐼𝑚 Maximum/minimum fraction of energy contributed by macronutrient m;

𝐴𝑀𝐿𝑘𝑗𝑖𝑎 Fatty acid a contributed by portion of food i of dish j at mealtime k;
𝐸𝐴𝑘𝑗𝑖 Totals of kilocalories contributed by portion of food i of dish j at mealtime k;
𝐸𝐷 Total kilocalories required each day;

/𝐸𝐶𝑆𝑘 𝐸𝐶𝐼𝑘 Maximum/minimum fraction of daily energy provided at mealtime k;
𝑅𝐿𝑎 Maximum fraction of energy contributed by the fatty acid a;

𝐴𝑉𝑘𝑗𝑖𝑣 Vitamin v intake by portion of food i of dish j at mealtime k;
𝑅𝑆𝑉𝑣/𝑅𝐼𝑉𝑣 Maximum/minimum intake of vitamin v each day;

𝐴𝑀𝑘𝑗𝑖ℎ Contribution of mineral h by portion of food i of dish j at mealtime k;
/𝑅𝑆𝑀ℎ 𝑅𝐼𝑀ℎ Maximum/minimum consumption of mineral h each day;

𝐴𝐹𝑘𝑗𝑖 Contribution, in grams, of dietary fiber by portion of food i of dish j at mealtime k;
𝑅𝐹/𝐹𝐷 Maximum/minimum number of grams of dietary fiber recommended each day;
𝐺𝑟𝑘𝑗𝑖𝑔 Indicates if food i of dish j at time k belongs to group g;

𝑅𝐺𝐷𝑆𝑔/𝑅𝐺𝐷𝐼𝑔 Maximum/minimum number of daily dishes of group g recommended for good nutrition;
𝑅𝐺𝑆𝑆𝑔/𝑅𝐺𝑆𝐼𝑔 Maximum/minimum number of dishes per week of group g recommended;

Parameters

𝐿𝑆𝑃/𝐿𝐼𝑃 Minimum/maximum number of portions allowed.
𝑅𝑣𝑙𝑣 Deviation in the amount of vitamin v in relation to the recommended amount on day l;

𝑅𝑚𝑖𝑙ℎ Deviation in the amount of mineral m in relation to the recommended amount on day l;
𝑅𝑓𝑙 Deviation in the amount of dietary fiber in relation to the recommended amount on day l;
𝑅𝑎𝑙𝑎 Deviation in the energy level provided by fatty acid a on day l;
𝑅𝑒𝑙 Deviation in the total energy on day l;

𝑅ℎ𝑐𝑙𝑘 Deviation in the energy level provided at mealtime k on day l;
𝑅𝑚𝑎𝑙𝑚 Deviation in the energy level provided by macronutrient m on day l;
𝑅𝑔𝑑𝑙𝑔 Deviation in the level of food group g consumption on day l;
𝑅𝑔𝑠𝑔 Deviation in the level of food group g consumption in one week;
𝑦𝑘𝑗𝑖𝑙 1, if food i is in dish j at time k on day l and 0 otherwise;

Variables

𝑥𝑘𝑗𝑖𝑙 Amount of food portions of food i served in dish j at time k on day l.
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The model that enables the generation of food plans for children to reduce the risk of childhood 

obesity is presented in equations (1)–(19).

 𝑀𝑖𝑛 𝑍1 =
(∑𝐿

𝑙 = 1
∑𝐾

𝑘 = 1
∑𝐽(𝑘)

𝑗 = 1
∑𝐼(𝑗,𝑘)

𝑖 = 1 𝐶𝑘𝑗𝑖 ∗ 𝑥𝑘𝑗𝑖𝑙)
𝐿

(1)

 𝑀𝑖𝑛 𝑍2 =
(∑𝐿

𝑙 = 1
∑𝐾

𝑘 = 1
∑𝐽(𝑘)

𝑗 = 1
∑𝐼(𝑗,𝑘)

𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐴𝑀𝐿𝑘𝑗𝑖3)
𝐿

(2)

 𝑀𝑖𝑛 𝑍3 =
(∑𝐿

𝑙 = 1
∑𝐾

𝑘 = 1
∑𝐽(𝑘)

𝑗 = 1
∑𝐼(𝑗,𝑘)

𝑖 = 1 𝐶𝐺𝑘𝑗𝑖 ∗ 𝑥𝑘𝑗𝑖𝑙)
𝐿

(3)

𝑀𝑖𝑛 𝑍4 = (
∑𝐿

𝑙 = 1(∑𝑉
𝑣 = 1𝑅𝑣𝑙𝑣 + ∑𝐻

ℎ = 1𝑅𝑚𝑖𝑙ℎ + ∑𝐴
𝑎 = 1𝑅𝑎𝑙𝑎 + ∑𝐾

𝑘 = 1𝑅ℎ𝑐𝑙𝑘 + ∑𝑀
𝑚 = 1𝑅𝑚𝑎𝑙𝑚 + ∑𝐺

𝑔 = 1𝑅𝑔𝑑lg + 𝑅𝑓𝑙 + 𝑅𝑒𝑙)
 + ∑𝐺

𝑔 = 1𝑅𝑔𝑠𝑔)/(𝐿 ∗ 9)
(4)

Subject to,

) 𝐸𝐷 ∗ (1 ‒ 𝑅𝑒𝑙) ≤ ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐸𝐴𝑘𝑗𝑖 ≤ 𝐸𝐷 ∗ (1 + 𝑅𝑒𝑙  l (5)

𝑃𝐸𝑀𝐼𝑚 ∗ 𝐸𝐷 ∗ (1 ‒ 𝑅𝑚𝑎𝑙𝑚) ≤ ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐸𝑀𝑚 ∗ 𝐴𝑀𝑁𝑘𝑗𝑖𝑚 ≤ 𝑃𝐸𝑀𝑆𝑚 ∗ 𝐸𝐷

 ∗ (1 + 𝑅𝑚𝑎𝑙𝑚)
 l, m (6)

 𝐸𝐶𝐼𝑘 ∗ 𝐸𝐷 ∗ (1 ‒ 𝑅ℎ𝑐𝑙𝑘) ≤ ∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐸𝐴𝑘𝑗𝑖 ≤ 𝐸𝐶𝑆𝑘 ∗ 𝐸𝐷 ∗ (1 + 𝑅ℎ𝑐𝑙𝑘)  k, l (7)

 ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐸𝑀3 ∗ 𝐴𝑀𝐿𝑘𝑗𝑖𝑎 ≤ 𝑅𝐿𝑎 ∗ 𝐸𝐷 ∗ (1 + 𝑅𝑎𝑙𝑎)  a ≠ 3, l (8)

*  𝑅𝐼𝑉𝑣 ∗ (1 ‒ 𝑅𝑣𝑙𝑣) ≤ ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐴𝑉𝑘𝑗𝑖𝑣 ≤ 𝑅𝑆𝑉𝑣 (1 + 𝑅𝑣𝑙𝑣)  v, l (9)

 𝑅𝐼𝑀ℎ ∗ (1 ‒ 𝑅𝑚𝑖𝑙ℎ) ≤ ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐴𝑀𝑘𝑗𝑖ℎ ≤ 𝑅𝑆𝑀ℎ ∗ (1 + 𝑅𝑚𝑖𝑙ℎ)  h, l (10)

 𝐹𝐷(1 ‒ 𝑅𝑓𝑙) ≤ ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑥𝑘𝑗𝑖𝑙 ∗ 𝐴𝐹𝑘𝑗𝑖 ≤ 𝑅𝐹 ∗ (1 + 𝑅𝑓𝑙)  l (11)

 𝑅𝐺𝐷𝐼𝑔 ∗ (1 ‒ 𝑅𝑔𝑑𝑙𝑔) ≤ ∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑦𝑘𝑗𝑖𝑙 ∗ 𝐺𝑟𝑘𝑗𝑖𝑔 ≤ 𝑅𝐺𝐷𝑆𝑔 ∗ (1 + 𝑅𝑔𝑑𝑙𝑔)  l, g (12)

 𝑅𝐺𝑆𝐼𝑔(1 ‒ 𝑅𝑔𝑠𝑔) ≤ ∑𝐿
𝑙 = 1

∑𝐾
𝑘 = 1

∑𝐽(𝑘)
𝑗 = 1

∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑦𝑘𝑗𝑖𝑙 ∗ 𝐺𝑟𝑘𝑗𝑖𝑔 ≤ 𝑅𝐺𝑆𝑆𝑔 ∗ (1 + 𝑅𝑔𝑠𝑔)  g (13)

 ∑𝐼(𝑗,𝑘)
𝑖 = 1 𝑦𝑘𝑗𝑖𝑙 = 1  j, k, l (14)

 𝑦32𝑖𝑙 + 𝑦32𝑖(𝑙 + 1) ≤ 1  i, l (15)

 𝑦62𝑖𝑙 + 𝑦62𝑖(𝑙 + 1) ≤ 1  i, l (16)

 𝐿𝐼𝑃 ∗ 𝑦𝑘𝑗𝑖𝑙 ≤ 𝑥𝑘𝑗𝑖𝑙 ≤ 𝐿𝑆𝑃 ∗ 𝑦𝑘𝑗𝑖𝑙  i, j, k, l (17)

 𝑥𝑘𝑗𝑖𝑙,𝑅𝑣𝑙𝑣, 𝑅𝑚𝑖𝑙ℎ, 𝑅𝑓𝑙, 𝑅𝑎𝑙𝑎, 𝑅𝑒𝑙, 𝑅ℎ𝑐𝑙𝑘, 𝑅𝑚𝑎𝑙𝑚, 𝑅𝑔𝑑𝑙𝑔, 𝑅𝑔𝑠𝑔 ≥ 0  i, j, k, l, v, h, a, m, g (18)

 𝑦𝑘𝑗𝑖𝑙 ∈ {0,1}  i, j, k, l (19)

The first four equations, (1) to (4), correspond to the objective functions. The first objective 

function (1) minimizes the average daily cost of the food plan [7]. The second objective function 

(2) minimizes the average daily cholesterol intake to reduce the negative effects of fat 

consumption. The third objective function (3), which was proposed by Bas [9], minimizes the 

average daily glycemic load of the menu. The glycemic load (GL) corresponds to the glycemic 

index (GI), adjusted by a specific amount of carbohydrates (GL = carbohydrates x GI/100). This 

concept is of interest because the consumption of low-glycemic-index foods reduces the risk of 

diseases associated with hyperinsulinemia (excess insulin in the blood) such as diabetes mellitus 
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and cardiovascular diseases, while also decreasing the sensation of hunger [18]. Finally, the fourth 

objective (4) minimizes the average daily nutritional mismatch of the generated menu, whose 

elements are specified in constraints (5)–(13).

Constraints (5), (6), (7) and (8) limit the total daily energy input, a number of kilocalories 

contributed by each group of macronutrients each day, energy contribution of different meal 

schedules, and energy contribution of saturated and unsaturated fatty acids, respectively. 

Constraints (9) and (10) ensure that the requirements of vitamins and minerals in this study were 

satisfied according to the recommended and tolerable levels of intake, as specified by specialized 

organizations. In addition, there are elements that must be provided, although they are not 

considered as nutrients. Thus, constraint (11) controls the daily consumption of dietary fiber. 

Constraints (12) and (13) enable the proper daily and weekly intake of different food groups as 

suggested by experts. Constraints (14), (15), (16) and (17) specify the appropriate menus. Thus, 

constraint (14) requires that all dishes at different meal times on different days have an assigned 

food. Constraints (15) and (16) ensure that no main dish is served during two consecutive lunches 

or two consecutive dinners, respectively. Constraint (17) limits the size of portions that can be 

assigned.

Finally, constraints (18) and (19) define the types of variables in the model. The first variables 

were the assigned portion amount and mismatch levels, which must be larger than or equal to 

zero. The second set includes binary variables associated with the decision regarding whether to 

consider food under the established conditions. Then, the resulting model is a mixed integer linear 

programming problem.

3. Solution strategies 

Unlike optimization problems with only one objective function, in the multiobjective case, a 

set of nondominated (efficient) solutions is sought after instead of an optimal solution. For 

example, if a multiobjective model includes several minimization objectives Zi (x), then a solution 

y dominates solution x if Zi (y) ≤ Zi (x) for every objective i, and there is at least one objective i 

such that Zi (y) < Zi (x). The set of solutions that are not dominated by another solution in the 

objective space is known as the Pareto border [9]. The model for MO-NMPP-CHO is solved using 

three different methods. The constraint method [20] is implemented using the General Algebraic 

Modeling System [21]; two multiobjective evolutionary algorithms (MOEA) are implemented in 

C++: Nondominated Sorting Genetic Algorithm II [22], which is also known as NSGA-II, and 

Strength Pareto Evolutionary Algorithm 2 [23], which is also known as SPEA2. To complete the 

numerical study, a set of test instances associated with boys and girls aged 4-18 years was created.
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3.1 An approach for the MO-NMPP-CHO based on the constraint method

The purpose of the constraint method is to transform a multiobjective problem into several 

mono-objective problems to optimize one objective function, whereas those that become part of 

the constraints are limited by values ε. For example, let us consider the multiobjective model 

specified by equations (20) and (21), where objective Z is a vector of p functions Zi (i = 1,…, p), 

and Fd is the feasible region. The constraint method generates several mono-objective models as 

illustrated in equations (22) – (24).

𝑀𝑖𝑛 𝑍(𝑥1,𝑥2,…,𝑥𝑛) = [ ]𝑍1(𝑥1,𝑥2,…,𝑥𝑛),𝑍2(𝑥1,𝑥2,…,𝑥𝑛),…,𝑍𝑝(𝑥1,𝑥2,…,𝑥𝑛) (20)

Subject to, (𝑥1,𝑥2,…,𝑥𝑛) ∈ 𝐹𝑑 (21)

𝑀𝑖𝑛 𝑍(𝑥1,…,𝑥𝑛) = 𝑍𝑖(𝑥1,…,𝑥𝑛) (22)

Subject to, (𝑥1,𝑥2,…,𝑥𝑛) ∈ 𝐹𝑑 (23)
𝑍𝑘(𝑥1,…,𝑥𝑛) ≤ 𝜀𝑘 𝑘 = {1,…,𝑝}, 𝑘 ≠ 𝑖 (24)

 

Our model includes p = 4 objective functions, and Fd is specified by constraints (5)-(19). The 

described process is applied to each of the four objectives. The basic issue is to determine the 

appropriate values of εi (i = 1,…,4). Thus, a separate problem, as illustrated in equations (25) – 

(26), is solved for each objective function Zi, and the optimal solution  is used to specify (𝑥 𝑖,𝑦 𝑖)

the vector . Then, the range of values [𝑍1(𝑥 𝑖,𝑦 𝑖),…, 𝑍4(𝑥 𝑖,𝑦 𝑖) ] [ min
𝑖 ∈ {1,…,4}

𝑍𝑝(𝑥 𝑖,𝑦 𝑖),

 for each εp (p = 1,…, 4) is divided into t parts to determine (t+1) values for εp. max
𝑖 ∈ {1,…,4}

𝑍𝑝(𝑥 𝑖,𝑦 𝑖)]

In our case, t = 2 generates 3 different values for εp.  

𝑀𝑖𝑛 𝑍(𝑥,𝑦) = 𝑍𝑖(𝑥,𝑦) (25)

Subject to, (𝑥,𝑦) ∈ 𝐹𝑑 (26)

To complete the constraint method, for each objective Zi (i = 1,…,4), the mono-objective 

model in equations (22) – (24) is solved for each combination of different values of εk, k ϵ 

{1,…,4}, where k ≠ i in their sets of values (i.e., 27 different problems are solved for each i). The 

models generated for different ε combinations are solved using the GAMS/CPLEX solver with 

the Branch-and-Cut algorithm. After the solutions for all of the models generated by the 

combination of ε values are found, the nondominance in the objective space is used over all 

solutions, which generates the Pareto border approximation.

3.2 Two evolutionary approaches for the MO-NMPP-CHO
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In an evolutionary approach, a full population of solutions is modified during the process. 

Among these methods, a subclassification known as evolutionary algorithms presents multiple 

advantages to address multiobjective problems [24]. In fact, evolutionary algorithms are 

characterized by imitating the evolutionary process of the species regarding the survival of the 

fittest, i.e., a population of individuals (solutions to the problem) is modified after several 

generations through the application of parent-selection rules, crossover strategies and mutation 

strategies. Thus, the following series of elements must be introduced to proceed.

 Encoding the solution: definition of the coded representation (or chromosome) of 

individuals in the population in both the objective space and the decision space

 Fitness assignment: definition of a strategy to assign a value to each individual to motivate 

its aptitude to be part of the next generation

 Mating selection: definition of the strategy to select individuals to be parents of new 

solutions

 Environmental selection: definition of the strategy to decide the members of the current 

population that will be included in the population of the next generation

 Reproduction strategy: definition of the mutation and crossover operators to generate the 

next generation with the probability of applying each operator

 Initialization of population: Definition of the population size and strategy to create the 

initial population

 Stop criterion: definition of a criterion that enables the algorithm to stop after fulfilling a 

condition

 We consider two evolutionary algorithms NSGA-II and SPEA2 to address the MO-NMPP-

CHO focusing on childhood obesity. First, we defined the identical operators and strategies to 

implement both methods; then, we specified the different operators and particular strategies in 

each method. 

Solution encoding: A solution in the decision space is represented using two rows and T 

columns, where T is the number of days multiplied by the number of dishes that should be served 

per day. Figure 1 illustrates the attributes of each row and column to encode the solution in the 

decision space. The first row includes the number of food portions to be served, and the second 

row includes an identifier of the food to be served. The position of each column considers different 

characteristics (e.g., the meal time to which it belongs and the dish in the meal). The representation 

of an individual in the objective space corresponds to a vector whose size is equal to the number 

of objectives (4 in this case).
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Fig 1. Representation of an individual in the decision space, planning for one day.

Reproduction strategy: For both metaheuristic methods, we used a crossover operator with M 

crossing points [19], where M is equal to the number of days to be planned. The mutation operator 

modifies the number of points equal to the number of days to be planned thus, both food and 

amount of food portion are randomly reallocated. Two different children are generated when the 

crossover operator is applied, and one child is randomly selected. A strategy of crossover-OR-

mutation is used so that at least one operator (crossover or mutation) is applied during the 

crossbreeding application [25].

Initial population: To generate the initial population and ensure diversity within the objective 

space, individuals are randomly created. However, they become members of the population if 

they are not clones of any of the existing individuals in the initial population. 

Stop criterion: The termination condition for both metaheuristic methods is the fulfillment of Gmax 

generations or a maximum running time of 1,800 seconds.

3.2.1 NSGA-II method for the MO-NMPP-CHO
To implement NSGA-II, the following elements must be specified. First, the fitness allocation 

is based on the dominance depth criterion that generates several layers in the population; that is, 

a population of individuals creates a better-quality layer (i.e., ranking 1), which includes 

individuals who are not dominated by others. The second layer with ranking 2, includes the 

individuals not dominated by others in the remaining population. The same principle applies to 

create other layers of higher ranking. The second element that specifies fitness is the density 

estimator, which is called the crowding distance and consists of estimating the perimeter of the 

cuboid formed by the neighbors closest to the individual in the objective space as illustrated in 

Figure 2 for a bi-objective maximization problem. Thus, the operator of crowding comparison 

specifies that an individual dominates another if it has a better ranking or equal ranking with a 

greater crowding distance.
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Figure 2: Example of crowding distance, where each point is a nondominate solution.

The parents to create the new population through the application of genetic operators are 

selected from the current population through a binary tournament using the crowding comparison 

operator to specify the fittest. Environmental selection is performed by adding the best layers 

from the current population to the new population until it reaches its size. If the population size 

cannot be achieved exactly, then individuals with better density indicators are added from the last 

candidate layer for inclusion until the size of the new population is attained. At the end of the 

procedure, the individuals with ranking 1 correspond to nondominate individuals and form the 

Pareto border approximation. We include the strategy of eliminating the overlapping solutions in 

the objective space after creating the new population as in [26]. Hence, in the worst case, N 

individuals are present instead of clones to continue the process because the initial population 

does not contain clones. To tune the parameters of NSGA-II a parameterization procedure was 

conducted using a 2k factorial design [27] with a confidence level of 95% that resulted in the 

following parameters: population size, 300; the maximum number of generations, 500; and the 

probability of applying the crossover operator instead of the mutation operator, 95%.

3.2.2 SPEA 2 method for the MO-NMPP-CHO
SPEA2 can be characterized as follows. Unlike NSGA-II, SPEA2 ensures elitism through an 

external file in addition to the main population of individuals. The size of the external file remains 

fixed because of the truncation operator; hence, when the sample exceeds the permitted size for 

the external file, individuals with a smaller distance to another individual in the objective space 

are iteratively eliminated until the sample has the permitted size, thereby avoiding the elimination 

of boundary solutions. The density estimator corresponds to the inverse of the Euclidean distance 

in the objective space between the individual and the k-th closest individual, where k is equal to 

the integer part of the square root of the sum of the size of the main population and the size of the 

external file. To obtain the fitness of an individual, it is necessary to calculate the strength value 

for each individual. Then, the fitness of an individual is equal to the sum of its raw fitness that 

corresponds to the sum of the strength value of the individuals who dominates it and its density 

estimator. 

The environmental selection process to generate the external file of the next generation was 

applied by copying the nondominate individuals of the current main population and the external 
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file into the external file of the next generation. The environmental selection process to generate 

the main population of the next generation was performed by applying genetic operators to the 

parents selected from the external file of the next generation. The parents were selected through 

a binary tournament using their fitness. When the stopping criterion was fulfilled, the individuals 

in the external file with fitness value less than one, corresponded to the nondominate individuals 

who formed the Pareto border approximation.

The parameterization For SPEA2 was performed using a 2k factorial design with a 95% 

confidence level, which resulted in the following parameters: size of the main population, 300; 

maximum number of generations, 500; probability of applying the crossover operator instead of 

the mutation operator, 80%; and external file size: 50% of the main population size.

4. Results

The proposed mathematical programming model was solved with the three methods described 

in the previous section. For the constraint method, each problem instance was solved using GAMS 

software, version 24.3.3 with IBM ILOG CPLEX Optimization Studio solver, version 12.06.1 

[21]. The metaheuristics were implemented in C++. All implementations were solved using a 

computer with an i7 Intel Core processor, 2.40 GHz and 8 GB of RAM.

4.1 Test instances

Because no instance was available in the literature to complete our numerical experimentation, 

a group of six instances with different age ranges under study was specified under the supervision 

of health professionals who have experience with the real situation. These instances were 

associated with children diagnosed with obesity across three age ranges: 4-8 years, 9-13 years and 

14-18 years. Each designed instance differs in the amount of recommended daily energy, 

suggested dietary fiber, and recommended amounts for some or all of the micronutrients 

considered (see Table 2). The notations in Table 2 that characterize the instances include three 

elements: The first number indicates the lower limit of the age range; the letter indicates gender 

(“a”: girl; “o”: boy); and the second number indicates the upper limit of the age range, for 

example, 4o8 indicates a boy aged 4-8 years.

Table 3 indicates the parameters that do not depend on certain instances and are the valid 

nutritional recommendations for the 4-18 years. Thus, Table 3 includes recommendations for the 

proportion of energy contributed by each macronutrient, the proportion of energy contributed by 

each mealtime, the proportion of energy contributed by different fatty acids, and 

minimum/maximum allowed food portion. Table 3 also indicates the recommendations for daily 

and weekly food group consumption. Furthermore, a seven-day planning period was considered 

for all instances because the proposed model independently considers the weekly planning period.
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Table 2: Test Instances

4o8 4a8 9o13 9a13 14o18 14a18
Energy [kJ/day] 5857.6 5020.8 7531.2 6694.4 9204.8 7531.2

Vitamin A [μg/day] 400/1300 400/1300 600/1700 600/1700 900/2800 700/2800

Vitamin B1 

[mg/day]

0.6/ND 0.6/ ND 0.9/ ND 0.9/ ND 1.2/ ND 1/ ND

Vitamin B2 

[mg/day]

0.6/ ND 0.6/ ND 0.9/ ND 0.9/ ND 1.3/ ND 1/ ND

Vitamin B3 

[mg/day]

8/15 8/15 12/20 12/20 16/30 14/30

Vitamin B6 

[mg/day]

0.6/40 0.6/40 1/60 1/60 1.3/80 1.2/80

Vitamin B9

[μg/day]

200/400 200/400 300/600 300/600 400/800 400/800

Vitamin B12 

[μg/day]

1.2/ ND 1.2/ ND 1.8/ ND 1.8/ ND 2.4/ ND 2.4/ ND

Vitamin C [mg/day] 25/650 25/650 45/1200 45/1200 75/1800 65/1800

Vitamin E [mg/day] 7/140 7/140 11/220 11/220 15/260 15/260

Calcium [mg/day] 1000/2500 1000/2500 1300/3000 1300/3000 1300/3000 1300/3000

Copper [mg/day] 0.44/3 0.44/3 0.7/5 0.7/5 0.89/11 0.89/8

Iron [mg/day] 8/11 8/11 8/11 8/11 11/20 15/20

Magnesium 

[mg/day]

150/250 150/250 300/400 300/400 300/400 300/400

Phosphorus 

[mg/day]

500/3000 500/3000 1250/4000 1250/4000 1250/4000 1250/4000

Potassium [mg/day] 2457/4500 2106/4500 3159/4500 2808/4500 3510/4700 3510/4700

Selenium [μg/day] 15/40 15/40 15/40 15/40 40/55 40/55

Sodium [mg/day] 500/1400 500/1200 500/1800 500/1600 500/2000 500/1800

Zinc [mg/day] 5/12 5/12 8/23 8/23 9/24 11/24

Dietary fiber [g/day] 12/20 12/20 15/30 15/30 20/40 20/40
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Table 3. Recommendations for parameters: macronutrients, mealtimes, fatty acids, portion sizes, 
and food groups (daily and weekly)

Parameter Value Food groups 𝑅𝐺𝐷𝐼𝑔/𝑅𝐺𝐷𝑆𝑔 𝑅𝐺𝑆𝐼𝑔/𝑅𝐺𝑆𝑆𝑔

𝑃𝐸𝑀𝐼1/𝑃𝐸𝑀𝑆1 0.45/0.65 Vegetable 2/8 7/56
𝑃𝐸𝑀𝐼2/𝑃𝐸𝑀𝑆2 0.10/0.30 Fruit 2/8 7/56
𝑃𝐸𝑀𝐼3/𝑃𝐸𝑀𝑆3 0.20/0.35 Dairy products 2/8 7/56

𝐸𝐶𝐼1/𝐸𝐶𝑆1 0.1/0.15 Fish 0/1 1/3
𝐸𝐶𝐼2/𝐸𝐶𝑆2 0.05/0.1 Red meat 0/1 1/3
𝐸𝐶𝐼3/𝐸𝐶𝑆3 0.3/0.4 Poultry 0/1 1/3
𝐸𝐶𝐼4/𝐸𝐶𝑆4 0.05/0.1 Egg 0/1 1/3
𝐸𝐶𝐼5/𝐸𝐶𝑆5 0.1/0.15 Noodles 0/1 2/5
𝐸𝐶𝐼6/𝐸𝐶𝑆6 0.2/0.3 Rice 0/1 2/5

𝑅𝐿1 0.1 Potatoes 0/1 2/5
𝑅𝐿2 0.1 Legume 0/1 1/3
𝑅𝐿4 0.1
𝑅𝐿5 0.012

𝐿𝐼𝑃/𝐿𝑆𝑃 0.5/1.5

4.2 Numerical results

The methods were analyzed using the indicators proposed by Talbi [19] , where || · || indicates 

the Euclidian distance in the objective space, and | · | indicates the cardinality of a set. To analyze 

the diversity within population A generated with a particular method, the Extent indicator  𝐼𝑒𝑥(𝐴)

was used (27), where n is the number of objective functions, Zi (u) is the value of the i-th objective 

function, and Z(u) is the vector of the objective functions of individual u.

𝐼𝑒𝑥(𝐴) = ( 𝑛

∑
𝑖 = 1

(𝑚𝑎𝑥𝑢,𝑣 ∈  𝐴‖𝑍𝑖(𝑢) ‒ 𝑍𝑖(𝑣)‖))
1
2

                                   (27)

To measure the improvement obtained with heuristic methods, the generational distance 𝐼𝐺𝐷

 that measures the distance between the final population A and the initial population R was (𝐴,𝑅)

used (28). The method with the best performance in terms of this indicator achieves the greatest 

distance between its initial and final populations.

𝐼𝐺𝐷(𝐴,𝑅) = ( ∑
𝑢 ∈  𝐴

𝑚𝑖𝑛𝑣 ∈ 𝑅‖𝑍(𝑢) ‒ 𝑍(𝑣)‖2)1/2
|𝑅|                      (28)

The Contribution indicator , is used to measure the contribution of the 𝐶𝑜𝑛𝑡(𝑃𝐹1 𝑃𝐹2)
nondominate solutions of two methods using approximations of the Pareto fronts PF1 and PF2. 

To combine the solutions from these methods, PF denotes the intersection of sets PF1 and PF2, 
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PF* includes the nondominate solutions in PF1  PF2, W1 is the set of solutions of PF1 that ∪

dominates a solution in PF2, and N1 corresponds to the set of solutions of PF1 that do not interact 

with the solutions of PF2 (i.e., solutions in N1 that do not dominate any solution, are not dominated 

by any solution and are not clones of any solution of PF2). Finally, Cont(PF1/PF2) computes the 

proportion of nondominate solutions that PF1 gives to PF*, Cont(PF2/PF1) computes the 

proportion of nondominated solutions that PF2 gives to PF*, and Cont(PF1/PF2) + Cont(PF2/PF1) 

= 1. For example, if Cont(PF1/PF2) is greater than 0.5, then Cont(PF2/PF1) is less than 0.5; the 

method that generates PF1 is better than the method that generates PF2 in terms of convergence 

to the Pareto frontier.

𝐶𝑜𝑛𝑡(𝑃𝐹1 𝑃𝐹2) = (
|𝑃𝐹|

2 + |𝑊1| + |𝑁1|) |𝑃𝐹 ∗ |                              (29)

The evolutionary techniques required significantly less time to solve the proposed problem 

and found more solutions than the constraint method that uses the GAMS/CPLEX solver with 

Branch-and-Cut algorithm. Table 4 displays the number of solutions of the Pareto border 

approximation found with each method and the required execution time. Because the 

metaheuristics are stochastic processes, the average value of 10 executions is shown; for the 

constraint method, GAMS uses a deterministic Branch-and-Cut algorithm, so only a single 

execution is performed. Therefore, even for a small problem, the constraint method likely requires 

intensive calculations. Thus, this solution time prohibits a nutritionist working in the public health 

sector from attending to many patients during the day. Nevertheless, the population of solutions 

found using the constraint method indicates better behavior in terms of diversity in the objective 

space. 

Table 4: Computational performance of methods.

Method Indicators 4o8 4a8 9o13 9a13 14o18 14a18
No. solutions 48 46 51 50 51 49
Extent 54.69 52.48 51.09 52.69 61.73 59.20
CPU Time [s]a 57192.53 61397.81 55013.72 60227.17 55178.2

9
72538.67

Cont (1/2) 0.21 0.2 0.19 0.2 0.17 0.18

Constraint 
method (1)

Cont (1/3) 0.37 0.4 0.33 0.33 0.29 0.28
No. solutions 300 300 300 300 300 300
Extent 39.57 36.25 44.09 45.66 50.75 50.67
CPU Time [s] 123.76 133.90 149.18 127.86 124.97 122.95
Cont (2/1) 0.79 0.8 0.81 0.8 0.83 0.82
Cont (2/3) 0.58 0.73 0.65 0.64 0.65 0.62

NSGA-II (2)

Generational 
distance

36.57 52.27 30.18 35.50 34.34 22.59

N° solutions 150 150 150 150 150 150
Extent 39.49 32.62 46.98 46.13 51.53 50.32
CPU Time [s] 274.42 283.83 277.41 280.41 266.06 268.41
Cont (3/1) 0.63 0.6 0.67 0.67 0.71 0.72
Cont (3/2) 0.42 0.27 0.35 0.36 0.35 0.38

SPEA2 (3)

Generational 
distance

44.30 59.38 23.03 22.22 18.03 19.83

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/


16

Contribution indicators were used to measure the proportion of individuals of a Pareto front 

approximation built by combining two populations. The contribution of the constraint method 

was less than 40%, although in all studied cases, the individuals of the Pareto front approximation 

generated using this method still belonged to that built from its combination with the population 

generated via the NSGA-II and SPEA2 methods. Thus, the evolutionary techniques presented 

better solutions to the Pareto front than the constraint method. The comparison of the performance 

of NSGA-II and SPEA2 did not differ in terms of average diversity indicator or average 

generational distance. However, even if NSGA-II requires only half the running time of SPEA2, 

the average difference was not greater than a few minutes. In terms of the contribution of the 

solutions to the approximation of the Pareto front created by combining the fronts of both 

methods, NSGA-II provided better results; however, this improvement might be affected by the 

population size. 

The produced menus generally show that all methods repeat certain types of food with a strong 

relationship between price and nutritional benefit (e.g., skim milk, natural yogurt, and lentils with 

rice). Table 5 displays menus designed via the three methods for one day for a 4- to 8-year-old 

children. Each menu corresponds to an efficient solution. Notes that the evolutionary methods 

select many of the foods selected by the exact method.

5. Conclusions

The multiobjective approach proposed in this paper generates menus that minimize the 

consumption of substances that are particularly harmful to obese children. Also, it minimizes the 

nutritional mismatch and cost of planning to avoid limited access to healthy diets because of 

economic issues, while complying with the nutritional recommendations of specialized 

organizations. The proposed model for MO-NMPP-CHO with the created instances was solved 

with a deterministic method and two metaheuristic methods.

Although childhood obesity is a multifactor problem, the formation of healthy eating habits at 

an early age presents benefits over the long term. Thus, the multiobjective mathematical 

programming model for planning nutritional menus in this paper appears to be an appropriate way 

to minimize exposure to the major risk factors for the development of chronic diseases associated 

with childhood obesity, the total cost of nutritional planning, and nutritional mismatch. 

Nevertheless, the numerical results indicate that solving this type of problem using exact 

methods is not appropriate to address real or complex instances because of their execution time. 

Positive results can be obtained using evolutionary techniques that require appropriate 

computational times. Although these techniques provide only an approximate analysis, public 

health professionals can use them as a guide to achieving personalized plans based on the 

requirements of each child. 
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Table 5: Menus created using the constraint method, NSGA-II and SPEA2.
Method

Constraint method NSGA-II SPEA2Mealtime Dish
Food Portion Food Portion Food Portion

Hot 
beverage

Skim milk 0.5 Quaker oats 
with milk

1.2 Skim milk. 0.6

Breakfast Sandwich Whole 
wheat bread 
with ham

0.5 Whole 
wheat bread 
with honey

0.9 Whole 
wheat bread 
with 
margarine

0.5

Morning 
snack

Fruit Strawberries 0.6 Cantaloupe 1.0 Cherries 0.6

Salad Lettuce 1.4 Broccoli 1.0 Celery salad 1.4
Main 
course

Conger 
chowder

0.5 Potatoes 
with egg.

0.5 Garbanzos. 0.5
Lunch

Dessert Natural 
yogurt

0.5 Plum 1.1 Blueberries. 1.4

Afternoon 
snack

Fruit Cherries 0.5 Raspberries 1.1 Cherries 0.6

Hot 
beverage

Skim milk 0.5 Quaker oats 
with milk

0.6 Quaker oats 
with milk

0.8

Teatime Sandwich Whole 
wheat bread 
with ham

0.5 Whole 
wheat bread 
with ham

0.7 Whole 
wheat bread 
with fresh 
cheese

0.5

Salad Lettuce 1.0 Green beans 0.5 Celery salad 1.4
Dinner Main 

course
Lentils with 
rice

0.5 Hake with 
Potato

1.2 Charquicán 0.5

Objectives functions values
Z1 [USD] 4.76 2.53 3.78
Z2 [mg] 96.1 143.5 105.5
Z3 [u] 60.8 72.2 70.2
Z4 [%] 0 12 7

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/


18

ACKNOWLEDGMENTS

The CONICYT-BASAL partially supported this study [grant number FB0816].

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/


19

REFERENCES

1. Daniels SR. The consequences of childhood overweight and obesity. The Future of 

Children. 2006; 16(1): 47-67. https://doi.org/10.1353/foc.2006.0004

2. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common 

sense cure. The Lancet. 2002; 360(9331):473-482. https://doi.org/10.1016/S0140-

6736(02)09678-2

3. Lake A, Townshend T. Obesogenic environments: exploring the built and food 

environments. The Journal of the Royal Society for the Promotion of Health. 2006; 

126(6): 262-267. https://doi.org/10.1177/1466424006070487

4. Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese 

children become obese adults? A Review of the Literature. Preventive Medicine. 1993; 

22(2):167-177. https://doi.org/10.1006/pmed.1993.1014

5. WHO | Facts and figures on childhood obesity. (s. f.). Retrieved April 11th, 2019, 

http://www.who.int/end-childhood-obesity/facts/en/

6. Koroušić B. Dietary menu planning using an evolutionary method. In International 

Conference on Intelligent Engineering Systems, 2006. INES ’06. Proceedings p. 108-

113. https://doi.org/10.1109/INES.2006.1689351 (2006).

7. Stigler GJ. The Cost of subsistence. Journal of Farm Economics. 1945; 27(2):303-314. 

https://doi.org/10.2307/1231810

8. Dantzig G. The Diet problem. Interfaces. 1990; 20(4):43-47. 

https://doi.org/10.1287/inte.20.4.43

9. Bas E. A robust optimization approach to diet problem with overall glycemic load as 

objective function. Applied Mathematical Modelling. 2014; 38(19-20): 4926-4940. 

https://doi.org/10.1016/j.apm.2014.03.049

10. Orešković P, Kljusurić JG, Šatalić Z. Computer-generated vegan menus: The importance 

of food composition database choice. Journal of Food Composition and Analysis. 2015; 

37: 112-118. https://doi.org/10.1016/j.jfca.2014.07.002

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/


20

11. Masset G, Monsivais P, Maillot M, Darmon N, Drewnowski A. Diet optimization 

methods can help translate dietary guidelines into a cancer prevention food plan. The 

Journal of Nutrition. 2009; 139(8): 1541-1548. https://doi.org/10.3945/jn.109.104398

12. Okubo H, Sasaki S, Murakami K, Yokoyama T, Hirota N, Notsu A. et al. Designing 

optimal food intake patterns to achieve nutritional goals for Japanese adults through the 

use of linear programming optimization models. Nutrition Journal. 2015; 14(57): 1-10. 

https://doi.org/10.1186/s12937-015-0047-7

13. Briend A, Darmon N, Ferguson E, Erhardt JG.  Linear programming: a mathematical tool 

for analyzing and optimizing children’s diets during the complementary feeding period. 

Journal of Pediatric Gastroenterology and Nutrition. 2003; 36(1): 12-22. 

https://doi.org/10.1097/00005176-200301000-00006

14. Sufahani S, Ismail Z. A new menu planning model for malaysian secondary schools using 

optimization Approach. Applied Mathematical Sciences. 2014; 8(151):7511-7518. 

https://doi.org/10.12988/ams.2014.49725

15. Koroušić, B. Computer-based dietary menu planning. Journal of Food Composition and 

Analysis. 2009; 22(5): 414-420. https://doi.org/10.1016/j.jfca.2009.02.006

16. Donati M, Menozzi D, Zighetti C, Rosi A, Zinetti A, Scazzina F. Towards a sustainable 

diet combining economic, environmental and nutritional objectives. Appetite 2016; 106 

(C): 48-57. https://doi.org/10.1016/j.appet.2016.02.151

17. Van Mierlo K, Rohmer S, Gerdessen JC. A model for composing meat replacers: 

Reducing the environmental impact of our food consumption pattern while retaining its 

nutritional value. Journal of Cleaner Production. 2017; 165(C): 930-950. 

https://doi.org/10.1016/j.jclepro.2017.07.098

18. Ludwig DS. Dietary glycemic index and obesity. The Journal of Nutrition. 2000; 130(2): 

280S-283S.

19. Talbi EG. Metaheuristics: From design to implementation. New Jersey: John Wiley & 

Sons; 2009

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/


21

20. Cohon JL. Multiobjective programming and planning. New York: Dover Publications; 

2004.

21. GAMS Documentation Center. (s. f.). Retrieved April 11th, 2019, 

https://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fsolvers%2Fcplex%2Fin

dex.html

22. Deb K, Pratap A, Agarwal S, Meyarivan, T. A fast and elitist multiobjective genetic 

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002; 6(2):182-

197. https://doi.org/10.1109/4235.996017

23. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto 

evolutionary algorithm. In Giannakoglou K, Tsahalis D, Périaux J, Papailiou K, Fogarty 

T. editors. In Proceedings fo the Evolutionary Methods for Design, Optimization and 

Control with Applications to Industrial Problems. p. 95-100, Athens; 2002.

24. Coello CC, Lamont GB, Veldhuizen DA. Evolutionary algorithms for aolving multi-

objective problems. 2nd ed. New York: Springer; 2007.

25. Reeves CR. Genetic algorithms. In Handbook of Metaheuristics. Boston: Springer, 2010; 

p. 109-139.  https://doi.org/10.1007/978-1-4419-1665-5_5

26. Nojima Y, Narukawa K, Kaige S, Ishibuchi H. Effects of removing overlapping solutions 

on the performance of the NSGA-II algorithm. In Coello CC, Aguirre AH, Zitzler E. 

editors, Evolutionary Multi-Criterion Optimization; Berlin: Springer; 2005. p. 341-354. 

https://doi.org/10.1007/978-3-540-31880-4_24

27. Montgomery D. Design and Analysis of Experiments. 8th ed. New York: McGraw-Hill; 

2012.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/618108doi: bioRxiv preprint 

https://doi.org/10.1101/618108
http://creativecommons.org/licenses/by/4.0/

