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ABSTRACT 17 

The gut microbiota influences the development and homeostasis of the mammalian immune system1–3 18 

and can alter immune cell compositions in mice4–7. However, our understanding of how the 19 

microbiota modulates immunity remains limited, particularly in humans where a lack of manipulative 20 

experiments makes inference challenging. Here we overcome this challenge by studying hundreds of 21 

hospitalized—and closely monitored—bone marrow transplantation patients as they recover from 22 

chemotherapy-induced immune ablation. This aggressive treatment causes large shifts in both white 23 

blood cell and microbiota populations allowing the relationships between the two to be studied 24 

simultaneously over time, with unprecedented resolution. Our analysis shows that the ecological 25 

diversity of the gut microbiota had an immunosuppressive effect on circulating lymphocyte counts 26 

similar in magnitude to that of anti-inflammatory and immunosuppressive drugs administered to 27 

cancer patients. Moreover, by controlling for drug treatments and clinical metadata, we identified 28 

several microbiota components strongly associated with white blood cell dynamics: Streptococcaceae 29 

associated with lymphocyte increase and Actinomycetaceae with lymphocyte suppression, 30 

Prevotellaceae with monocyte increase and Enterobacteriaceae with monocyte suppression, 31 

Ruminococcaceae with neutrophil increase and Lachnospiraceae and Bacteroidaceae with neutrophil 32 

suppression. Our analysis establishes a direct link between the intestinal microbiota and systemic 33 

immunity in humans, with implications on clinical outcomes and microbiota-based therapies.  34 
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MAIN TEXT 35 

Experiments in mice provide mounting evidence that the mammalian intestinal microbiome 36 

influences the development1–3  and homeostasis of its host’s immune system4–10. Further evidence 37 

comes from a recent study showing that white blood cell compositions differ between children born 38 

preterm and at term along with their microbiome composition11. However, our understanding of the 39 

influence of the microbiota on the adult immune system remains limited. To overcome this, we here 40 

investigated the dynamics of immune reconstitution after allogeneic hematopoietic cell therapy (HCT) 41 

in hundreds of patients at Memorial Sloan Kettering, treated for various hematological malignancies, 42 

including leukemia (Figure 1A, Table S1). 43 

The conditioning regimen of radiation and chemotherapy administered to HCT patients is the 44 

most severe perturbation to the immune system deliberately performed in humans and presents a 45 

unique opportunity to investigate the dynamic links between gut microbiota and immune system 46 

directly in humans. Immune ablation during conditioning (Figure 1A) depletes circulating white 47 

blood cell counts. This is followed by characteristic white blood cell trajectories with prolonged 48 

periods of neutropenia (<500 neutrophils per µl blood) and reconstitution of white blood cell counts 49 

once the transplanted cells engraft (Figure 1A-C). The blood of individual patients is monitored daily 50 

throughout this recovery, and medications are administered to ensure successful immune 51 

reconstitution and prevent graft-vs-host disease (Figure 1 G,H). 52 

To investigate whether the composition of the gut microbiota could affect the dynamics of 53 

circulating white blood cells in our patients, we combined high frequency, longitudinal microbiota 54 

compositions measured for hundreds of patients12 with the detailed blood and metadata from 55 

thousands of patients. We compiled over 75,000 administrations of a range of medications, clinical 56 

events such as blood stream infections, and over 100,000 host physiology measurements in the form 57 

of the most abundant white blood cells—neutrophils, lymphocytes, monocytes, eosinophils—as well 58 

as platelet counts (Figure 1, S1).  59 
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 60 

Figure 1: Immune reconstitution after hematopoietic cell transplantation (HCT). A) Three major periods of 61 
HCT: immunoablation during conditioning with chemotherapy and radiation before HCT, defined as day 0, 62 
post-HCT neutropenia, and reconstitution following neutrophil engraftment lead to repeatedly observed 63 
recovery trajectories. Shown are the average counts (shaded: ± std) of neutrophils, lymphocytes and 64 
monocytes per day relative to HCT from 2,047 patients transplanted between 2003 and 2018, with count 65 
ranges from healthy adults indicated (A), and two individual patients (B,C); patient 1 who received a peripheral 66 
blood stem cell graft, and patient 2 who received a graft of umbilical cord blood. For 460 patients, fecal 67 
samples were collected during HCT, with varying coverage, revealing loss of microbial diversity (D-F) and 68 
commensal families (G-I), often replaced by Enterococcaceae domination (shaded: ± std). J,K) Administration 69 
of immunomodulatory medications for the two example patients.  70 
 71 

We have shown previously that HCT patients lose gut microbiota biodiversity and commensal 72 

microbial families during their treatment (Figure 1D,G-I)12. A recent study in mice demonstrated that 73 

such antibiotic-induced gut decontamination can negatively affect white blood cell recovery after 74 

HCT13. In our patients, microbial diversity usually recovers slowly during white blood cell 75 

reconstitution (Figure 1D); however, microbiota recovery as well as immune reconstitution can vary 76 

strongly between patients and treatment types. This variation is illustrated by the distinct trajectories 77 
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of two patients: patient 1 who received a graft of peripheral blood stem cells, retained high microbiota 78 

diversity and engrafted earlier (Figure 1B,E,H), and patient 2 who received a graft of umbilical cord 79 

blood, lost microbiota diversity and engrafted later (Figure 1C,F,I). Low microbiota diversity at the 80 

time of neutrophil engraftment has independently been associated with 5-fold increased transplant-81 

related mortality14, suggesting that that the joint recovery of microbiota diversity and white blood 82 

cells in circulation is critical for clinical outcomes.  83 

To identify a causal link between the 84 

microbiota and white blood cell recovery 85 

dynamics, we first used data from a recent 86 

prospective clinical trial of autologous fecal 87 

microbiota transplantation (auto-FMT) in our 88 

patients12. We performed this deliberate microbiota 89 

manipulation in 24 patients, randomized to 10 90 

untreated control and 14 treated patients, including 91 

patient 3 in Figure 2A. To ask if auto-FMT 92 

affected white blood cell reconstitution, we 93 

compared the 24 patients’ neutrophil, lymphocyte 94 

and monocyte counts post-engraftment (i.e. when 95 

the transplanted hematopoietic cells begin 96 

producing new white blood cells). We observed 97 

higher counts of each white blood cell type in the 98 

period after randomization into control and 99 

treatment groups in patients who received an 100 

auto-FMT (p<0.01, Figure 2B).  101 

Figure 2: HCT patient who received an autologous fecal microbiota transplant (auto-FMT, dashed red line) 102 
that restored commensal microbial families and ecological diversity in the gut microbiota (A), with concurrent 103 
cell counts of peripheral neutrophils, lymphocytes and monocytes and immunomodulatory drug 104 
administration. B) Results from a linear mixed effects model with random effects per patient and per day 105 
relative to neutrophil engraftment show elevated neutrophil, lymphocyte and monocyte counts in patients 106 
receiving auto-FMT after their treatment as compared to control patients (***: p<0.01).  107 
 108 
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The increased white blood cell counts in patients receiving auto-FMT pointed towards a 109 

causal role of this severe microbiota manipulation on circulatory immune cell dynamics. This increase 110 

could be due to the re-establishment of a complex microbiota and the associated metabolic 111 

capabilities6,7,13, or it could be a systemic response of the body to the sudden influx of billions of 112 

intestinal organisms. Moreover, while our mixed-effects analysis accounted for patient-specific HCT 113 

treatments such as their graft source, chance differences in extrinsic factors such as 114 

immunomodulatory drug administration could have affected this result due to the small cohort size. 115 

Therefore, we next investigated the link between the gut microbiota composition and the dynamics of 116 

white blood cell recovery using our large observational cohort of HCT patients.  117 

Homeostasis of mammalian blood cell counts is complex: neutrophils, lymphocytes and 118 

monocytes are formed and released into the blood de novo by differentiation of hematopoietic 119 

progenitor cells from the bone marrow, and they can be mobilized from thymus and lymph nodes 120 

(lymphocytes), spleen, liver and lungs (neutrophils); they can also migrate from the blood to other 121 

tissues when needed15. These processes are dynamic sources and sinks of circulatory white blood 122 

cells, and they can be modulated by drugs administered to patients receiving HCT. To identify drivers 123 

of these dynamics—including the microbiota—we developed a two-stage approach. We first used a 124 

dataset of patients without microbiome information to identify medications, clinical observations and 125 

other metadata that drive changes in white blood cell counts from one day to the next. This prior 126 

information fed into and informed our main analysis which we performed on set of different patients 127 

from whom concurrent microbiome samples were available.  128 

We first used the longitudinal data of over 1,500 patients from whom no microbiome samples 129 

were collected (Figure 3A). We analyzed the counts of neutrophils, lymphocytes and monocytes 130 

during patients’ recovery (i.e. from 5 days before neutrophil engraftment until day 100), observing re-131 

establishment of homeostasis ‘as it happened’. We used 3-fold cross-validated (lasso) regression to 132 

identify factors consistently associated with increases and decreases in neutrophil, lymphocyte and 133 

monocyte counts among these patients, including their stem cell graft source, medications as well as 134 

various clinical and demographic data (Figure S2,S3, Table S1). We then used the identified effects 135 

as prior information for a Bayesian inference to contextualize potential contributions of the gut 136 
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microbiota. The set of patients with microbiota data was smaller (446 patients, Figure 3A), but they 137 

provided an unbiased sampling of the white blood cell dynamics observed across patients lacking 138 

microbiota data (Figure 3B).  139 

Notably, as a benchmark, this approach detected the expected strong effects of 140 

immunomodulatory medications (Figure 3C,S4). Most obviously, we identified the administration of 141 

granulocyte-stimulating factor (GCSF)—administered to accelerate recovery from chemotherapy-142 

induced neutropenia16—as the strongest driver of neutrophil and monocyte increases from one day to 143 

the next, yielding an estimated increase of 97% ([76%, 121%], 90 percent probability density interval 144 

[HDI90]) of neutrophils and an increase of 41% ([28%, 54%] HDI90) of monocytes. Lymphocytes, 145 

too, increased during GCSF administration, although less so (9%, [-1%, 19%] HDI90). The strongest 146 

associations with lymphocyte dynamics resulted from administration anti-inflammatory steroids that 147 

are known to induce lymphocytopenia by removing circulatory lymphocytes (prednisone17, -16% 148 

([-27%, -3%], HDI90). 149 

Beyond correctly recognizing the causal roles of medications with known biological 150 

mechanisms, our analysis detected feedbacks between white blood cell types. Specifically, we 151 

identified a negative feedback loop between neutrophils and lymphocytes, a suppression of 152 

monocytes by neutrophils and platelets (Figure 3D), and an additional suppression from platelet 153 

transfusion events (Figure 3C). Monocytes positively fed-back on each of the investigated white 154 

blood cell counts, including a positive feedback of monocytes onto themselves. Interestingly, this 155 

suggests a homeostatic feedback network of circulatory white blood cell counts. 156 
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Figure 3: Results from 157 
Bayesian inference of 158 
coefficients in a model of 159 
peripheral white blood cell 160 
dynamics. A) Cartoon of the 161 
two-stage model inferred 162 
from patients’ data: observed 163 
changes in white blood cell 164 
counts between two days are 165 
driven by the current state of 166 
the host, including the 167 
current counts of white blood 168 
cells in circulation, the effects 169 
of immunomodulatory 170 
medications administered, 171 
patient metadata and the 172 
state of the microbiome. Host 173 
state and medications were 174 
used in a prior analysis on 175 
patients without microbiota 176 
samples (brown outline, 177 
results in Figure S3), and 178 
informed the main analysis 179 
presented in panels C-F on 180 
patients with concurrent 181 
microbiome information. B) 182 
Visualization of the dynamic 183 
white blood cell data used; 184 
scatter plot of the principal 185 
components (PC) of observed 186 
daily changes of neutrophils, 187 
lymphocytes and monocytes 188 
without (grey) and with 189 
(green) concurrent 190 
longitudinal microbiome 191 
data. C-F) Regression results; 192 
bars show the posterior 193 
parameter estimate 194 
distributions (highest density 195 
intervals, HDI, color intensity 196 
indicate credibility of results) 197 
for the jointly inferred effects 198 

of immunomodulatory medications and platelet transfusion (C), homeostatic regulation network of white 199 
blood cells counts and associated posteriors (D), microbiota alpha diversity (inverse Simpson index, E) and log-200 
microbial family abundances (F) on the observed daily changes in neutrophils, lymphocytes and monocytes. 201 
 202 

To investigate the immunomodulatory role of the gut microbiota ecosystem, we included the 203 

inverse Simpson diversity index—an ecological index calculated at the OTU level. Additionally, we 204 

also included the relative abundances of OTUs combined at the family level where many important 205 

physiological traits are shared across member species18. We found that high diversity suppressed 206 

circulatory lymphocyte counts (Figure 3E). A raise in microbiota diversity of 5 inverse Simpson 207 
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index units corresponded to a -6% ([-11%, 1%] HDI90) suppression of lymphocytes. This is similar in 208 

magnitude to the effect of immunosuppressive drug administrations to prevent graft-vs-host disease 209 

(mycophenolate mofetil, -10% [-20%, 1%] HDI90) and that of anti-inflammatory steroids (Figure 210 

3C). Whether this apparent immunosuppressive effect of a complex microbiota is an indicator for 211 

good recovery and re-acquisition of homeostatic regulation among our patients, or indeed, may be 212 

problematic in the special situation of an immunosuppressed population, requires further 213 

investigation. Nonetheless, high microbiota diversity has a strong positive association with better 214 

survival of HCT patients14.  215 

Our analysis revealed several commensal microbial families that modulated white blood cell 216 

dynamics (Figure 3F). Bacteroidaceae increased lymphocytes, Prevotellaceae increased monocytes, 217 

and Ruminococcaceae increased neutrophils. The effect sizes of individual families were relatively 218 

small, suggesting that potential immunomodulatory microbiota treatments would need to be 219 

prolonged or simultaneously target multiple microbial families. A notable exception would be a 220 

reduction in Streptococcaceae: Streptococcaceae dominations reached maximum relative abundances 221 

of over 90% in our patient cohort while their median abundance was <4%. Our results suggest that an 222 

increase in Streptococcaceae from this median level to >90% domination results in daily lymphocyte 223 

increases of ~6% or, conversely, that resolving a Streptococcaceae domination could have an 224 

immunosuppressive effect. This response of circulatory lymphocyte counts to Streptococcaceae 225 

domination could reflect reduced lymphocyte migration to the gut epithelium or indicate a gut 226 

dysbiosis-induced acute immune response that may influence the risk of gut domination-born 227 

infections7,19.  228 

Microbiota homeostasis is characterized by high abundances of obligate anaerobes. Our 229 

analysis revealed that two major families of commensal obligate anaerobes, Bacteroidaceae and 230 

Lachnospiraceae, suppressed neutrophils (Figure 3F). Neutrophil-associated immunity in mice 231 

responds to gut bacteria, which could affect tumor progression in distal organs with reduced overall 232 

tumor burden upon systemic neutrophil depletion20. Intriguingly, our finding that common commensal 233 

families can modulate circulatory immune cells in human patients supports the idea established in 234 

mice that microbiota modulation could influence systemic immunity to fight tumor progression20,21. 235 
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The most immediate interface between mammalian hosts and their microbiota are the various 236 

epithelia of the body. In mice, individual microbial species trigger specific immune responses at the 237 

gut epithelium9,22,23.  Also, various microbial traits, including the production of metabolic byproducts 238 

such as short-chain fatty acids24,25 and bacterial cell wall molecules1,26,27 modulate immune responses, 239 

including granulopoiesis6. These traits are shared by many different microbial species, and therefore 240 

plausible candidates for the human body to sense gut homeostasis or dysbiosis. High-resolution, 241 

longitudinal microbiome data12 coupled with a large observational dataset of immune reconstitution in 242 

cancer patients enabled us to detect immunomodulatory effects of the microbiota ecosystem. Our 243 

approach accounted for patient differences such as the source of transplanted stem cells and yielded 244 

features that consistently associated with increases or decreases of white blood cells from one day to 245 

the next. Intriguingly, systemic effects of microbiota ecosystem features support predictions from 246 

evolutionary theory that hosts evolved to sense, respond to and control broad ecological features such 247 

as diversity and family abundances, rather than specific strains28,29. 248 

In sum, our work shows evidence of a link between the gut microbiota and the human 249 

immune system via peripheral white blood cell dynamics. We were able to infer this link because we 250 

leveraged an unprecedented resource: a vast dataset of high-resolution, longitudinal human phenotype 251 

data in the form of blood cell counts, compiled with detailed metadata. The effects inferred between 252 

the microbiota and the temporal changes in circulatory white blood counts indicate a systemic, 253 

homeostatic link that could help understand the modulating role of a ‘healthy’ microbiota during 254 

immunotherapy30–33, and holds potential for microbiota therapies20,21,34. 255 

  256 
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SUPPLEMENTARY INFORMATION 369 

Methods 370 

Complete blood count collection and characterization 371 

Absolute white blood cells count data were obtained from routine complete blood counts ordered by 372 

clinicians during normal clinical practice, used to obtain informative diagnostic and monitoring 373 

information. Blood samples received in the clinical hematology laboratory were analyzed using 374 

Sysmex XN automated hematology analyzers (Sysmex, Lincolnshire, IL) and, when needed based on 375 

specific flags and parameters as per MSKCC standard operating procedures, were validated manually 376 

using the Sysmex DI-60 Slide Processing System or CellaVision DM9600 Automated Digital 377 

Morphology System (Sysmex, Lincolnshire, IL). 378 

 379 

Microbial sample collection, data availability and ecological diversity calculation 380 

The microbiota data analyzed here was obtained from a previous publication 12. Briefly, stool samples 381 

were collected from patients and sequenced using primers for the V4 and V5 region of the 16S gene. 382 

OTU clustering was performed using UPARSE and classification was conducted using NCBI BLAST 383 

on the refseqRNA database35. Diversity as measured by the inverse Simpson index of a sample was 384 

calculated by 𝐼𝑆 = $
∑ &'(

)*
(+,

, where p is the relative abundance of the jth OTU out of N total OTUs in 385 

sample i. 386 

 387 

Linear mixed-effects model of white blood cell counts 388 

We used a linear mixed effects model to analyze white blood cell counts before and after auto-FMT 389 

with the following model equation: value ~ armpost + (1|day) +(1|patientid), where value is the 390 

count of a given white blood cell on a given day relative to neutrophil engraftment, and armpost is a 391 

binary variable that is 1 when a patient was from the FMT treated arm of the trial and day was greater 392 

than or equal to the day of FMT procedure. 393 

 394 

 395 
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Dynamic systems analyses 396 

We analyzed factors associated with the observed changes of absolute counts of neutrophils, 397 

lymphocytes and monocytes between two days.  398 

 399 

Interval data calculation 400 

For a given daily interval, a medication was considered present for at least part of the interval when it 401 

was administered on either endpoint. For the microbiota and blood stream infection data, data from 402 

the end day were considered for the interval. Homeostatic feedback calculations used the geometric 403 

mean of the white blood cell counts between the two endpoints. We included only those covariates 404 

that were present during at least 10 intervals. The stem cell graft source is a major determinant of 405 

engraftment times and can affect recovery dynamics36,37, and we therefore included intercept terms for 406 

unmodified peripheral blood stem cell grafts (PBSC), bone marrow (BM), T-cell depleted graft 407 

(ex-vivo) by CD34+selection (TCD) and cord blood (cord). 408 

 409 

Identification of effectors on white blood cell dynamics from patients without microbiome data 410 

To reveal factors that affect day-to-day white blood cell count changes, we used L1-regularized 411 

(lasso) regression38. Stronger regularization leads to fewer predictors in the final model; we here used 412 

3-fold cross validation leaving out 33% of patients at each cross-validation step to choose the 413 

regularization strength, yielding a sparse coefficient matrix of white blood cell changes. We used this 414 

to parameterize a linearized differential equation of daily blood cell count changes, 415 

Δ ln(𝑊2)
Δ𝑡 = 𝑔𝑟 + 8 𝑠2:𝑊:

;<=>

:?@

+ 8 𝛽2𝑋2

CDEF>,HI2J2HKI	MN>,O=P	&KDKQRSRD>,&KS2RJS	CRQMFDK&T2H>

2?@

	 416 

  417 
where Δln(Wi) is the log difference between single days of neutrophils, lymphocytes or monocytes 418 

counts, and Δt=1 for all intervals. gr is the intercept and represents the base line rate of change, and s 419 

is the coefficient for homeostatic feedback of the current blood state, i.e. the counts of blood cells Wj 420 

(neutrophils, lymphocytes, monocytes, eosinophils, platelets) on the rate of change of Wi. Xi are 421 

indicator variables for clinical observations (e.g. bacteremia), patient gender, the drug administrations 422 

and the type of cells that were transplanted (BM, PBSC, TCD, cord). Continuous variables were zero 423 
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centered and standardized to unit variance. After cross-validated regression, the resulting coefficient 424 

matrix was used to inform priors of a hierarchical Bayesian model. 425 

 426 

Expanded analysis on patients with microbiome data 427 

We inferred effects of medications, clinical parameters and patients’ demographics onto white blood 428 

cell rates of change in an analogous Bayesian regression using the package PyMC3 for the Python 429 

programming language39. We incorporated the above results as prior information, now additionally 430 

including a linear effect from log-transformed family relative abundances (Fi). We combined the 431 

relative OTU abundances at the family level, and only included families that at least once reached a 432 

relative abundance of >1% and had relative abundances >0.1% in more than 10% of all samples. We 433 

also included a linear effect of the zero-centered inverse Simpson diversity index (IVS) calculated at 434 

the OTU level and standardized to unit variance. This data set was smaller, and we therefore used a 435 

hierarchical model set up with random intercepts and partial pooling per transplanted cell type (HCT) 436 

and patient gender (SEX), leading to following model (other parameters as before)  437 

Δ ln(𝑊2)
Δ𝑡 = 𝑔𝑟 + (1|𝐻𝐶𝑇) + (1|𝑆𝐸𝑋) + 8 𝑠2:𝑊:

;<=>

:?@

+ 8 𝛽2𝑋2	 +
CDEF>,&KS2RJS	KFR

2?@

	 8 𝛽2𝐹2	

\KQ2I2R>

]?@

+ 𝛽2𝐼𝑉𝑆	 438 

The prior parameter distributions of the resulting computational graph were informed with the 439 

regression results from the cross-validated analysis of patients without microbiota data (no reuse of 440 

data). When a coefficient was non-zero, it’s prior distribution was a permissive, wide Normal 441 

distribution centered on the coefficient (e.g. for the activation of neutrophils from monocytes, we used 442 

Normal(µ=6.4e-02, std=1002) as prior. A coefficient that yielded a coefficient of zero after the cross-443 

validated regression of non-microbiota patients would be assigned a regularizing prior centered 444 

around zero (e.g. Normal(µ=0, std=0.01)). Hierarchy was included by assigning regularized random 445 

intercepts for transplanted cell types and patient gender. For example, the reduced baseline rate of 446 

monocytes among cord patients identified in the non-microbiota regression would lead to a prior of 447 

Normal(µ=-3.5e-02, std=1) with partially pooled information across all transplanted cell types via a 448 

shared variance with prior Exponential(lambda=10). The resulting graph of the model is visualized in 449 

Figure S2. 450 
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Supplementary Figures 451 

 452 
 453 

 454 
 455 
Figure S1: Eosinophil counts and platelet counts per day relative to HCT; line: mean, shaded: ± std) 456 
 457 
 458 
 459 

 460 
Figure S2: Computational graph of the hierarchical linear model of daily changes in white blood cell counts 461 
(dW) modeled as a function of graft source (HCT), patient characteristics (sex, age), medications (Medications, 462 
platelet transfusions), homeostatic feedbacks (Wj), log-relative abundances of microbiota families (M), and 463 
ecological diversity (IVS).  464 
 465 
 466 
 467 
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 468 
Figure S3: Coefficients from independent, L1-penalized (lasso), 3-fold cross-validated regressions of daily 469 
changes in neutrophils, lymphocytes and monocytes. gr: intercept; TCD: T-cell depleted graft (ex-vivo) by 470 
CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: umbilical cord blood. 471 
 472 
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 473 
Figure S4: Additional coefficient estimates from the Bayesian regression, see also Figure 3.  474 
 475 
 476 
Table S1: Patient characteristics. TCD: T-cell depleted graft (ex-vivo) by CD34+selection; PBSC: peripheral blood 477 
stem cells; BM: bone marrow; cord: umbilical cord blood. 478 
 479 

Graft sources %-age 
 

PBSC 39 
 

TCD 38 
 

cord 14 
 

BM 8 
   

Age years 
 

mean 51 
 

std 14 
 

min 18 
 

max 79 
   

Sex %-age 
 

Female 59 
 

Male 41 
   

Conditioning regimen %-age 
 

ABLATIVE     56 
 

REDUCE       29 
 

NONABL      15 
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 480 
Supplementary Data 481 

The data used in our study is organized in supplementary tables (data-tables.zip), with corresponding 482 
filenames (italic): 483 

1. alphadiversity.csv:  inverse Simpson diversity index per sample 484 
2. hctmeta.csv: HCT metadata 485 
3. infections.csv: positive blood culture results 486 
4. microbiome.csv: relative abundances of major microbial families 487 
5. sample_id_link.csv: lookup table to raw microbiota sequencing data12 488 
6. pidmeta.csv: anonymized patient demographics 489 
7. treatments.csv: medication administration/treatment events  490 
8. wbc.csv: absolute counts of neutrophils, lymphocytes, monocytes, eosinophils, and platelets 491 

 492 
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