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Abstract 
 
Humans observe a wide range of actions in their surroundings. How is the visual 
cortex organized to process this diverse input? Using functional neuroimaging, 
we measured brain responses while participants viewed short videos of everyday 
actions, then probed the structure in these responses using voxel-wise encoding 
modeling. Responses were well fit by feature spaces that capture the body parts 
involved in an action and the action’s targets (i.e. whether the action was directed 
at an object, another person, the actor, and space). Clustering analyses revealed 
five large-scale networks that summarized the voxel tuning: one related to social 
aspects of an action, and four related to the scale of the interaction envelope, 
ranging from fine-scale manipulations directed at objects, to large-scale whole-
body movements directed at distant locations. We propose that these networks 
reveal the major representational joints in how actions are processed by visual 
regions of the brain.  
 
Keywords: action perception, visual system, voxel-wise modeling, sociality, interaction 
envelope 
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We witness a multitude of actions in daily life: running, jumping, cooking, cleaning, 
writing, and painting, to name just a few. How does the brain make sense of this diverse 
input? The process begins with basic perception, forming lines and shapes into bodies in 
motion with identities and kinematic properties, and ultimately derives rich 
representations about emotional states, social interactions, and predictions about what 
will happen next (Kable et al., 2002; Urgesi et al. 2014; Lingnau & Downing, 2015). 
Much previous work on the nature of action representation in the brain has focused on 
the end-stages of this process; for example, attempting to localize the more abstract and 
conceptual aspects of action representation (e.g., Nelissen et al., 2005; Bedny et al., 
2011; van Elk et al., 2013; Watson & Buxbaum, 2014; Wurm & Caramazza, 2019). 
However, recent research has begun to examine action-related processing from a more 
perceptual angle, asking how regions involved in high-level vision are organized to 
support action observation (Lingnau & Downing, 2015; Wurm & Caramazza, 2017). The 
present work follows this latter approach, leveraging an encoding analytical framework to 
characterize action responses in the visual system (Mitchell et al., 2008; Huth et al., 
2012; Lescroart et al., 2015).  

 
 To employ this framework, we considered three core theoretical questions and 
their methodological implications. The first relates to the nature of the domain in 
question: what do we mean by “actions” and how should we sample this domain 
representatively (cf. Brunswick, 1955)? Many prior studies have used the tight link 
between actions and verbs as a guide, and have measured responses to written verbs 
or used verbs to guide the selection of pictures or videos of actions (Bedny et al., 2011; 
Daniele et al., 2013; Leshinskaya & Caramazza, 2014). However, common verbs are not 
always commonly-seen actions (e.g., “can”), and many commonly-seen actions are not 
often talked about (e.g., “chopping vegetables”). Further, using verbs (particularly 
without considering the type of verb) can unintentionally constrain one’s hypothesis 
space by implying that actions that look very different but are described by the same 
verb (“pushing a button” vs. “pushing a person”) share a neural representation (Hafri et 
al., 2017). To understand action observation at a more perceptual, rather than 
conceptual level, we instead sampled our action stimuli based on common human 
experiences, using the American Time Use Survey as a guide (see Methods; cf. Greene 
et al., 2016). These actions span a wide range of activities, such as cooking, traveling, 
exercising, and recreating, that a large set of Americans reported engaging in on a daily 
basis.  
 

A related consideration is how best to depict these actions in order to probe 
underlying neural responses at a meaningful level of abstraction. Historically, 
researchers have relied on highly-controlled action stimuli (Jastorff et al., 2010; Isik et 
al., 2017), often sampling primarily from hand actions such as reaching or hammering 
(Watson & Buxbaum, 2014; Fabbri et al., 2016; Wurm et al., 2017). However, these well-
designed and controlled stimuli are fundamentally limited in the range of actions they 
depict, which in turn constrains researchers’ ability to discover joints in the broader 
domain of action perception. To circumvent this limitation, others have taken a highly 
unconstrained approach, using rich, complex stimuli such as feature-length films (Huth 
et al., 2012; Chen et al., 2017; Huth et al., 2016). This approach comes much closer to 
reflecting our daily perceptual experience with actions; however, too much complexity 
can make the resulting data challenging to wrangle into interpretable results, especially 
when using thousands of features to characterize the brain’s responses to those actions. 
Thus, in the present work, we took an approach that sits in between these extremes: we 
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selected a targeted and diverse subset of everyday actions, depicted using complex, 
heterogenous videos of a short duration (Figure 1).  
 

 
Figure 1. Action Video Stimuli.  For each of the 60 actions in the stimulus set, a key frame is 

shown from one video. The key frames are arranged loosely by semantic properties for illustration 

purposes. These actions were selected to widely sample the space of everyday actions, based on 

commonly-occurring activities listed in the American Time Use Survey.  

The second major consideration concerns which brain regions to target. Prior work 
has revealed that watching other people’s actions engages a broad network of regions 
with nodes in all major lobes of the brain, known as the action observation network 
(Caspers et al., 2010; Kalenine et al., 2010; Jola et al., 2012; Urgesi et al., 2014). 
However, the perceptual processing mechanisms that operate over objects, bodies, and 
motion likely also play a role in representing ecological actions. Therefore, it is critical to 
consider more widespread action responses across broad swathes of occipitotemporal 
and parietal cortices (e.g. Hafri et al., 2017; Wurm & Caramazza, 2017). Given this, we 
used a novel method to identify voxels that reliably differentiate among different actions 
(Tarhan & Konkle, under review), rather than constraining our analyses to specific 
regions of interest emphasized in the literature.  

 
The final major consideration concerns the nature of the tuning in these regions. That 

is, what is it about an action that makes a given voxel respond more to that action than 
to others? The possibilities are potentially infinite, as actions differ from one another 
along many dimensions; luckily, the literature proposes several critical features and 
properties that may underlie action representations. For example, actions can be 
analyzed both in terms of the means by which they are performed (e.g., their kinematics 
and body postures) and the ends that they are targeted at (e.g., the actor’s intentions; 
Lingnau et al., 2015; Kemmerer et al., 2008). Means and ends features may be 
represented by distinct regions, as evidence suggests that visual responses are 
organized by body parts in the lateral temporal cortex (Beauchamp et al., 2002; Bracci et 
al., 2015), while information about an actor’s goal is processed by the inferior parietal 
sulcus (Hamilton & Grafton, 2006). As another example, linguistics research finds that 
verbs can be divided into classes based on whether they are directed at another entity 
(“dyadic”), and whether they entail a change of state in the world (Kemmerer et al., 2008; 
Levin, 1985; Levin, 1993). Relatedly, recent empirical work suggests that action 
processing in the lateral temporal cortex is organized by two major dimensions:  
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sociality—whether or not an action is directed at a person -- and transitivity--whether or 
not it is directed at an object (Wurm et al., 2017; Lingnau & Downing, 2015).  

 
In the present study, we operationalized some of these proposed properties, 

specifically the body parts that are involved in performing an action and what the action 
is directed at (its target; e.g., an object, another person, et cetera). Within the broad 
context of action processing, we consider these to be “high-level perceptual” features (as 
opposed to more conceptual or non-visual features). For example, we can recognize that 
“knitting” engages the hands and is directed at an object without any knowledge about 
the actor’s identity or what knitting is for. Thus, these features relate more directly to the 
visual processing of actions, in contrast to the more abstract properties of actions and 
verbs that have been the focus of much of the literature.  

 
With these considerations in mind, the goal of this study was to understand and 

characterize what properties of actions best predict corresponding neural responses, 
allowing for the possibility that different regions of cortex are sensitive to different 
properties. To preview, we found that the effectors used to perform an action and what 
an action is targeted at successfully predicted responses to new action videos in much 
of the occipito-temporal and parietal cortices. Further, an analysis of the voxel-wise 
tunings to these features revealed a large-scale organization of five networks that span 
the ventral and dorsal visual streams, whose tuning is related to an action’s spatial scale 
of interaction and relevance to agents. We argue that these networks reflect meaningful 
divisions in how actions – and, more broadly, visual inputs across domains – are 
processed by the brain.  
 
 
RESULTS 
 
To investigate neural responses to a wide range of human movements, 60 actions were 
selected based on what a large sample of Americans reported performing on a daily 
basis (U.S. Bureau of Labor Statistics, 2014). These actions span several broad 
categories such as personal care, eating and drinking, socializing, and athletics (Figure 
1). Two short (2.5 s) videos were selected to depict each action then divided into two 
sets. Each video depicts a sequence of movements (e.g., stirring a pot) rather than an 
isolated movement (e.g., grasping a spoon, taking one step), and thus may alternatively 
be thought of as depicting “activities” rather than “actions.” However, “activity” can also 
connote something done over a much longer timescale and with greater variation in 
perceptual properties, such as “cooking dinner.” Thus, for clarity we refer to the stimuli 
as action videos. Participants (N=13) watched these action videos while undergoing 
functional magnetic resonance imaging (fMRI) in a condition-rich design that enabled us 
to extract whole-brain neural responses to each video (see Methods).  
 
Voxel Selection Reveals Reliable Regions 
 
Before analyzing the structure in these neural responses, we first asked which regions of 
the brain reliably differentiate the actions at all—that is, which regions systematically 
respond more to some actions than others. To do so, we utilized a reliability-based voxel 
selection method (Tarhan & Konkle, under review). This method computes split-half 
voxel reliability between responses to the videos in video sets 1 and 2, and then selects 
a cutoff that maximizes the average multi-voxel pattern reliability to each video (Figure 
2, see Methods). This selection method is well-suited to our voxel-wise modeling 
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approach for two reasons. First, it retains voxels that show systematic differences in 
activation across videos -- which we will ultimately try to model and predict -- removing 
any voxels that are either unreliable or respond equally to all actions. Second, for any 
action (e.g., riding a bike), the two example videos in each set differed in many respects 
(including the direction of movement, background, identity of the actor, et cetera). Thus, 
any voxels that respond similarly across these two video sets have some tolerance to 
very low-level features.  

 
The split-half reliability for each voxel is plotted in Figure 2c. To select a cutoff 

for “reliable” voxels, we swept through a range of possible thresholds to find one that 
maximized both coverage and reliability. Through this procedure, a voxel-reliability cut-
off of r≥0.30 was selected, yielding an average item-pattern reliability of r=0.88 in the 
group data (Figure 2b). This method revealed reliable activations along an extensive 
stretch of the ventral and parietal cortices, with coverage in lateral occipito-temporal 
cortex (OTC), ventral OTC, and the intra-parietal sulcus (IPS) (Figure 2c). Reliability 
was relatively low in early visual areas, as expected from the cross-set reliability 
computation. All subsequent analyses were performed on this subset of reliable voxels.  

 
Figure 2. Reliability-Based Voxel Selection. A) Schematic illustrating how voxel split-half 

reliability and item-pattern reliability were calculated from whole-brain response data. B) Plot of 

average item-pattern reliability (y-axis) among voxels that survive a range of reliability cut-offs (x-

axis). Brains along the x-axis display the voxels that survive the reliability cut-offs at r = -1, 0, 

0.35, and 0.7. C) Whole-brain map of split-half voxel reliability. D) Reliable voxels (r>0.30) 

selected based on the curve plotted in (B). These results are based on group data. All analyses 

were conducted over reliable voxels, which were selected using the procedure outlined here. 

 
Operationalizing Feature Spaces with Behavioral Ratings 
 
Among the possible features that differentiate actions, we hypothesized that the body 
parts involved in an action and what an action is directed at are important features that 
underlie at least some of the neural responses to actions. To measure the body parts 
feature space, human raters completed an online experiment in which they selected the 
body parts that were engaged by each action from among 20 possible effectors, such as 
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legs, hands, eyes, torso, and individual fingers. The final feature values for each action 
were averaged over participants and are depicted for an example action in Figure 3b.   
 

Given the natural covariance between different effectors, we used a principle 
components analysis to reduce this feature space into 7 principle components (PCs), 
which together account for 95% of the variance in the ratings. Inspecting how the body 
parts load on each PC reveals how different kinds of actions engage different groups of 
effectors in this stimulus set (see Figure S1a). For example, body part PC1 
distinguishes between actions that engage the legs (e.g., running) and those that 
engage the hands (e.g., painting). Given that we selected actions that are commonly 
seen, not actions that maximally span the possible effectors, these principle components 
likely highlight the major body part synergies and distinctions in the space of everyday 
actions (e.g., perambulatory actions that center around the legs and feet versus manual 
actions that tend to require finer control). 

 
Our second hypothesized feature space captures information about action targets, 

i.e. what an action is directed at. To measure these features, raters answered questions 
about whether the action in each video was directed at an object, another person, the 
actor, the reachable space, and a distant location. Actions could have multiple targets. 
These ratings were averaged across participants and are shown for an example video in 
Figure 3c. Following a principle components analysis, all five PCs were needed to 
account for 95% of the variance in the ratings (Figure S1b). These PCs reveal the 
covariance across action targets within this sample: for example, the first PC 
distinguishes between actions that are directed at an object (e.g., shooting a basketball) 
and those that are directed at another person or the actor (e.g., shaking hands or 
running).  
 

 
Figure 3. Feature Spaces. For each action video, the body parts and action targets involved in 

the action were estimated through online behavioral ratings experiments. (A) Keyframe from an 

example video depicting the action “driving.” (B) Subjects indicated which parts of the body were 

involved in the action video using a clickable body map. Color saturation indicates the number of 

participants who responded that each body part was involved in this example video. (C) Subjects 

rated the actions’ targets by answering the following yes-or-no questions, aimed at one of the five 

possible targets: object: “Is this action directed at an object or set of objects?”; near space: “Are 

the surfaces and space within this actor’s reach important for the action being performed?”; far 

space: “Is a location beyond the actor’s reach important for the action being performed?”; another 

person: “Is this action directed at another person (not the actor)?”; the actor: Is this action 

directed at the actor themselves?”. Color saturation indicates the number of participants who 

responded that each target was involved in this example driving video. 
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Together, the seven body-part principle component dimensions and five action-target 

principle component dimensions were combined into a 12-dimensional feature space 
that was used to model brain responses to the action videos. The dimensions from the 
body part and action target feature spaces were not well-correlated with each other 
(mean r = 0.02, range = -0.40 – 0.45; Figure S1c). 
 
Voxel-wise Encoding Models Predict Action Responses  
 
The primary question of this study is whether these hypothesized feature spaces can 
characterize neural responses to actions well, and if so where. To answer this question, 
we employed a voxel-wise encoding-model approach (Mitchell et al., 2008; Huth et al., 
2012), which measures how well each voxel’s tuning along these feature dimensions 
can predict its response to a new video. Put another way, this method asks: what 
weighted combination of the individual features in a feature space best predicts a voxel’s 
responses across action videos? For example, a voxel that responds strongly to videos 
of sautéing and hammering but not to jumping will be best fit by high weights on hand, 
arm, and object-directed features, and low weights on the leg and actor-directed 
features. This model can then predict new responses; for example, the same voxel 
should respond more to knitting than to running. The quality of the model’s fit was 
assessed for each voxel based on how well it performed these predictions to held-out 
videos (measured as a high correlation between the actual and predicted responses to 
held-out videos using leave-1-out cross-validation; see Methods). 

 
We therefore used predictive performance to assess whether and where the body 

part and target feature dimensions characterize each voxel’s tuning properties well.  
Figure 4 (inset) illustrates how well the neural responses can be predicted by fitting 
tuning weights to body part and action target features. Voxel responses were predicted 
well across much of the ventral and dorsal streams (median leave-two-out correlation r = 
0.39, max r = 0.72).  
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Figure 4. Large-Scale Feature Tuning Structure. Data-driven clustering of the feature weights 

for body parts and target features. Inset brains display the prediction performance (rCV) for the 

combination of these features within reliable voxels. Larger brains display the five large-scale 

clusters on an example subject’s brain. Heat maps display each cluster centroid’s feature weight 

profile. Key frame images depict example videos that elicited high responses from each network. 

Results are displayed for video set 1 (see also Figure S2). Only voxels that were well-fit by the 

model with rcv>0 in both video sets were analyzed. Voxels surviving this criterion with insufficient 

variance to be included in the clustering analysis are colored grey. 

 
Critically, the key advantage of this encoding model framework is that we can 

examine not just how well the model predicts a voxel’s response to a new action, but 
also why. For example, some voxels might be tuned to leg and foot involvement, while 
others might be tuned to hand and mouth involvement. To understand how these feature 
tunings are mapped across the cortex, we used k-means clustering to group voxels by 
their model coefficients (see Methods), considering only voxels whose responses were 
fit reasonably well by the model (rCV>0 in both video sets). This analysis clusters voxels 
together if they have similar feature tunings (e.g., voxels assigned high weights on hand 
involvement and object targets but not leg involvement will be grouped together). 
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Importantly, this method does not require that voxels are grouped into contiguous 
clusters, making it possible to discover both contiguous regions and networks of non-
contiguous regions that have similar tuning functions. Further, this method does not 
presuppose any particular combinations of feature tunings ahead of time, allowing 
natural patterns to be revealed directly from the data (see Webster & Fine, in prep; 
Lashkari et al., 2010; Vul et al., 2012 for related analysis approaches). Through this 
method, we found evidence for five networks that are tuned to different characteristics of 
actions. We chose this five-network solution by considering silhouette distance and 
cluster center similarity (see Methods, Figure S2a). Each network is shown with its 
corresponding tuning function in Figure 4.  

 
Network 1 (pink) is primarily right-lateralized, covering regions along the fusiform 

gyrus and extending between the occipital face area (OFA) and superior temporal sulcus 
(STS). This network is tuned to face features and not hands and is directed at people 
(others and the actor) but not objects. It is near STS regions typically engaged by social 
processing (Saxe et al., 2004; Deen et al., 2015; Isik et al., 2017) while also extending 
inferiorly into ventral OTC along the fusiform gyrus. This network’s tuning pattern 
highlights a possible large-scale neural division between social or body-centric actions 
that are directed at other people (shaking hands) or the actor themselves (laughing), and 
those directed at objects and space. In fact, this division emerges early on: Network 1 
separates out from the rest when voxels are grouped into just two networks (Figure S3), 
suggesting that the distinction between social or agent-focused actions and nonsocial 
actions is the predominant joint organizing action responses in these regions.  

 
The remaining four networks are tuned to non-social aspects of action. The dorsal 

stream responses divided into two prominent networks. Network 2 (blue) contains voxels 
that stretch extensively along superior IPS, as well as a “satellite” node in lateral OTC. 
Inspecting the feature weights associated with this network indicates that these voxels 
respond most strongly to videos that involve finger and hand movements, and that are 
directed at objects in the near space (e.g., knitting). This finding resonates with a 
previously-established tool network (Johnson-Frey et al., 2004; Hasson et al., 2004; 
Grafton et al., 2007; Kalenine et al., 2010; Lingnau & Downing, 2015; Baldassano et al., 
2016; Wurm et al., 2017). Network 3 (dark green) contains voxels that stretch 
extensively along inferior IPS, into the transverse occipital sulcus (TOS), with a satellite 
node in the parahippocampal cortex (PHC). Inspecting the feature weights associated 
with this network also reveals strong tuning to both objects and near space, but with 
more arm (and not finger) involvement.  

 

Network 4 (purple) is restricted to the ventral stream, including bilateral regions in the 
vicinity of extrastriate body area (EBA). Regions in this network are tuned to hands, 
arms, the torso, and near space.  

 
Finally, Network 5 (light green) has nodes along PHC, TOS, and the medial surface 

of the cortex in both the parietal and retrosplenial regions. This final network effectively 
runs parallel to Network 3 (dark green): both networks anatomically resemble scene-
preferring regions, such as the parahippocampal place area, occipital place area, and 
retrosplenial cortex (Epstein & Kanwisher, 1998; Epstein, 2005). However, compared to 
Network 3, Network 5 is tuned more strongly to actions directed at far space, the legs, 
and the whole body and less strongly to actions directed at objects. These differences in 
tuning echo prior work showing that at least one scene-preferring region – PPA – 
contains sub-regions for object and space processing (Baldassano et al., 2016).  
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Inspecting these last four non-social networks reveals a possible overarching 

organization, where each network has a preference for a different interaction envelope, 
or the scale of space at which actions affect the world. The four interaction envelopes 
move from small-scale, precise movements involving hands and objects (knitting), to 
less precise movements also involving hands and objects (loading a washing machine), 
to intermediate-scale movements involving the upper body and near spaces (golfing), to 
large-scale movements that engage the whole body and require more space (playing 
soccer). 

 
To examine the robustness of these findings in video set 1, we also conducted the 

same analysis on voxel tuning weights fit using video set 2. We then measured the 
correspondence between the two sets’ network solutions using d-prime, a signal-
detection measure that captures whether voxels were assigned to the same networks for 
both sets. This five-network solution was quite consistent across the two video sets 
(cross-sets d-prime: 1.7; Figure S2b & c), pointing to the robustness of this network 
structure.  

 
Taken together, these voxel-wise modeling and clustering analyses provide evidence 

for five networks that distinguish predominantly between social and non-social actions, 
then further divide the non-social actions into four large classes that vary in the scale of 
space at which they affect the world. These data-driven analyses reveal that the 
relevance to agents and scale of an action in the world may be critical organizing factors 
for the perception and representation of actions in the brain.  

 
Convergence between feature-based and response-based networks 
 

To arrive at the conclusion that there are 5 major subnetworks underlying visual 
action perception, we relied on our hypothesized feature spaces, which characterize 
actions’ body part involvement and targets. However, it is also possible that there is 
more systematic structure in the responses to these actions that is not captured by these 
feature spaces. In this case, the five networks we find may be only a partial reflection of 
the true sub-networks patterning this cortex.  

 
To examine this possibility, we performed another variant of the k-means clustering 

analysis, this time grouping voxels based on their profile of responses to all 60 videos in 
a stimulus set, rather than the profile of their feature-tuning weights. Thus, the resulting 
clusters are driven entirely by the brain’s responses to the videos themselves; the body 
part and target features did not enter into the analysis. The results of this analysis are 
displayed in Figure 5. We again found evidence for five networks (cross-sets d-prime: 
1.7) that recover a relatively similar structure to that observed based on the feature 
tuning (d-prime between feature-based and feature-free solutions: 1.9 for set 1, 1.3 for 
set 2). The convergence between the results of the feature-free and feature-based 
analyses provides empirical evidence that the large-scale structure described above is 
not merely an artifact of the features we chose (see also Figure S4).  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Figure 5: Generality of the Large-Scale Structure. We compared the results of clustering 

voxels based on the feature weights fit by the encoding models (A) and by the raw activation 

patterns across all 60 videos (B). The 5-network solutions over data from video set 1 are shown 

for both clustering analyses. Parts of cortex with similar colors had either similar feature weights 

(A) or similar overall response profiles (B). Each cluster’s color was assigned algorithmically such 

that clusters with similar response profiles were similar in hue, and were determined separately 

for (A) and (B).  

 

 
Auxiliary Questions  
 
We next ask a series of more targeted questions to clarify the implications of these 
results and link them directly to related work.  
 
What is the role of low-level features? 

In addition to higher-level perceptual features related to an action’s target and 
kinematics, the brain must also process low- and mid-level features like motion and form 
information. For example, videos vary in whether the actor is on the left or the right of the 
frame, and generally each video has a different spatial distribution of visual information 
across the frames. How do these lower-level aspects of the videos’ visual structure fit 
into the neural feature space, and which regions are more strongly tuned to them?  
 

To investigate this question, we used an image statistics model (Gist; Oliva & 
Torralba, 2001), to capture the spatial frequency and orientation content present in a 
coarse grid over each video’s frame, averaged over time (see Methods). We then 
compared the gist model’s predictive performance with that of the body-part-action-
target model using a preference-mapping method: each voxel was colored according to 
the model that predicted its responses best. Because we anticipated that low-level gist 
features would best predict responses in more retinotopic early visual regions, here we 
examined a larger set of reliable voxels, based on a variant of the voxel selection 
procedure that selects voxels that respond reliably within rather than across video sets 
and provides better coverage of early visual regions (see Methods). 
 

Figure 6 shows how these models perform across these regions. As expected, the 
gist features predict noticeably better in early visual cortex, but the body part and target 
features predominate in the temporal and parietal cortex. It is also worth noting that, 
even though the body part and target features outperform the gist features outside of 
early visual cortex, gist features also predicted neural responses moderately well 
throughout both the dorsal and ventral streams (Figure 6a). These results suggest that 
the action representations across this cortex retain information about the spatial layout of 
the action scene, even as higher-level features begin to emerge, echoing similar findings 
related to object processing (Long et al., 2018).   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
Figure 6: Incorporating Low-Level Visual Features. (A) Voxel-wise encoding model prediction 

results for the gist model in reliable voxels. Voxel color reflects the cross-validated correlation 

between predicted and actual response patterns to held-out items. (B) Two-way preference map 

comparing prediction performance for the gist features with performance for the body parts and 

action target features. Voxels are colored according to the model with the best cross-validated 

prediction performance: yellow for gist, and purple for the body parts and action target features. 

Color saturation reflects the strength of the voxel’s preference (rCV for the gist model – rCV for the 

body parts and action target model).  

 
The effects of low-level motion features were not investigated in-depth in this study. 

It is likely that motion plays an important role in action processing (Johansson, 1973; Isik 
et al., 2017). However, prior work has found that motion models such as motion energy 
(Nishimoto et al., 2011) are only effective at capturing brain activity when subjects are 
required to maintain central fixation. When they view videos in a naturalistic fashion, 
moving their eyes around the frame as in the current study, this model breaks down 
unless neuroimaging is coupled with eye-tracking (Nishimoto et al. 2011, Nishimoto & 
Gallant 2011). Further, our use of fMRI makes it challenging to collect measurements at 
the fine temporal scale at which motion features vary in our short video clips. Therefore, 
a combination of eye-tracking and fast fMRI sampling would be necessary to understand 
the how motion features contribute to the large-scale organization of action processing in 
the brain.  

 
A related possibility concerning motion is that the tuning of the four interaction 

envelope networks may reflect the span of movement in the videos; i.e., how much of a 
video’s frame contains motion? To investigate this question post-hoc we measured the 
span of movement in each video using two methods. First, we collected ratings of how 
much the average actor moves when performing each action. Second, we used an 
optical flow algorithm (Horn & Schunck, 1981) to measure the proportion of each video’s 
frame that contained any movement. We then calculated each network’s sensitivity to 
variations in the motion span (see Methods). We found that motion span sensitivity 
tracks with the size of the interaction envelope for small and intermediate interaction 
envelopes, but not the largest (Figure S5). This pattern replicated across both motion 
span measures. Broadly, this line of inquiry raises further questions about what lower-
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level visual features predict the size of an action’s interaction envelope, which will be 
fruitful ground for future research.  

 
Do these neural responses simply reflect what’s visible in each video?  

Up to this point, we have implicitly assumed that neural responses fit by the body 
part and target features reflect their involvement. However, it is also possible that these 
responses reflect the features at a more primitive level: whether they are simply visible. 
These two interpretations are necessarily related (e.g., it’s difficult to naturalistically 
depict “knitting” without also showing the hands, though whether or not the legs are 
depicted in the video is less constrained by this action). 

 
To quantify the relationship between the involvement and visibility of these features 

in this stimulus set, we separately measured which body parts and targets were visible in 
each video (see Methods). We found that ratings of the visible and involved features 
were only moderately correlated (for body parts: r = 0.38; for action targets: r = 0.30; 
combined feature space r=0.44). Figure 7a shows the features that differed the most 
between ratings of their visibility and involvement, which include the head, torso, face, 
and far space. Often, the body parts and targets that were rated as involved were a 
subset of the visible features. For example, in our video depicting the action of reading a 
book, the actor’s whole upper body, a reachable desk surface, and a distant scene 
through a window are visible; however, this action only involves the book and the actor’s 
eyes, hands, and arms. In other cases, body parts were rated as involved even if they 
were off-screen. For example, raters responded that our video depicting vacuuming, 
which only shows the actor’s legs and the vacuum, also involved the arms, hands, and 
eyes.  

 
To determine whether and where the visibility or involvement of these features best 

predicted brain responses, we separately fit each model and then calculated which 
model predicted responses best in each voxel (see Methods). Figure 7b shows the 
results of this analysis. The model based on the features involved in the actions out-
performs the model based on the features that are visible in the videos in the posterior 
lateral occipital cortex, lateral temporal cortex in the vicinity of EBA, and the fusiform 
gyrus. In contrast, and somewhat surprisingly, the model based on the visible features 
predicts better in much of the IPS. This analysis indicates that the visible bodies, people, 
objects, and backgrounds play an important role in how these actions are processed in 
some regions. However, the functional involvement of these effectors and targets is a 
better description of the neural responses throughout the ventral stream.  
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Figure 7: The Role of Feature Visibility. (A) Summary of feature-based differences between 

ratings of the features’ visibility and involvement in the actions. Body parts and action targets that 

dissociate most strongly between ratings of visibility and involvement across our stimulus set are 

colored with the strongest saturation. (B) Preference map comparing prediction performance for 

the models based on feature involvement and visibility. Voxels are colored according to the model 

with the best cross-validated prediction performance: purple for the features’ involvement, and 

blue for their visibility. Color saturation reflects the strength of the preference (rCV for the 

involvement model – rCV for the visibility model).  

 
GENERAL DISCUSSION 
 
Recognizing the actions of others is an essential capacity of the human visual system. 
While extensive research has examined this capacity within the motor and language 
systems, here we focused on the high-level perceptual properties of everyday actions. 
We found that much of the occipito-temporal and parietal cortices responded reliably 
during action observation, and these responses were well-predicted by models based on 
the body parts engaged by the actions and their targets in the world.  
 

Examining the structure in voxels’ tunings to these features revealed evidence for 
five action-processing sub-networks. The first of these networks is tuned to agent-
directed actions, including actions directed at other people and the actor themselves. 
The remaining four networks vary in the scope of their interaction envelope – the extent 
of objects, space, and agents that an action affects. We propose that these five sub-
networks reflect deeper joints within action processing in the visual system. In the 
following sections, we relate these findings to prior work, and then discuss how this 
organization for action representations might help to better understand the broader 
principles organizing the visual system.  
 
Links to Prior Work 
 

The five sub-networks found in our data converge with several known networks of 
the ventral and dorsal stream, including those that display preferences for bodies, faces, 
objects, and scenes (Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Grill-Spector et 
al., 1999; Downing et al., 2001). For example, the agent-focused sub-network (Network 
1) encompasses regions which are traditionally thought to be specialized for body parts, 
whole bodies, and faces (Downing et al., 2001; Saxe et al., 2004; Bracci et al., 2011; 
Grill-Spector & Weiner, 2014; Isik et al., 2017), and it is right-lateralized, consistent with 
prior results (e.g. Grossman & Blake, 2001; Grossman & Blake, 2002). Our findings also 
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converge with previous findings that responses in occipito-temporal cortex are organized 
by animacy and object size (Konkle & Oliva, 2012; Konkle & Caramazza, 2013; Long et 
al., 2018). In general, big objects are processed in regions tuned to larger-scale actions, 
small objects are processing in regions tuned to smaller-scale actions, and animals are 
processed in regions tuned to agents. Additionally, the network related to large-scale 
interactions such as locomotion (Network 5) encompasses well-known scene-selective 
regions near occipital place area, retrosplenial cortex, and along the parahippocampal 
place area. Importantly, both face and scene networks are typically identified by 
measuring responses to views of isolated scenes or faces, and then contrasting these 
against each other or to views of objects. However, in our stimuli, bodies, objects, and 
scene elements appear in all videos. Therefore, our results likely converge with prior 
findings not simply because of the mere presence of these visual categories but 
because scenes and bodies are more relevant to some actions than others.   
 

In some cases, our results diverge from prior work. For example, the sub-network 
related to large-scale actions and far spaces (Network 5), is primarily right-lateralized in 
both video sets. However, most research on scene networks shows relatively clear 
bilateral networks (Epstein & Kanwisher, 1998; Epstein et al., 2005; Epstein, 2008). 
Relatedly, the sub-networks tuned to object targets within a more focal interaction 
envelope (Networks 2 and 3) are bilateral in this data set, which is consistent with some 
tool-network studies (e.g. Kellenbach et al., 2003; Bracci & Peelen, 2013; Chen et al., 
2017), but not others (Johnson-Frey et al., 2004; Johnson-Frey, 2004; Frey, 2008). One 
interesting possibility is that studying responses to actions and actors together with tools 
and scenes will help shed light on when and why we see hemispheric differences along 
the ventral and dorsal streams.  

 
Finally, perhaps the most surprising result was that ventral stream responses were 

predicted best by whether body parts and action targets were involved in the action, 
while dorsal stream responses were predicted best by their visibility in the video. While it 
is clear that viewing actions drives both the ventral and dorsal visual streams, it is also 
clear that more work is needed to understand how the streams relate to one another 
during action observation. One potential avenue for clarifying this relationship is to 
characterize the relative contributions of what is visible and what participants fixate on. It 
is possible that participants fixate on the features that are more functionally-relevant to 
an action. If this is the case, the visual system will give these fixated features priority, 
and therefore responses in the ventral stream may really reflect what participants look 
at, which also happen to be the features that are functionally relevant to an action. It is 
possible that the same is not true in the dorsal stream because it represents the full 
action scene, regardless of what participants look at the most. Future eye-tracking 
studies are needed to decisively test these hypotheses.  
 

In addition to converging with prior work on other categories of visual input, our 
methods build on the use of encoding models to predict responses to rich videos (Huth 
et al., 2012; Huth et al., 2016). However, our approaches differ in the granularity at 
which we predict voxel responses and subsequently infer voxel tuning properties. In 
Huth et al., (2012), a voxel’s response could be fit by putting weights on over 1,000 
predictors, including verbs like “cooking”, “talking”, and “crawl”, as well as nouns like 
“tortoise” and “vascular plant.”  It is possible to map some of these specific features onto 
our more-general ones -- for example, a voxel in their data set with high weights on 
“knitting” and “writing” might be fit in our data set by high weights on the hand, fingers, 
and object-target features.  However, one potential advantage of characterizing the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

brain’s responses at the level of body parts and targets is that the features are more 
generative: it is simple to map any new action into this low-dimensional feature space, 
and this level of representation may therefore be more appropriate for characterizing the 
response tuning of mid-to-high-level visual cortex.  
 
Sub-Networks for Action Perception 
 

One strength of the current approach is that we considered neural responses to a 
widely- and systematically-sampled set of actions. In doing so, we found that the most 
predominant division present in neural responses was between actions focused on the 
agents and those focused on objects and space (Figure 4; Figure S4). That is, viewing 
actions directed at the self or others seems to recruit some regions of the visual system 
to a different degree than viewing actions directed at objects and space.  In some 
respects, this result is broadly consistent with Wurm & Caramazza (2017)’s proposal that 
sociality is an organizing property of action representation. However, we did not find 
converging evidence for their anatomical proposal that tuning for actions’ sociality and 
transitivity is reflected in a ventral-dorsal organization across the lateral OTC (see 
Methods, Figure S6). Rather, we found that the dorsal stream and parahippocampal 
gyrus are more sensitive to object-directed actions, while most of lateral OTC and the 
fusiform gyrus are sensitive to whether an action is directed at the actor or another 
person. More generally, our data-driven finding of a neural joint between agent-focused 
and non-agent-focused actions dovetails nicely with the broader argument that humans 
recruit fundamentally different cognitive architectures when processing agents (e.g., 
inferring beliefs and goals or detecting interactions between agents) and interactions that 
are less focused on the agents  (e.g., reaching, grasping, and navigation; Johnson et al., 
1998; Sweetenham et al., 1998; Papeo et al., 2017; Isik et al., 2017).  

 
We also found that regions tuned to non-agent-focused actions branched into four 

networks. We propose that these highlight different interaction envelopes, or the scales 
at which actions affect the world. These range from fine-motor, hand-focused actions like 
knitting, to coarser movements like doing laundry, to intermediate actions involving the 
upper body and near spaces like golfing, to large-scale actions that move the whole 
body within a larger space, like playing soccer. To our knowledge, the term “interaction 
envelope” was first introduced in the visual cognitive neuroscience literature to highlight 
the difference between objects typically used with either one hand or two (Bainbridge & 
Oliva, 2015). Here we have adopted this term and expanded its scope. While the scale 
of the interaction envelope is a fairly intuitive continuum along which to organize actions, 
it is also a relatively novel theoretical proposal, contrasting with the more linguistic 
properties emphasized in the literature, such as transitivity and communicativeness 
(Grafton & Hamilton, 2007; Van Elk et al., 2014; Lingnau & Downing, 2015). Given this 
novelty, it’s important to consider why the size of the interaction envelope might be a 
useful principle for organizing brain responses to observed actions. 

 
One interesting possibility is that the interaction envelope might be useful for 

generating meaningful higher-level predictions about an actor. For example, a person 
performing a small-scale, object-directed action, like writing, likely has a focal attentional 
spotlight, a still body, and may be mentally but not physically taxed. At the other 
extreme, a person performing a large-scale action, like running, likely has a wide 
attentional spotlight, a dynamic body, and may be physically but not mentally taxed. 
Further, grouping visual action representations in this fashion resonates with important 
distinctions between high-level semantic categories. For example, most tool-use actions 
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are also hand- and object-based, while fitness actions tend to engage the whole body 
within a larger spatial envelope. Following this logic, it may be productive to think of 
action processing as a form of complex scene processing that integrates object, scene, 
and body processing. That is, perhaps actions are a chassis that connects the visual 
processing of objects, bodies, and space, rather than reflecting a separate domain of 
visual input.  
 
 
 
ACKNOWLEDGEMENTS 
Funding for this project was provided by NIH grant S10OD020039 to Harvard University 

Center for Brain Science, NSF grant DGE1144152 to L.T., and the Star Family 

Challenge Grant to T.K. 

 

AUTHOR CONTRIBUTIONS 

Conceptualization, L.T. and T.K.; Methodology, L.T. and T.K.; Software, L.T. and T.K.; 

Formal Analysis, L.T. and T.K.; Investigation, L.T.; Writing – Original Draft, L.T. and T.K.; 

Writing – Review and Editing, L.T. and T.K.; Visualization, L.T. and T.K.; Supervision, 

T.K.; Project Administration: L.T.; Funding Acquisition: T.K. 

 

 

DECLARATION OF INTERESTS 

The authors declare no competing interests 

 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

REFERENCES 
Bainbridge, W. A., & Oliva, A. (2015). Interaction envelope: Local spatial representations 

of objects at all scales in scene-selective regions. Neuroimage, 122, 408-416. 

 

Bedny, M., & Caramazza, A. (2011). Perception, action, and word meanings in the 

human brain: The case from action verbs. Annals of the New York Academy of 

Sciences, 1224(1), 81-95. 

 

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion 

processing streams for manipulable objects and human movements. Neuron, 34(1), 149-

159. 

 

Bracci, S., Cavina-Pratesi, C., Ietswaart, M., Caramazza, A., & Peelen, M. V. (2011). 

Closely overlapping responses to tools and hands in left lateral occipitotemporal 

cortex. Journal of neurophysiology, 107(5), 1443-1456. 

 

Bracci, S., & Peelen, M. V. (2013). Body and object effectors: the organization of object 

representations in high-level visual cortex reflects body–object interactions. Journal of 

Neuroscience, 33(46), 18247-18258. 

 

Bracci, S., Caramazza, A., & Peelen, M. V. (2015). Representational similarity of body 

parts in human occipitotemporal cortex. Journal of Neuroscience, 35(38), 12977-12985. 

Brunswick, N. J. (1955). Rutgers University Press, 1988. Orig. pub. 

 

Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action 

observation and imitation in the human brain. Neuroimage, 50(3), 1148-1167. 

 

Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). 

Shared memories reveal shared structure in neural activity across individuals. Nature 

neuroscience, 20(1), 115. 

 

Daniele, A., Barbier, A., Di Giuda, D., Vita, M. G., Piccininni, C., Spinelli, P., ... & 

Gainotti, G. (2013). Selective impairment of action-verb naming and comprehension in 

progressive supranuclear palsy. Cortex, 49(4), 948-960. 

 

Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional organization of 

social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25(11), 

4596-4609. 

 

Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective 

for visual processing of the human body. Science, 293(5539), 2470-2473. 

 

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual 

environment. Nature, 392(6676), 598. 

 

Epstein, R. (2005). The cortical basis of visual scene processing. Visual 

Cognition, 12(6), 954-978. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial 

navigation. Trends in cognitive sciences, 12(10), 388-396. 

 

Fabbri, S., Stubbs, K. M., Cusack, R., & Culham, J. C. (2016). Disentangling 

representations of object and grasp properties in the human brain. Journal of 

Neuroscience, 36(29), 7648-7662. 

 

Frey, S. H. (2008). Tool use, communicative gesture and cerebral asymmetries in the 

modern human brain. Philosophical Transactions of the Royal Society of London B: 

Biological Sciences, 363(1499), 1951-1957. 

 

Grafton, S. T., & Hamilton, A. F. D. C. (2007). Evidence for a distributed hierarchy of 

action representation in the brain. Human movement science, 26(4), 590-616. 

 

Greene, M. R., Baldassano, C., Esteva, A., Beck, D. M., & Fei-Fei, L. (2016). Visual 

scenes are categorized by function. Journal of Experimental Psychology: 

General, 145(1), 82. 

 

Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). 

Differential processing of objects under various viewing conditions in the human lateral 

occipital complex. Neuron, 24(1), 187-203. 

 

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral 

temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536. 

 

Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of 

biological motion. Neuron, 35(6), 1167-1175. 

 

Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined 

biological motion. Vision research, 41(10-11), 1475-1482. 

 

Hafri, A., Trueswell, J. C., & Epstein, R. A. (2017). Neural representations of observed 

actions generalize across static and dynamic visual input. Journal of Neuroscience, 

2496-16. 

 

Hamilton, A. F. D. C., & Grafton, S. T. (2006). Goal representation in human anterior 

intraparietal sulcus. Journal of Neuroscience, 26(4), 1133-1137. 

 

Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artificial 

intelligence, 17(1-3), 185-203. 

 

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic 

space describes the representation of thousands of object and action categories across 

the human brain. Neuron, 76(6), 1210-1224. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Huth, A. G., Lee, T., Nishimoto, S., Bilenko, N. Y., Vu, A. T., & Gallant, J. L. (2016). 

Decoding the semantic content of natural movies from human brain activity. Frontiers in 

systems neuroscience, 10, 81. 

 

Isik, L., Tacchetti, A., & Poggio, T. (2017). A fast, invariant representation for human 

action in the visual system. Journal of neurophysiology, 119(2), 631-640. 

 

Isik, L., Koldewyn, K., Beeler, D., & Kanwisher, N. (2017). Perceiving social interactions 

in the posterior superior temporal sulcus. Proceedings of the National Academy of 

Sciences, 201714471. 

 

Jastorff, J., Clavagnier, S., Gergely, G., & Orban, G. A. (2010). Neural mechanisms of 

understanding rational actions: middle temporal gyrus activation by contextual 

violation. Cerebral Cortex, 21(2), 318-329. 

 

Johansson, G. (1973). Visual perception of biological motion and a model for its 

analysis. Perception & psychophysics, 14(2), 201-211. 

 

Johnson, S., Slaughter, V., & Carey, S. (1998). Whose gaze will infants follow? The 

elicitation of gaze‐following in 12‐month‐olds. Developmental Science, 1(2), 233-238. 

 

Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in 

cognitive sciences, 8(2), 71-78. 

 

Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2004). A distributed left 

hemisphere network active during planning of everyday tool use skills. Cerebral 

cortex, 15(6), 681-695. 

 

Jola, C., Abedian-Amiri, A., Kuppuswamy, A., Pollick, F. E., & Grosbras, M. H. (2012). 

Motor simulation without motor expertise: enhanced corticospinal excitability in visually 

experienced dance spectators. PloS one, 7(3), e33343. 

 

Kable, J. W., Lease-Spellmeyer, J., & Chatterjee, A. (2002). Neural substrates of action 

event knowledge. Journal of Cognitive Neuroscience, 14(5), 795-805. 

 

Kalenine, S., Buxbaum, L. J., & Coslett, H. B. (2010). Critical brain regions for action 

recognition: lesion symptom mapping in left hemisphere stroke. Brain, 133(11), 3269-

3280. 

 

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module 

in human extrastriate cortex specialized for face perception. Journal of 

neuroscience, 17(11), 4302-4311. 

 

Kellenbach, M. L., Brett, M., & Patterson, K. (2003). Actions speak louder than functions: 

the importance of manipulability and action in tool representation. Journal of cognitive 

neuroscience, 15(1), 30-46. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S., & Wiley, C. (2008). 

Neuroanatomical distribution of five semantic components of verbs: evidence from 

fMRI. Brain and language, 107(1), 16-43. 

 

Lashkari, D., Vul, E., Kanwisher, N., & Golland, P. (2010). Discovering structure in the 

space of fMRI selectivity profiles. Neuroimage, 50(3), 1085-1098. 

 

Lescroart, M. D., Stansbury, D. E., & Gallant, J. L. (2015). Fourier power, subjective 

distance, and object categories all provide plausible models of BOLD responses in 

scene-selective visual areas. Frontiers in computational neuroscience, 9, 135. 

 

Leshinskaya, A., & Caramazza, A. (2014). Nonmotor aspects of action concepts. Journal 

of Cognitive Neuroscience, 26(12), 2863-2879. 

 

Levin, B. (1985). Introduction. In B.Levin (Ed.), Lexical Semantics in Review, 1-62, 

Cambridge, MA: MIT, Center for Cognitive Science. 

 

Levin, B. (1993). English verb classes and alternations: A preliminary investigation. 

University of Chicago press.  

 

Lingnau, A., & Downing, P. E. (2015). The lateral occipitotemporal cortex in 

action. Trends in cognitive sciences, 19(5), 268-277. 

 

Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason, R. 

A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of 

nouns. science, 320(5880), 1191-1195. 

 

Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2005). Observing 

others: multiple action representation in the frontal lobe. Science, 310(5746), 332-336. 

 

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). 

Reconstructing visual experiences from brain activity evoked by natural movies. Current 

Biology, 21(19), 1641-1646. 

 

Nishimoto, S., & Gallant, J. L. (2011). A three-dimensional spatiotemporal receptive field 

model explains responses of area MT neurons to naturalistic movies. Journal of 

Neuroscience, 31(41), 14551-14564. 

 

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic 

representation of the spatial envelope. International journal of computer vision, 42(3), 

145-175. 

 

Papeo, L., Stein, T., & Soto-Faraco, S. (2017). The two-body inversion 

effect. Psychological science, 28(3), 369-379. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Saxe, R., Xiao, D. K., Kovacs, G., Perrett, D. I., & Kanwisher, N. (2004). A region of right 

posterior superior temporal sulcus responds to observed intentional 

actions. Neuropsychologia, 42(11), 1435-1446. 

 

Swettenham, J., Baron-Cohen, S., Charman, T., Cox, A., Baird, G., Drew, A., et al. 

(1998). The frequency and distribution of spontaneous attention shifts between social 

and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally 

delayed infants. The Journal of Child Psychology and Psychiatry and Allied 

Disciplines, 39(5), 747-753. 

 

Urgesi, C., Candidi, M., & Avenanti, A. (2014). Neuroanatomical substrates of action 

perception and understanding: an anatomic likelihood estimation meta-analysis of 

lesion-symptom mapping studies in brain injured patients. Frontiers in human 

neuroscience, 8, 344. 

 

van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: a unifying 

conceptual framework for the selective use of multimodal and modality-specific object 

knowledge. Physics of life reviews, 11(2), 220-250. 

 

Vul, E., Lashkari, D., Hsieh, P. J., Golland, P., & Kanwisher, N. (2012). Data-driven 

functional clustering reveals dominance of face, place, and body selectivity in the ventral 

visual pathway. Journal of neurophysiology, 108(8), 2306-2322. 

 

Watson, C. E., & Buxbaum, L. J. (2014). Uncovering the architecture of action 

semantics. Journal of Experimental Psychology: Human Perception and 

Performance, 40(5), 1832. 

 

Wurm, M. F., Caramazza, A., & Lingnau, A. (2017). Action categories in lateral 

occipitotemporal cortex are organized along sociality and transitivity. Journal of 

Neuroscience, 37(3), 562-575. 

 

Wurm, M. F., & Caramazza, A. (2019). Distinct roles of temporal and frontoparietal 

cortex in representing actions across vision and language. Nature 

communications, 10(1), 289. 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/618272doi: bioRxiv preprint 

https://doi.org/10.1101/618272
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

METHODS 
Experimental Model and Subject Details 

Human Subjects 

Thirteen healthy, right-handed subjects (5 males, age: 21 – 39 years) with normal or 

corrected-to-normal vision were recruited through the Department of Psychology at 

Harvard University and participated in a 2-hour neuroimaging experiment. In addition, 

802 participants completed behavioral rating experiments conducted online. All subjects 

gave informed consent according to procedures approved by the Harvard University 

Internal Review Board.  

 

Method Details 

Stimulus Set 

120 2.5-second videos of 60 everyday actions were collected from YouTube, Vine, the 

Human Movement Database (Kuehne et al., 2011), and the University of Central 

Florida’s Action Recognition Data Set (Soomro, Zamir, & Shah, 2012). These were 

divided into 2 sets of 60 videos each, so that each set contained one exemplar depicting 

each of the 60 actions. All videos were cropped to a 512-by-512 px frame centered on 

the action, with no visible logos or borders, and stripped of sound. The 60 actions were 

selected based on the American Time Use Survey corpus (U.S. Bureau of Labor 

Statistics, 2014), which records the activities that Americans perform on a regular basis. 

Key frames from both sets of videos are available for download from the Open Science 

Framework.  

 

fMRI Data Collection 

MRI Acquisition 

Imaging data were collected using a 32-channel phased-array head coil with a 3T 

Siemens Prisma fMRI Scanner at the Harvard Center for Brain Sciences. High-resolution 

T1-weighted anatomical scans were acquired using a 3D MPRAGE protocol (176 sagittal 

slices; FoV = 256 mm; 1x1x1 mm voxel resolution; gap thickness = 0 mm; TR = 2530 

ms; TE = 1.69 ms; flip angle = 7 degrees). Blood oxygenation level-dependent (BOLD) 

contrast functional scans were obtained using a gradient echo-planar T2* sequence (84 

oblique axial slices acquired at a 25° angle off of the anterior commissure-posterior 

commissure line; FoV = 204 mm; 1.5x1.5x1.5 mm voxel resolution; gap thickness = 0 

mm, TR = 2000 ms; TE = 30 ms; flip angle = 80 degrees; multi-band acceleration factor 

= 3). 

 

Experimental Procedure 

Participants completed 8 functional runs of the experiment. Each video set was 

presented in four separate 6.2-minute runs. During each run, participants saw all 60 

videos from one of the two sets. Each 2.5-second video was presented twice in a row, 

fading in and out of a uniform gray background over a 500-millisecond time window at 

the onset and offset of each presentation to prevent visually-jarring transients between 

video presentations. Thus, each video was presented in a 5-second block. In addition, 

four 15-second blocks of fixation were interspersed throughout the run, placed so that no 

fixation blocks occurred within five blocks of each other or the beginning or end of the 

run. In addition, fixation periods occurred for 4 seconds at the beginning and 10 seconds 

at the end of the run. Across runs, the order of the video blocks was randomized. Video 
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stimuli were presented at 512 x 512 px on a 41.5 x 41.5 cm screen, subtending 

approximately 9 x 9 degrees of visual angle in the participant’s visual field. To ensure 

that participants remained alert throughout the experiment, they pressed a button 

whenever a red frame appeared around a video during one of the two video repetitions 

within a condition block. Such probes occurred 15 times per run and were 

counterbalanced so that each condition was probed once across all runs. All 

experimental protocols were presented using the Psychophysics Toolbox version 3 

(Kleiner, Brainard, Pelli 2007) and MATLAB version R2016a.  

 

Action Feature Ratings 

To collect action feature ratings, four behavioral experiments were conducted on 

Amazon Mechanical Turk. In all experiments, 9-12 raters viewed each video, named the 

action depicted, and answered experiment-specific follow-up questions. In Experiment 1 

(N = 182), raters indicated the body parts that were engaged by the action in the video 

by selecting them from a clickable map of the human body: when a body part was 

selected, it was highlighted in red (Figure 3b). There were 20 possible body parts: eyes, 

nose, mouth, ears, head, neck, shoulders, torso, back, arms, hands, individual fingers, 

waist, butt, legs, and feet. In Experiment 2 (N = 240), raters indicated the body parts that 

were visible at any point in the video using the same method. In Experiment 3 (N = 180), 

raters indicated what each action was directed at by answering five yes-or-no questions: 

“is this action directed at an object or set of objects?”; “is this action directed at another 

person (not the actor)?”; is this action directed at the actor themselves?”; “are the 

surfaces and space within the actor’s reach important for the action being performed?”; 

“is a location beyond the actor’s reach important for the action being performed?” 

(Figure 3c). In Experiment 4 (N = 200), raters responded to similar questions about the 

targets that were visible in the videos (e.g., “is an object or set of objects visible in the 

video?”).  

 

Gist Features 

For comparison with the body parts and action target features, the “gist” model (Oliva & 

Torralba, 2001) was included in the analysis as a measure of low-level visual variability 

between videos. The gist model parameters we used divided the image into an 8 x 8 

grid. At each grid location we quantified the power at 4 different spatial frequencies and 

scales (12 orientations at the finest scale, 8 at the intermediate scale, and 6 at the 

coarsest scale), yielding a 1,920-dimensional feature vector for each frame. These gist 

features were extracted for each video frame and then submitted to a principle 

components analysis (PCA). The first 20 principle components were then averaged 

across frames in a given video, resulting in a 120-by-20 gist feature matrix.  

 

Quantification and Statistical Analysis 

MRI Analysis and Pre-Processing 

Functional data were pre-processed using Brain Voyager QX software version 2.8.4 

(Brain Innovation, Maastricht, Netherlands). Functional preprocessing included slice 

scan-time correction, 3D motion correction, linear trend removal, temporal high-pass 

filtering (0.008 Hz cutoff), spatial smoothing (4 mm FWHM Kernel), and a transformation 

to Talairach coordinates. Whole-brain random-effect group GLMs were fit separately for 

each video set, as well as for both odd and even runs of each video set. In all cases, the 
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design matrix included regressors for each condition block, specified as a square-wave 

regressor for each 5-second stimulus presentation time, convolved with a 2-gamma 

function that approximated the idealized hemodynamic response. Across these GLMs, 

the average variance inflation factor across conditions of the design matrix was 1.03 

(where a value greater than 5 is considered problematic), and the average efficiency 

was 0.2 (Liu, Frank, Wong, & Buxton, 2001). Voxel time series were normalized within a 

run using a z-transform and corrected for temporal autocorrelations during GLM fitting. 

Beta weights extracted from these group-level random-effects GLMs were averaged 

across subjects for each voxel, and then taken as the primary measure of interest for all 

subsequent analyses. Each subject’s cortical surface was reconstructed from the high-

resolution T1-weighted anatomical scan using Freesurfer software, and one subject was 

selected as the display brain for the group data. 

 

fMRI Reliability and Voxel Selection 

Split-half reliability was calculated for each voxel by correlating the betas extracted from 

odd and even runs of the main task (Figure 2a). This was done in two ways. Reliability 

was calculated across sets by correlating odd and even betas from glms calculated over 

the two video sets. Across-sets reliable voxels did not extensively cover early visual 

cortex, as this scheme requires responses to generalize over two different exemplars of 

the same action. Reliability was also calculated within sets by correlating odd and even 

betas separately for each set, then averaging the resulting r-maps. Within-set reliable 

voxels had better coverage of early visual cortex and were only used to compare the gist 

model to the body-part-action-target model (Figure 6b). For both types of reliability, we 

used a procedure from Tarhan & Konkle (under review) to determine that any voxel with 

an average reliability of 0.3 or higher was a reasonable cutoff for inclusion in the feature 

modeling analysis (Figure 2b & 2c). This cutoff held in both group and single-subject 

data; however, only voxels that were reliable at the group level were analyzed. 

 

Feature Spaces 

The body parts and action target feature spaces were submitted to a PCA to extract a 

smaller number of orthogonal predictors. PCA was performed separately on each 

feature space. The number of principle components (PCs) extracted was based on the 

number that cumulatively accounted for 95% of the variance in the feature ratings. This 

resulted in 7 body part PCs and 5 action target PCs (Figure S1). The encoding modeling 

analysis was then performed over these 12 PC features. We followed a similar approach 

to fit a model based on the body parts and targets that were visible in the videos. These 

ratings were averaged across raters for each video, then binarized by rounding the 

average rating to either 0 or 1. PCA was then performed separately on visibility ratings 

for body parts and action targets. Based on the number of PCs that cumulatively 

accounted for 95% of the variance in the feature ratings, 11 body part visibility PCs and 

4 target visibility PCs were extracted. The encoding modeling analysis was then 

performed over these 15 PC features.  

 

Voxelwise Encoding Models 

Model Fitting and Validation 

We used an encoding-model approach (Mitchell et al., 2008; Huth et al., 2012) to model 

each voxel’s response magnitude for each action video as a weighted sum of the 
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elements in the video’s feature vector (e.g., individual body parts) using L2 (“ridge”) 

regularized regression. The regularization coefficient (λ) in each voxel was selected for 

each voxel to minimize the mean-squared error of the fit in a 10-fold cross-validation 

procedure. Models were fit separately for the two video sets. To ensure that our models 

were not over-fit, we estimated their ability to predict out of sample using a leave-one-out 

cross-validation procedure. This was done by training the model iteratively on data from 

59/60 videos in each voxel. We then calculated the predicted response magnitude for 

the held-out video (beta weights from the training model * feature vector for the held-out 

video). After 60 iterations, the predicted and actual data for the held-out actions were 

correlated to produce a single cross-validated r-value (rCV) for each voxel. All models 

were fit using responses from the group data. This procedure was performed separately 

using data from video set 1 and data video set 2.  

 

Data-Driven Neural Clustering 

Feature-Based Clustering 

We used k-means clustering to group voxels based on their feature weight profiles. This 

analysis groups voxels based on the similarity of the weights that the voxelwise 

encoding model assigned to the 12 body-part and action-target features. This analysis 

was conducted over the voxels that were both reliable across video sets and reasonably 

well-fit (rCV>0) by the model in both video sets. Next, we used MATLAB’s implementation 

of the k-means algorithm with the correlation distance metric to cluster voxels by feature 

weight profile similarity (10 replicates, 500 max iterations). The correlation metric was 

chosen in order to group voxels together that have similar relative weightings across the 

features (e.g. higher for leg involvement and lower for near space targets). For any 

clustering solution, the cluster centroid weight profiles reflect the average normalized 

profile for all voxels included in the cluster.  

 

To determine the number of clusters to group the voxels into (k), we iteratively 

performed k-means on the data from video set 1, varying the possible k value from two 

to twenty (Figure S2). When choosing the final k, we considered both silhouette 

distance (how close each voxel is in the 12-dimensional feature-space to other points in 

its cluster, relative to other nearby clusters) and cluster center similarity (how similar the 

cluster centers are to one another on average). The logic for the latter measure is that if 

two clusters have very similar centroids, there is very little we can do to interpret their 

differences; thus, by considering solutions with lower cluster center similarity we are 

better equipped to interpret divisions within this feature space.  In addition, we visualized 

the solutions at k = 2, 3, and 4 (Figure S4), to provide insight into the hierarchical 

structure of these networks  

 

To visualize the final clustering solution, we created cortical maps in which all 

voxels assigned to the same cluster were colored the same.  For visualization purposes, 

we chose these colors algorithmically such that clusters with similar response profiles 

were similar in hue. To do so, we submitted the clusters’ feature weight profiles to a 

multi-dimensional scaling algorithm using the correlation distance metric, placing similar 

cluster centroids nearby in a three-dimensional space. The 3D coordinates of each point 

were re-scaled to fall in the range [0 1], and then used as the Red-Green-Blue color 

channels for the cluster color. We then plotted each cluster’s centroid to determine how 
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to interpret the groupings. This was done by multiplying the centroid’s feature weight 

profile over the 12 feature PCs by the factor loading matrix from the PCA, effectively 

projecting the centroid back into the original feature space. The resulting weights over 

the 25 original features were visualized using custom icons, where each feature’s color 

reflected the weighting of its associated PC feature in the centroid. 

 

As a test of robustness, we calculated the sensitivity index (d’) between the 

solutions for video sets 1 and 2. To do so, we created a voxels x voxels matrix for both 

video sets, with values equal to 1 if the voxels were assigned to the same cluster and 0 if 

they were assigned to different clusters. Hit rate was calculated as the percent of voxel-

voxel pairs that were assigned to the same cluster in set 1 that were also assigned to the 

same cluster in set 2. False alarm rate was calculated as the percent of voxel-voxel pairs 

that were not assigned to the same cluster in set 1 but were assigned to the same 

cluster in set 2. Sensitivity (d’) was subsequently calculated as z(Hit)-z(FA). D’ was also 

calculated between the shuffled data for sets 1 and 2, producing a baseline value close 

to zero (mean across k-values from 2 to 20 = -0.002, sd = 0.003). Finally, analogous 

cluster centroids were correlated between sets (Figure S2, Figure S3).  

 

Feature-Free Clustering 

To compare how the voxels cluster independently of their feature tunings, we followed a 

similar procedure to group voxels by their response profiles. Here, instead of using 

feature weights, we performed the clustering over voxels’ response magnitudes to each 

action video. All other procedures were the same as those used for feature-based 

clustering.  

 

Preference Mapping Analyses 

Comparing Gist and Body-Part-Action-Target Features 

To compare performance based on the low-level gist model to the higher-level body part 

and action target models across visual cortex, we calculated a two-way preference map. 

First, both the gist model and the body-part-action-target model were used to predict 

responses in within-sets reliable voxels. Then, in each voxel, we found the model with 

the maximum rCV and colored it so that the hue corresponds to the winning model and 

the saturation corresponds to the size of the difference between that value and the 

alternative model’s performance (e.g., a voxel where the gist model did markedly better 

than the body-part-action-target model is colored intensely yellow; Figure 6b). 

 

Comparing Feature Involvement and Visibility 

To compare models based on the functional involvement and visibility of body parts and 

action targets, we calculated a two-way preference map. As described above, each 

voxel was colored according to the model that predicted its responses the best (purple: 

feature involvement, blue: feature visibility; Figure 7b) and its saturation reflected the 

strength of the preference.  

 

Comparing Sociality and Transitivity 

To compare our data to results reported in Wurm & Caramazza (2017), we searched for 

regions that were preferentially tuned to sociality (directed at a person) or transitivity 

(directed at an object). To do so, we fit a separate encoding model based on the raw, 
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un-PC’d action target feature matrix. Then, in each voxel we compared the magnitude of 

the weight assigned to object targets with the weight assigned to person targets. Voxels 

were colored orange if the object weight was larger and pink if the person weight was 

larger. Saturation reflects the size of the difference between the weights (Figure S6). 

 

 

Relating Motion Span and Interaction Envelope 

The span of motion present in each action video was measured in two ways. First, 

human raters (N = 182) completed an online experiment on Amazon Mechanical Turk, in 

which they watched each video and then answered the question, “How much movement 

does this action or activity involve for the average person?” using a 1 to 5 scale. Second, 

optical flow was calculated for every frame in the videos using the Horn-Schunck 

algorithm, implemented in MATLAB (Horn & Schunck, 1981). The proportion of pixels 

that contained movement (average optical flow magnitude > 0.01) was then calculated 

for each video. To relate these measures of movement to neural tuning patterns, we first 

obtained the overall neural response to each video for each of the five networks, 

averaging across all voxels in each network. Next, we calculated each network’s motion 

sensitivity using a weighted average measure (i.e. for each network, the beta estimate 

for each video was multiplied by that video’s motion span; these products were then 

summed together and divided by the total number of videos). Motion sensitivity is 

therefore an average response across all the videos, weighted by the amount of 

movement in each video. Each network’s motion sensitivity was calculated separately for 

the two types of movement measurements (human ratings and optical flow; Figure S5). 

This analysis was done separately for the two video sets.   
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Figure S1. Principle Components Analysis of Body Part and Action Target Feature 

Spaces. Visualization of the (A) body parts and (B) action target features after being 

reduced via Principle Components Analysis. Percentages indicate percent variance in 

the feature ratings explained by each component. (C) Relationships between the 

Principle Components features, measured using Pearson’s correlation.   
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Figure S2. Comparing 5-Network Solution Across Stimulus Sets. Results are shown 

for video set 1 (left) and set 2 (right). (A) K-means clustering was performed at every k 

from 2 to 20 (x-axis), and the resulting cluster centroid similarities (measured as the 

average (blue) and maximum (orange) correlation between the centers of every cluster) 

are plotted. (B) The 5-network structure is displayed for each video set. The match 

between the voxel assignments was computed using d-prime. (C) The feature tuning 

profile is shown for each cluster. Tuning profiles were compared across video sets using 

Pearson’s correlation. 
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Figure S3: The Emergence of Five Large-Scale Networks. Clustering solutions are 

shown at k = 2, 3, 4, and 5 clusters for (A) video set 1 and (B) video set 2. D-prime 

values indicate the correspondence between how voxels were clustered across the 

video sets. 
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Figure S4. Comparing Feature-Based and Feature-Free Clustering Analyses. 

Feature-free and feature-based clustering solutions were compared at a range of 

possible numbers of clusters (k-values) using d-prime. This was done separately for 

each video set.  
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Figure S5. Relating Interaction Envelope and Motion Span. Sensitivity to the span of 

motion in the action videos is plotted for the five action sub-networks. Motion Sensitivity 

was calculated as each network’s average response over the action videos, weighted by 

the motion span apparent in each video. Blue bars depict motion sensitivity in video set 

1 based on human ratings of how much the average actor moves to complete each 

action. Orange bars depict motion sensitivity in video set 1 based on the proportion of 

pixels in the video’s frame containing movement during the course of the video, 

measured by optical flow. Black dots indicate the same values for video set 2.  
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Figure S6: Sociality and Transitivity (alternate feature spaces). Two-way preference 

map showing regions more related to person targets (“social” analog) or object targets 

(“transitive” analog). Voxels are colored according to the feature with the highest weight 

of the two possible targets: pink for person > object, orange for object > person. Color 

saturation reflects the strength of the voxel’s preference (person weight – object weight).  
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