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Abstract 
Individuals differ widely in their contribution to the spread of infection within and across 

populations. Three key epidemiological host traits affect infectious disease spread: susceptibility 

(propensity to acquire infection), infectivity (propensity to transmit infection to others) and 

recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may 

target improvement in any one of these traits, but the necessary statistical methods for obtaining 

risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for 

“Susceptibility, Infectivity and Recoverability Estimation”), which allows simultaneous estimation of 

the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on 

these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which 

accommodates a wide range of disease surveillance data comprising any combination of recorded 

individual infection and/or recovery times, or disease status measurements. Different genetic and 

non-genetic regulations and data scenarios (representing realistic recording schemes) were 

simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of 

parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, 

accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects 

associated with recoverability can be estimated with highest precision, followed by susceptibility. 

For infectivity, many epidemics with few individuals give substantially more statistical power to 

identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could 

be obtained even in the case of incomplete, censored and relatively infrequent measurements of 

individuals’ infection or survival status, albeit requiring more individuals to yield equivalent 

precision. SIRE represents a new tool for analysing a wide range of experimental and field disease 

data with the aim of discovering and validating SNPs and other factors controlling infectious disease 

transmission.  
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1 Introduction 
In the era of rapid expansion in the human population resulting in increasing demands on food 

security, effective solutions that reduce the spread of infectious diseases not only in humans, but 

also in plants and livestock, are urgently needed. Failure of stringent biosecurity measures [2, 3] and 

emergence of anti-microbial resistance [4, 5] and escape mutants to viral vaccines [6, 7] 

demonstrate that infectious diseases cannot be combatted by conventional biosecurity and 

pharmaceutical interventions alone.  

The advent of genome wide high density single-nucleotide polymorphism (SNP) chip panels has 

already led to a remarkable range of discoveries regarding the genetic regulation and biology of 

diseases and translation towards innovative therapeutics [8]. In agriculture, SNP chip panels have 

revolutionized breeding practices by facilitating genomic selection [9, 10]. In the infectious disease 

context genomic selection may effectively prevent or reduce disease spread by providing a means to 

identify and select against individuals with high genetic risk of becoming infected or transmitting 

infections purely based on their genetic make-up, without the need of exposing them to infectious 

pathogens [11]. However, to date the full host genetic basis underlying infectious disease 

transmission is still poorly understood.  

Epidemiological models are widely used to identify risk factors for disease spread in populations. 

Indeed, modelling disease transmission in genetically heterogeneous populations is well established 

(see e.g.[12, 13]). Particularly relevant are so-called compartmental models in which individuals are 

classified as, for example, susceptible to infection, infected and infectious, or recovered (or 

alternatively dead). Transitions between these states are determined by three key individual traits: 

susceptibility, the relative risk of an uninfected individual to become infected when exposed to a 

typical infectious individual or infectious material excreted from such an individual, infectivity, the 

propensity of an individual, once infected, to transmit infection to a typical (average) susceptible 

individual, and recoverability, the propensity of an individual, once infected, to recover or die) [14, 

15]. As demonstrated by numerous simulation studies, host genetic variation in any one of these 

traits, if correctly identified, could be exploited to reduce infectious disease spread within and across 

populations [15-18]. However, despite their strong epidemiological importance, the genetic 

regulation and co-regulation of these three host traits is largely unexplored. Whereas a plethora of 

studies have identified substantial heritable variation and SNPs associated with host susceptibility 

[18], remarkably little is known about the genetic regulation of host recoverability and infectivity, 

despite emerging evidence that genetic variation in these traits exists [19, 20]. In particular, it is 

currently not known to what extent infectivity is genetically controlled, despite compelling evidence 

that super-spreaders, defined as a small proportion of individuals responsible for a disproportionally 

large number of transmissions, are a common phenomenon in epidemics [21-23]. This shortcoming 

is largely because appropriate statistical methods for estimating genetic and also non-genetic 

(treatment) effects for all three key epidemiological traits controlling disease transmission from 

infectious disease data are currently lacking.  

In many conventional genome-wide association studies (GWAS) [24], target traits for genetic 

improvement are measured directly, so establishing genetic associations is relatively 

straightforward. In the epidemiological setting, however, the susceptibility, infectivity and 

recoverability of individuals are not measured directly. Rather their effects are manifested in the 

infection and recovery times of individuals in the epidemic (or epidemics) as a whole. Furthermore, 

most conventional GWAS assume that an individual’s infection status is controlled by its own genetic 

susceptibility and environmental effects. From an epidemiological viewpoint however, an 

individual’s disease phenotype (e.g. infected or not) may not only depend on its own susceptibility 
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and recoverability genes, but also on the infectiousness of other individuals in the same contact 

group, i.e. their infectivity and recoverability genes [25]. This complex interdependence between 

underlying and observable traits poses challenges for existing methods. 

The motivation behind this paper is to introduce new statistical and computational methods that 

utilise information derived from observation of epidemics and trait interdependence to estimate, for 

the first time, genetic and other systematic effects for all three underlying epidemiological host 

traits. This requires combining statistical, epidemiological and genetic modelling principles. Analysis 

of incomplete epidemic data to draw inferences on epidemiological parameters is well established 

[26, 27]. However, analysing such data to draw joint inferences on both the disease epidemiology 

and host genetic variation has proven challenging [25, 28]. Recent studies have expanded 

conventional quantitative genetics threshold models to enable joint genetic evaluation of cattle 

susceptibility to, and recoverability from, mastitis [29, 30], which led to identification of novel SNPs 

and candidate genes associated with these traits [19]. However, because infectivity acts on group 

members rather than the focal individual itself, applying these technique to estimate genetic effects 

for infectivity is problematic.  

Alternative approaches have focused on disentangling susceptibility from infectivity effects. For 

example, Anacleto et al. [31] developed a Bayesian inference approach to produce genetic risk 

estimates for host susceptibility and infectivity from epidemic time to infection data, assuming that 

susceptibility and infectivity are under polygenic control (i.e. they are determined by a large number 

of genes, each with small effect). This approach, however, does not incorporate genetic variation in 

recoverability, and does not estimate SNP effects. An alternative approach, based on the assumption 

that susceptibility and infectivity are controlled by two single bi-allelic genetic loci [32, 33], used a 

generalized linear model (GLM) to estimate relative allelic effects on host susceptibility and 

infectivity. Whilst an important contribution, this approach focused on the disease status of 

individuals at the end of each epidemic (i.e. discarding potentially useful information from the 

infection and recovery times themselves). It also failed to incorporate variation in recoverability, and 

relied on a number of simplifying assumptions which were found to produce biased estimates under 

certain circumstances. A variant of this approach [34], which adopted a GLM to analyse time-series 

data on individual disease status, illustrated the benefits of longitudinal records of individuals’ 

infection status for improving prediction accuracies of SNP effects, although it still relied on a 

number of simplifications that may compromise prediction accuracies and lead to unwanted bias. A 

further shortcoming of previous approaches [32-34] is that they ignore potential pleiotropic effects, 

i.e. SNPs affecting more than one epidemic trait. This seems unrealistic, since, for example, SNPs 

that control within host pathogen replication may also lower the risk that infection can establish, i.e. 

reduce susceptibility, and simultaneously reduce pathogen shedding and hence infectivity, and 

speed up recovery. 

In this study we present a novel software tool called SIRE (standing for “susceptibility, infectivity and 

recoverability estimation”) that implements a Bayesian inference approach to simultaneously 

estimate the effects of a single SNP (importantly capturing any pleiotropy), together with that of 

other fixed effects (such as e.g. sex, breed or vaccination status) on host susceptibility, infectivity 

and recoverability from temporal epidemic data. This approach can be applied to a wide range of 

epidemic data, collected at the level of individuals, and accounts for different types of uncertainty in 

a statistically consistent way (e.g. censoring of data or imperfect diagnostic tests), and permits the 

incorporation of prior knowledge. We validate SIRE for a variety of simulated epidemic scenarios, 

comprising not only the ideal case in which infection and recovery / death times of each individual 
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are known exactly, but also under more realistic scenarios in which epidemics are only partially 

observed.  

2 Materials and methods 

2.1 Data structure and the underlying genetic-epidemiological model 
SIRE applies to individual-level disease data originating from one or more contact groups in which 

infectious disease is transmitted from infectious to susceptible individuals through contact. This data 

can come from well controlled disease transmission experiments or from much less well controlled 

field data (which may be less complete, but readily available in larger quantity).  

In the context of disease transmission experiments in plants or livestock, epidemics are initiated by 

means of artificially infecting a proportion of “seeder” individuals which go on to transmit their 

infection to susceptible individuals sharing the same contact group. In field data contact groups may 

consist of animal herds, or any group of individuals sharing the same environment such as a pasture, 

pen, cage or pond, and infection is assumed to invade the group by some external, usually unknown, 

means (e.g. by the unintentional spread of infected material, or the introduction of an infected 

individual from elsewhere). For simplicity it is assumed that throughout the observation period 

groups are closed, i.e. no births, migrations, or transmission of disease between groups. This 

assumption generally holds for experimental studies and also for most common field situations, 

where a movement ban is imposed after disease notification [35]. 

The dynamic spread of disease within a contact group is modelled using a so-called SIR model [36]. 

Individuals are classified as being either susceptible to infection (S), infected and infectious (I), or 

recovered/removed/dead (R). Under the simple SIR model for homogeneous populations, the time-

dependent force of infection for a susceptible individual j (i.e. the probability per unit time of 

becoming infected) is given by λj(t) = βI(t), which is the product of an average transmission rate β 

and I(t), the number of infected individuals at time t. To incorporate individual-based variation in 

host susceptibility and infectivity, this simple expression for λj(t) is replaced by an individual force of 

infection (see [31] for a formal derivation) 

 ( ) .j iz
g fG

j i
t e e e     (1) 

Here gj characterises the fractional deviation in individual j’s susceptibility as compared to that of 

the population as a whole (e.g. gj=0.1 corresponds to individual j being ≃10% more susceptible than 

the population average), fi characterises the corresponding quantity for individual i’s infectivity, and 

the sum in Eq.(1) goes over all individuals infected at time t sharing the same contact group z as 

individual j (note, this sum varies as a function of t as individuals become infected and recover). The 

term Gz in Eq.(1) accounts for the fractional deviation in disease transmission for group z. This 

incorporates group-specific factors that influence the overall speed of an epidemic in one contact 

group relative to another (e.g. animals kept in different management conditions, environmental 

differences, or variation in pathogen strains with differing virulence). Whilst variation in Gz may be 

small for a well-controlled challenge experiment, this may not be the case in real field data. Gz is 

assumed to be a random effect with standard deviation σG. The exponential dependencies in Eq.(1) 

ensure that λj is strictly positive and allow for the possibility that some groups or individuals are 

much more/less susceptible/infectious than others, i.e. it can accommodate potential super-

spreaders. 
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Whilst in Eq. (1) infection is modelled as a Poisson process with individual infection rates λj [18, 20], 

the recovery process is modelled by assuming that the time taken for individual m to recover after 

being infected is drawn from a gamma distribution with an individual-based mean wm and shape 

parameter k (which for simplicity is assumed to be the same across individuals). This mean recovery 

time is expressed as  

 1( ) ,mr

mw e    (2) 

where γ represents an average recovery rate across the population and rm describes the fractional 

deviation from this for individual m. This approach is taken to allow the recovery probability 

distribution to adopt a more biologically realistic profile compared with the exponential distribution 

often assumed (see electronic supplementary material Appendix A for further details).  

Following standard quantitative genetics theory [37], the individual-based deviations in susceptibility 

g, infectivity f and recoverability r (which are vectors with elements relating to each individual) are 

decomposed into the following contributions 

 

SNP
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  (3) 

SNP effects – The model assumes that a specific locus defined by a SNP (potentially) plays an 

important contribution to the trait values (note, repeated analysis can be performed on different 

SNPs of interest). Assuming a diploid genomic architecture with biallelic SNP implies three SNP 

genotypes: AA, AB and BB. The SNP contribution to the traits for individual j depends on j’s genotype 

in the following way: 

 

  if  is 

,      ,        if  is 

  if  is 

g f r

SNP SNP SNP

j g g j f f j r r

g f r

a a a j AA

g a f a r a j AB

a a a j BB




      
   

  (4) 

The parameters ag, af and ar capture the relative differences in trait values between AA and BB 

individuals, and are subsequently referred to as the “SNP effects” for susceptibility, infectivity and 

recoverability, respectively (e.g. if ag is positive, individuals with an AA genotype will, on average, be 

more susceptible to disease than those with a BB genotype). The scaled dominance factors Δg, Δf and 

Δr characterise the trait deviations between the heterozygote AB individuals and the homozygote 

mean (a value of 1 corresponds to complete dominance of the A allele over the B allele and -1 when 

the reverse is true, whereas absence of dominance is represented by a value of 0) [38]. 

Fixed effects – The design matrix X and fixed effect vectors bg, bf and br in Eq.(3) allow for other 

known sources of variation to be accounted for (e.g. breed, sex or vaccination status). Following 

convention, an additional fixed effect is added to account for trait mean, which is explicitly chosen to 

ensure the population averages of g, f and r are zero (remembering that the average effects are 

already captured by the parameters β and γ).  

Residual contributions – Here ε=(εg, εf, εr) accounts for all other contributions to the traits (i.e. 

coming from genetic effects not captured by the SNP under consideration, as well as any non-

genetic environmental variation). We assume that for each individual the three trait residuals are 

drawn from a single multivariate normal distribution with zero mean and 3×3 covariance matrix Σ. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2019. ; https://doi.org/10.1101/618363doi: bioRxiv preprint 

https://doi.org/10.1101/618363
http://creativecommons.org/licenses/by/4.0/


6 
 

Including these correlations is important because it allows for the possibility that, for example, more 

susceptible individuals may also, on average, be more infectious and recover at a slower rate (on top 

of any correlations which may also arise from the SNP and fixed effects). Note that in this study, 

which focuses on the estimation of SNP effects, there is no explicit distinction between random 

genetic and environmental effects, although the model could be extended to incorporate estimation 

of these polygenic effects. It is thus assumed that individuals are randomly distributed across the 

groups with respect to the genetic effects on the epidemiological traits not captured by the SNP. 

Also note that Eq.(3) does not contain random group effects for the individual epidemiological traits. 

This is because the group effect has already been incorporated in the expression of the individual 

force of infection in Eq.(1). In other words, it is assumed that the group environment is the dominant 

mechanism affecting the speed at which infection spreads within a group rather than group specific 

factors affecting individuals’ susceptibility, infectivity or recoverability.  

2.2 Bayesian inference 
Based on the description above, the model contains the following set of parameters: θ=(β, γ, k, ag, af 

, ar, Δg, Δf, Δr, bg, bf, br, εg, εf, εr,, Σ, G, σG). We denote the complete set of infection and recovery 

event times for all individuals as ξ over the observed duration of the epidemics [39]. Typically ξ is not 

precisely known, and so we consider the general case in which ξ represents a set of latent model 

variables. The nature of the actual observed data y will be problem dependant. For example, in some 

instances recovery or removal (e.g. due to death) times will be precisely known but infection times 

completely unknown. In other instances infection and recovery times will both be unknown, but 

results from disease diagnostic tests provide information regarding disease status at particular 

points in time. The framework presented in this paper is flexible to these various possibilities. 

Application of Bayes’ theorem implies that the posterior probability distribution for model 

parameters and latent variables is given by 

  ( , | ) | ( | ) ( ),y y L           (5) 

where individual components are defined as follows: 

Observation model π(y|ξ) – the probability of the data given a set of event times ξ. The expression 

for the observation model depends on the nature of the data being observed. In many contexts this 

simply takes the values one or zero depending on whether ξ is consistent with y or not. For example 

a perfect disease diagnostic test showing that an individual is infected would be only consistent with 

ξ containing an infection event on that individual prior to the time of the test and a recovery event 

after the time of the test. Similarly, if data y indicates that an individual becomes infected at a 

particular point in time, this is only consistent provided ξ also contains this infection event. When 

imperfect disease diagnostic test results are available the observation model includes the sensitivity 

and specificity of the test to account for this uncertainty in the data. In summary, the observation 

model depends on the data collection process and constrains the possible event sequences ξ, and 

this, in turn, informs the model parameters θ. 

Latent process likelihood L(ξ|θ) – the probability of ξ being sampled from the model given 

parameters θ. This can be derived from the genetic-epidemiological model described in the previous 

section [26, 27] (see Appendix B for details), and is given by  

     1( ) ( )
( | ) ( | , ) .z e e e

z

t t t
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        (6) 
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The functional dependence of L(ξ|θ) on the parameters θ is expressed in terms of the force of 

infections λj in Eq.(1) and mean recovery times wm in Eq.(2), which themselves depend in g, f and r in 

Eq.(3). The product z goes over all contact groups and within each contact group: j goes over 

individuals that become infected excluding those which initiate epidemics [40], m goes over 

individuals that become infected including those which initiate epidemics and e goes over both 

infection and recovery events (with corresponding event times te). Here the notation j∈z indicates 

that j goes over all those individuals j in contact group z, and e∈Ez indicates that e goes over all 

events Ez. The force of infection λj is calculated immediately prior to individual j becoming infected. 

The gamma distributed probability density function FΓ for recovery events gives the probability an 

individual is infected for duration δtm given a mean duration wm and shape parameter k. The time 

dependent total rate of infection events Λz in contact group z immediately prior to event time te is 

given by  

 ( ) ,z e ss
t     (7) 

where the sum in s goes over all susceptible individuals in group z at that time. 

An important point to mention is that Eq.(6) is calculated on an unbounded time line. In situations in 

which data is censored, the observation model restricts events that occur within the observed time 

window, but other events can exist outside of this observed region [41]. 

Prior π(θ) – the state of knowledge prior to data y being considered. To account for the prior 

assumption that residuals ε in Eq.(3) are multivariate normally distributed and that the vector of 

group effects G in Eq.(1) are random effects, π(θ) can be decomposed into 

 
,( ) ( ) ( | ) ( | ),G      ε G ε GΣ   (8) 

where θ-ε,G includes all parameters with the exception of ε and G and 
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  (9) 

Here j goes over each individual and εj =(εg,j , εf,j , εr,j)T
 is a three dimensional vector giving the residual 

contributions to the susceptibility, infectivity and recoverability of j. Σ is a 3×3 covariance matrix 

(which describes not only the overall magnitude of the residual contributions, but also any potential 

correlations between traits). Finally, the product z in Eq.(9) goes over all contact groups and Gz 

represents the group-based fractional deviation in transmission rate, which is assumed to be 

independent between groups and normally distributed with standard deviation σG. 

The default prior for θ-ε,G (which can be modified if necessary) is largely uninformative but does place 

upper and lower bounds on many of the key parameters to stop them straying into biologically 

unrealistic values (details are given in Appendix C). 

Samples for θ and ξ from the posterior are generated by means of an adaptive Markov Chain Monte 

Carlo (MCMC) schemes which implements optimised random walk Metropolis-Hastings updates for 

most parameters and posterior-based proposals [1] to aid fast mixing of the residual parameters 

(details are given in Appendix D). 
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2.3 SIRE 
SIRE is a desktop application that implements the Bayesian algorithm outlined above. It is freely 

available to download from the supplementary material or at 

www.mkodb.roslin.ed.ac.uk/EAT/SIRE.html (with versions for Windows, Linux and Mac). An easy to 

use point and click interface allows for data tables to be imported in a variety of formats and 

graphical outputs are dynamically displayed as inference is performed. The core of SIRE utilises 

efficient C++ code and allows for running MCMC chains on multiple CPU cores.  

SIRE takes as input any combination of information about infection times, recovery times, disease 

status measurements, disease diagnostic test results, genotypes of SNPs or any other fixed effects 

(see screenshot in Fig 1a), details of which individuals belong to which contact groups and any prior 

specifications (Fig 1b). The output from SIRE consists of posterior trace plots for model parameters 

θ, distributions (Fig 1c), visualisation of infection and recovery times ξ, dynamic population 

estimates and summary statistics (means and 95% credible intervals) as well as MCMC diagnostic 

statistics (Fig 1d). Posterior distribution graphs can be exported from SIRE and also files containing 

posterior samples of θ and ξ for further analysis using other tools. The user guide for SIRE is available 

in the electronic supplementary material and on the website. 

2.4 Data scenarios 
SIRE is flexible to many possible inputs. Reflecting real-world datasets this paper considers five 

potential data scenarios (DS): 

DS1: Infection and recovery times for all individuals exactly known  

This represents the best case scenario for inferring parameter values. For example, appearance of 

symptoms or visual or behavioural signs may indicate the onset of infection, and recovery/removal 

times are given by the time of death. 

DS2: Only recovery times known 

Often “recovery” in compartmental SIR models represents the death and removal of individuals. 

Consequently DS2 is pertinent to cases in which the only measurable quantity is the time at which 

individuals die. For example, disease challenge experiments in aquaculture routinely record time of 

death rather than infection times, which are usually difficult to measure [42]. 

DS3: Only infection times known 

Whilst less common than DS2, in some instances data provides information regarding when 

individuals become infected but not when they recover. For example in human epidemics, patients 

may go to the doctor when they become ill, but no records will be kept on when they recover. 

DS4: Disease status periodically checked 

DS4 represents the most common scenario for monitoring infectious disease spread in livestock or 

plant populations, where each individual is periodically checked to establish its disease status. Under 

DS4 the point at which epidemics start is usually unknown, as well as the infection and recovery 

times of individuals themselves. However the diagnostic test results place constraints on these 

quantities. For example, if an individual is found to be uninfected at one sampling time and infected 

at the next sampling time this means that infection must have occurred at some point in the 

intervening period (note here we assume perfect diagnostic tests but SIRE also allows for imperfect 

diagnostic test results to be used, provided the sensitivity and specificity of the tests are known).  
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DS5: Time censored data 

This data scenario relates to situations in which epidemics are not observed over their entire time 

period. For example a disease transmission experiment being carried out may be terminated early, 

due to cost or other factors (e.g. animal welfare), even though epidemics have not completely died 

out. 

3 Assessment of performance and data requirements  
In this section we apply SIRE to simulated datasets in order to 1) test the extent to which the 

inferred posterior parameter distributions agree with their true values, and 2) investigate how the 

precision, accuracy and bias of inferred model parameters depends on the type of data available. 

Initially the focus of results will be on DS1 (which although rarely applies in practice, still provides 

useful insights for software validation and application) and later in section 3.5 consideration is given 

to DS2-5. 

3.1 Illustrative example simulation and inference 
We first demonstrate the performance of SIRE assuming complete information of individuals’ 

infection and recovery times, for a representative but complex set of parameters with regards to the 

genetic and non-genetic regulation of the three epidemiological host traits. Subsequently we 

investigate how these results change under different parameter and data scenarios. 

Simulations 

Individuals were randomly assigned into Ngroup different contact groups, with each group containing 

Gsize individuals. The SNP under investigation was assumed to be in Hardy-Weinberg equilibrium [38] 

with an A allele frequency of p=0.3. For the effect sizes we used the values ag=0.4, af=0.3 , ar=-0.4, 

representing a relatively large pleiotropic effect (which confers higher susceptibility for AA 

compared to BB individuals, as well as slightly higher infectivity and reduced recoverability). The 

choice of Δg=0.4, Δf=0.1, Δr=-0.3 for the scaled dominance factors represents partial, but not strong, 

dominance of either the A or B allele. For simplicity we included only a single fixed effect, e.g. sex, of 

arbitrary moderate size bg0=0.2, bf0=0.3, br0=-0.2 with individuals in the population randomly 

selected to be male or female. The residual variances were chosen to be Σgg=Σff=Σrr=1, corresponding 

to a large variation in traits between individuals (perhaps larger than is biologically realistic, but here 

we want to demonstrate that inference of the SNP effects is still possible despite significant variation 

in trait values arising from other sources). In line with the direction of the SNP effects, the 

covariances were chosen to be Σgf=0.3, Σgr=-0.4 and Σfr=-0.2, representing a potential scenario in 

which individuals that are more susceptible are also more infectious and recover at a slower rate 

and vice-versa). To accommodate variation in epidemic speed across groups, we set the standard 

deviation in the group effects to σG=0.5. Finally, the average transmission rate was chosen to be 

β=0.3/Gsize (selected because it led to a substantial fraction of individuals becoming infected and 

including Gsize such that the basic reproductive ratio R0 remained independent of group size, i.e. 

frequency dependent transmission) and an average recovery rate γ=0.1 with shape parameter k=5 

(corresponding to the infection duration being relatively highly peaked around a mean of 10 time 

units).  

Simulated epidemic data was generated by means of a Doob-Gillespie algorithm [43] modified to 

account for non-Markovian recovery times (details of this procedure are given in Appendix F). A 

typical output for one simulated epidemic in a single contact group Ngroup=1 with Gsize=50 individuals 

is shown in Fig 2. Whilst the simulation itself is generated on an individual basis, this graph 
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summarises dynamic variation in the susceptible, infectious and recovered populations, categorised 

by SNP genotype. It reveals classic epidemic SIR model behaviour: a single infected individual passes 

its infection on to others, triggering a rapidly spreading infection process throughout the population 

until the epidemic eventually dies out as a result of the susceptible population becoming largely 

exhausted and the remaining infected population recovering. Note that in closed groups not all 

susceptible individuals become infected. In this particular case some AB and BB individuals remain 

uninfected at the end of the epidemic. The absence of AA individuals partly stems from natural 

stochasticity in the system, but also partly from the fact that ag=0.4 is positive, i.e. AA individuals are 

more susceptible to disease and so on average less likely to remain uninfected. Consequently we can 

link the genetic composition in the final state of the epidemic to the expected value for ag (which, 

based on this particular dataset, is more likely positive than negative). Over and above information 

from the final state, however, there is much to be gained from also accounting for the infection and 

recovery event times themselves. The Bayesian approach adopted in this paper utilises all this 

information to extract the best available parameter estimates. 

The information content from a single epidemic is generally insufficient to estimate the large 

number of parameters in the model. Therefore we next simulated a more realistic dataset (using the 

same parameter set as above) made up of 1000 individuals split into Ngroup=20 contact groups, each 

containing Gsize=50 individuals. The infection and recovery event times from this simulation were 

then used as input data into SIRE (scenarios in which infection and recovery times are not known 

precisely are discussed later in section 3.5). 

Parameter estimates 

Fig 3 shows the inferred posterior probability distributions for all parameters in θ corresponding to 

the simulated multi-group scenario described above. The actual parameter values used to generate 

the data (see vertical black dashed lines in Fig 3) consistently lie within regions of high posterior 

probability. The standard deviations (SDs) in these distributions characterise the precision with 

which parameters can be estimated:  

Population average parameters (Figs 3a-c) – The recovery rate γ has the greatest precision (smallest 

relative SD), followed by the transmission rate β. Whilst the distribution for the shape parameter k is 

wide, it is clearly able to discount the possibility of an exponential recovery duration (i.e. k=1), which 

has a very low posterior probability, over a more peaked distribution (i.e. k>1).  

SNP effects (Figs 3d-f) – The estimated recovery SNP effect ar is highly peaked around its true value 

of -0.4 (Fig 3f). Importantly this distribution has an extremely low posterior probability at ar=0. 

Indeed, since ar=0 does not lie within the 95% credible interval it can be concluded, to a high degree 

of certainty, that the SNP is associated with recoverability. The same is true for the susceptibility SNP 

effect ag in Fig 3d, albeit with a wider posterior probability distribution. This difference is for two 

reasons: firstly the recovery process involves only ar, whereas the infection process involves both ag 

and af (leading to potential confounding between these parameters) and secondly the recovery 

processes is gamma distributed which has a smaller standard deviation than the more dispersed 

Poisson process governing infection. The infectivity SNP effect af in Fig 3e exhibits a much wider 

probability distribution than the other two SNP effects. The fact that zero does lie within the 95% 

posterior credible interval (which goes from -0.35 to 2.1) means that no certain association with 

infectivity can be made in this particular example. Figs 3d-f illustrates a general principle that was 

common in the vast majority of subsequent simulation scenarios: SNP effects associated with 

recoverability are most precisely estimated, followed by susceptibility, and finally infectivity [44].  
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Scaled dominance factor (Figs 3g–i) – Compared to the SNP effects themselves, precision of the 

scaled dominance parameters is relatively poor, and actually reduces as the size of the SNP effects 

goes down (results not shown), which makes sense in the limit of zero SNP effect size, because here 

no information about dominance is available. Estimating them accurately, therefore, either requires 

very large SNP effects or substantially more data. 

Fixed effects (Figs 3j–l) – Since SNP effects are also a type of fixed effect, the same comments as 

above also apply for other fixed effects. 

Residual covariance matrix and random group effect (Figs 3m–s) – Interestingly, it was possible to 

obtain relatively good estimates for elements in the residual covariance matrix. Again, the familiar 

pattern is observed whereby quantities related to recoverability are more precisely estimated than 

those related to susceptibility, with infectivity the least precise. Finally, the variance of the group 

effect could be estimated with similar precision as that for susceptibility (Figs 3s & m).  

3.2 Dependence on parameter values 
The previous section showed an illustrative example for a particular parameter set. Here we assess 

what happens when different parameters in the model are altered. This was achieved by means of 

taking the following “base” set of parameters 
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g f r
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a a a

 



    
    

        
       

  (10) 

and then changing each parameter separately (fixing all others) [45]. Fig 4 shows scatter plots (each 

referring to a different selected parameter) of the posterior means (crosses) with corresponding 95% 

credible intervals inferred from a single simulated dataset using the true selected parameter value 

on the x-axis. Plots in which most crosses lie near to the diagonal line imply that inference is able to 

accurately capture the true parameter values. Table 1 shows the corresponding prediction accuracy, 

measured as the correlation between the inferred and true parameter values. Except for Δf  for 

which prediction accuracy was only 34%, prediction accuracies for all other parameters ranged from 

69-99%. In line with the discussion above, parameters associated with recoverability have generally 

higher predication accuracies than those associated with susceptibility, which are again higher than 

those for infectivity.  

Bias indicates systematic differences between the true parameter values and those inferred from 

the data. Bias was measured by fitting regression lines through the posterior means in Fig 4 (as a 

function of the true parameter value). The corresponding y-intercept and slope values are shown in 

Table 1, where a zero y-intercept and a slope of one indicate absence of bias. Whilst the majority of 

observed y-intercepts tended to be very small, the slope for some of the parameters is markedly less 

than one (most notably for Δf). The reason for this is as follows. When Bayesian analysis reveals 

insufficient information regarding a parameter, its distribution follows that of the prior (which are 

uniform for all the parameters in this particular study, as described in Appendix C). This behaviour 

happens irrespective of the parameter’s true value, leading to a plot in Fig 4 that would be entirely 

flat (i.e. a slope of zero). Therefore, the slopes of less than one in Fig 4 simply reflect a lack of data, 

which is essentially another manifestation of a lack of parameter precision. Consequently, bias 

reduces as the amount of data increases (provided the model being fitted is the correct one).  

From the point of view of this paper, the probability distributions which are of greatest interest are 

the SNP effects. Noting the sizes of the error bars across Figs 4d-f demonstrate that the precisions of 
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the parameter estimates are largely independent of the values of the parameters themselves, a 

result which can be supported analytically [46]. This implies that the precision of SNP effects 

calculated using the base set of parameters in Eq.(10) is expected to be generally applicable to any 

other parameter set [47] (e.g. the average SDs in Table 1 for the base parameter set are very similar 

to the SDs shown in Fig 3).  

Consequently, the remainder of this paper focuses on investigating how SNP effect estimates are 

affected by contact group structure and the nature of the measured data using this base set of 

parameters. We focus first on outlining the behaviour with respect to key design features, e.g. group 

size, number of individuals per group and allele frequency, and then go on to consider how 

observations of the system influence what can be learned. 

3.3 Dependence on the number and size of contact groups 
The crosses in Fig 5 shows how SDs in the SNP effects change as a function of the number of 

individuals Gsize within each contact group (here Ngroup=10 contact groups are assumed). The SD in ag 

reduces as the number of individuals in each contact group Gsize increases (Fig 5a). Importantly this 

relationship scales as a line of slope -½ (note the log scales on this plot), corresponding to 

precision increasing by a factor of two as the number of individuals is increases by a factor of four (in 

line with what would be expected from central limit theorem). Fig 5a provides insights into how 

many individuals would need to be observed in order to be able to make an association with a 

susceptibility SNP effect of a given size. For example, in order to detect an association with a 

susceptibility SNP of effect size ag = 0.4, Gsize=20 individuals per contact group, and so 

Gsize×Ngroup=200 individuals in total would be needed to assure that the 95% credibility interval does 

not contain zero (assuming approximate normality for the posterior distribution), as illustrated by 

that black dashed line in Fig 5a. Fig 5c shows the same scaling relationship for identifying 

recoverability SNP effects, but this time only Gsize×Ngroup=100 individuals are needed to make 

associations for recovery SNP effects (reflecting the fact that ar can be inferred more precisely, as 

mentioned previously). A very different state of affairs, however, is observed in Fig 5b. Here we see 

that not only is the infectivity SNP effect af poorly estimated, but also its precision does not markedly 

improve even when the number of individuals in each contact group Gsize is substantially increased.  

Instead of varying Gsize and fixing the number of contact groups Ngroup, we now fix Gsize=10 and vary 

Ngroup. Results for this are shown in Fig 6 (represented by the crosses). This reveals a similar 

behaviour as seen before for the SD in ag and ar, but crucially we find the SD in the infectivity SNP 

effect af  now also scales with the familiar line of slope -½. The reason for this behaviour lies in the 

fact that infectivity is an indirect genetic effect, i.e. an individual’s infectivity SNP affects the disease 

phenotype of group members rather than its own disease phenotype [48-50]. More intuitively, this 

can be explained as follows. Susceptibility and recoverability SNPs of an individual directly affect its 

own measured disease phenotype (the former affecting its infection time and the latter affecting its 

recovery time). Therefore the information on which these two quantities can be inferred is expected 

to scale with the total number of individuals. On the other hand, as an individual’s infectivity SNP 

acts on all susceptible individuals sharing the same contact group, it affects the epidemic dynamics 

as a whole. In fact much of the information regarding infectivity comes from the overall speed of 

epidemics. For example, if those contact groups containing individuals with more A alleles 

consistently experience epidemics which are faster than those with fewer A alleles, this provides 

evidence that the A allele confers greater infectivity than the B allele (the situation is further 

complicated by the fact that differences in susceptibility can also cause this behaviour, however the 

algorithm can independently estimate ag, so removing this potential confounding). Because 

information about the infectivity SNP effect comes from epidemic-wide behaviour, it is expected to 
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scale linearly with the number of contact groups Ngroup (Fig 6b), but not with the number of 

individuals per contact group Gsize (Fig 5b). 

Finally, we investigate the case in which we fix the total number of individuals to Gsize×Ngroup=1000 

whilst simultaneously varying Gsize and Ngroup, as shown in Fig 7 (see crosses). In Fig 7a we find very 

little variation in the precision of ag. Interestingly, the results in Fig 7b clearly demonstrate that 

larger numbers of contact groups containing fewer individuals help to reduce the SD in the 

infectivity SNP effect af. In the case of Gsize=2 the posterior SDs in ag and af are actually the same due 

to the symmetry of this particular setup (i.e. each group consists of exactly one infected and one 

susceptible individual). Lastly, Fig 7c shows that the SD in ar is largely independent of Gsize. This is 

because recovery is solely an individual-based process, and so happens independently of others 

sharing the same contact group (although in cases in which R0 is small, differences may result from 

variation in the fraction of individuals which actually become infected). 

3.4 Dependence on allele frequency 
So far we have assumed a fixed A allele frequency p=0.3 in the population. Fig 8 demonstrates what 

happens when this is no longer the case by varying p, which in turn changes the Hardy-Weinberg 

equilibrium frequencies for the three genotypes. We find that the curves are symmetric around a 

minimum of p=0.5 and remain remarkably flat over a large region. They only increase substantially 

when the minor allele frequency drops below around 10%. This result shows that the statistical 

power to establish SNP effects dramatically reduces when they are rare, which is consistent with 

observations from conventional GWAS analyses [51].  

3.5 Different data scenarios 
This section shows results from the various data scenarios introduce in section 2.4, in which the 

infection and recovery times of all individuals are not known precisely:  

DS2: Only recovery times known 

Since ag and af relate to the infection process, naïvely it might be expected that because infection 

times are unknown then nothing can be inferred about these SNP effects. This section, however, 

clearly demonstrates this not to be the case. The reason lies in the fact that whilst infection times 

are latent variables, the distribution from which they are sampled is informed by the available 

recovery data through the likelihood in Eq.(6). 

The square symbols in Fig 5a denote the posterior SDs in the susceptibility SNP effect ag under DS2. 

Compared to the best case scenario DS1, the SD in ag increases as a result of having to infer probable 

infection times for individuals (as opposed to knowing them exactly). The number of individuals per 

group needed to identify an association for a susceptibility SNP effect of ag =0.4 is now Gsize=80 (see 

dashed purple line in Fig 5a), as opposed to Gsize=20 in the case of DS1. Consequently to achieve an 

equivalent precision for ag under DS2 requires around 4 times as many individuals. In the case of the 

infectivity SNP effect af, this factor becomes approximately 4.2 (see Fig 6b, assuming a large number 

of contact groups), and for the recoverability it is 1.9 (see Fig 5c). These factors were found to be 

remarkably consistent across a broad range of group numbers and sizes (results not shown). 

Estimates of prediction accuracies and bias for the case of DS2 were obtained as described in section 

3.2, and results are presented in Appendix H. Compared to DS1 (Fig 4 and Table 1), The prediction 

accuracies tend to be slightly lower (but still above 0.5 in the majority of cases and above 0.9 for 

some parameters) and the bias slightly higher, reflecting the reduction in data. However, similar 

patterns with regards to which parameters are associated with lower prediction accuracy and bias 

emerge as was seen for DS1 (Fig 4). 
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In summary our analysis of DS2 clearly demonstrates that even when infection times are unknown, 

accurate inference regarding all SNP effects can be made, given sufficient data. 

DS3: Only infection times known 

The triangles in Figs 5, 6 and 7 show results under DS3 for different group sizes and group 

compositions. Here the SDs in the SNP effects for susceptibility ag and infectivity af are found to be 

almost the same as for DS1 (because uncertainty in recovery times only has a very weak impact on 

uncertainty in the infection process). However the SD for the recovery SNP effect ar is much larger, 

meaning that little can be inferred regarding SNP-based differences in recoverability. This is because 

under DS3 the only indirect information regarding recovery times comes from the very early stages 

of each epidemic (e.g. we know that the first infected individual cannot recover before the second 

individual becomes infected). This explains why SDs for recovery SNP effects decrease at a rate of -½ 

(on the log-scale) as the number of contact groups Ngroup increases (i.e. the triangles in Fig 6c scale 

with the black line) but not when the number of individuals per contact group Gsize is changed (see 

Fig 5c).  

DS4: Disease status periodically checked 
Fig 9 shows results under DS4 assuming a time interval between checks of Δt. When Δt=0 (as shown 

on the left of this figure) the DS4 results are the same as in DS1 (because here infection and recovery 

times are effectively exactly known). On the other hand as checking becomes less and less frequent, 

the SDs in the SNP effects rise. A surprising feature is that this reduction in statistical power is 

perhaps less than might be expected. The vertical lines in Fig 9 represent two key timescales: 〈tI〉 is 

the average infection time as measured from the beginning of the epidemic and 〈tR〉 is the average 

recovery time (these quantities are found by averaging over a large number of simulated replicates). 

We see that statistical power only marginally reduces even when disease diagnostic checking is 

performed on a similar timescale as the epidemics as a whole. This means that results assuming DS1 

which are either analytical (explored in a follow up paper [46]) or numerical, as looked at in sections 

3.1-3.4, remain relevant in realistic data scenarios. 

The limit on the right hand side of Fig 9 shows the situation in which there is no information 

regarding infection and recovery times (i.e. only the initial and final states of the epidemic are 

observed). Unfortunately it was found to be difficult to probe this regime using SIRE due to mixing 

problems arising in the MCMC algorithm [52] (principally because the number of possible parameter 

sets and event sequences consistent with a given final outcome is vast). 

The results here emphasise the fact that even relatively infrequent disease status checks provide 

useful data from which accurate inferences regarding SNP effects can be drawn. 

DS5: Time censored data 

In Fig 10a it is assumed the infection and recovery times are exactly known but only up to some final 

time tend (subsequent to which no further data is available). We find that very little information is 

lost when restricting tend to around the average recovery time 〈tR〉. This is largely because most 

individuals recover before 〈tR〉 as a consequence of a small number of individuals having very low 

recoverability (which itself arises because of the large residual variance Σrr=1 assumed here). Given 

that 〈tR〉 is usually substantially less than the total epidemic time, from a practical point of view 

terminating disease transmission experiments prior to the end of the epidemic when no new 

infections occur, (and perhaps performing further replicates) may be beneficial. However, the 

effectiveness of this approach would depend on a large assumed variation in recoverability in the 

population, which a priori may be unknown.  
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Fig 10b shows the opposite scenario, in which contact groups are observed from an initial starting 

time tstart after the start of the epidemic up until its termination. This scenario may apply to field 

outbreaks, where sampling occurs only after notification of the outbreak. Here again we see a 

reduction in statistical power with increasing tstart, but this reduction is not substantial until around 

the average infection time. This result is surprising, but it turns out that whilst none of the events 

before tstart are actually measured (which may include a large proportion of the total number of 

infection events), the disease status of all the individuals at tstart can be accurately inferred (because 

the final state is known and all the subsequent events from tstart are also known, the state at tstart is 

exactly specified) and this encapsulates almost the same amount of information as when the event 

times are precisely known.  

General data scenario 

It should be noted that the data scenarios DS1-5 considered are not comprehensive. Any 

combination of infection time, recovery time, disease status data and diagnostic test results can be 

used as inputs into SIRE. Furthermore SIRE accounts for additional uncertainties in cases in which 

data is missing on some individuals and where diagnostic tests are imperfect. 

4 Discussion 
The availability of dense genome-wide SNP panels has revolutionized human medicine and has 

paved the way for genetic disease control in agriculture. With declining genotyping costs, discovery 

of new disease susceptibility loci has increased exponentially over recent years, and evidence for 

their effective utilization in personalized medicine and livestock and plant breeding programmes 

continues to emerge [53-56]. However, there is increasing awareness amongst researchers and 

policy makers that disease susceptibility is not the only host genetic trait controlling disease 

incidence and prevalence in populations, and in particular that host genetic infectivity and 

recoverability may also constitute important improvement targets for reducing disease spread [19-

22, 57, 58]. Yet, genetic loci associated with host recoverability reported in the literature are sparse, 

and to the best of our knowledge no infectivity SNP has yet been identified. This, perhaps, is 

unsurprising given that phenotypic measurements of recoverability and infectivity, such as 

individuals’ recovery or pathogen shedding rates are rarely available in practice and statistical 

inference methods to accurately infer these from available epidemic data are still in their infancy. In 

line with the lack of suitable statistical methods, little is known about what type and number of 

measurements are needed to produce unbiased and precise estimates of SNP effects for these ‘new’ 

epidemiological host trait phenotypes.  

In this paper we developed a Bayesian methodology to allow simultaneous estimation of SNP effects 

for host susceptibility, recoverability and infectivity from temporal epidemic data. This methodology 

was validated with data from simulated epidemics, which were also used to assess how different 

parameter values and data scenarios representing different recording schemes in field or 

experimental studies may affect the estimates of SNP effects and other parameters influencing 

transmission dynamics. The sophisticated Bayesian algorithm outlined in this paper has been 

implemented into a user-friendly software tool called SIRE, which allows computationally efficient 

analyses to be performed by anyone with relevant epidemiological data (as shown in Appendix G, 

outputs typically take a few minutes of CPU time per 1000 individuals).  

Our results indicate that it is possible to obtain simultaneous unbiased estimates of SNP effects for 

all three epidemiological host traits, in addition to that of other fixed or random effects influencing 

disease transmission, from temporal epidemic data. Across simulated data scenarios we found that 
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recoverability SNP effects are generally (with few exceptions) easiest to identify, followed by 

susceptibility and then infectivity SNP effects. In the latter case a large number of contact groups 

with few individuals provide much more information than the reverse. Simulations of different data 

scenarios representing optimal (perfect and complete data) and practically feasible recording 

schemes produced the following relevant insights: firstly, even when only recovery (or death) times 

of individuals are known inference of SNP effects is still possible, albeit requiring around four times 

as many individuals to gain equivalent precision as for perfect data. Secondly, only knowing infection 

times marginally reduces statistical power to detect SNP effects for susceptibility and infectivity, but 

recovery SNP effects become difficult to detect. Thirdly, when data consists of periodic 

measurements of individuals’ disease status it was found that even relatively infrequent 

measurements (e.g. on a similar timescale as the entire epidemic) yields SNP effects with high 

precision, given sufficient data. Lastly, precise estimates of SNP effects could still be obtained with 

censored epidemic data.  

For model validation, we chose a complex inter-dependence structure for the model parameters by 

assuming that the SNP under consideration is associated with all three epidemiological host traits 

(i.e. pleiotropy), but with different allele substitution effects and different modes of dominance. 

Furthermore, we assumed that the traits are also influenced by other fixed effects, have large 

residual variance (introducing much noise into the system) and are correlated, and that 

environmental group effects influence the within-group transmission dynamics. This choice 

represents an extremely challenging system in which to estimate SNP effects and in practice most 

real world examples are likely to be considerably less challenging as simpler structures and reduced 

variation/better control of variation will improve the quality of the parameter estimates. 

The results from different data scenarios indicate a log-log scaling relationship with slope -½ 

between the precision (as measured by the SD in the posterior) of SNP effect estimates, and group 

size or number of groups (this relationship in analytically confirmed in a follow up paper [46]). For 

the majority of the simulations presented here, a moderate total population size of 1000 or less 

individuals was assumed. The corresponding posterior standard deviations for estimated SNP effects 

were generally above 0.01, and in the case of infectivity effects, more often above 0.1. This would 

suggest that for datasets comprising of 1000 individuals or less, SIRE is only able to detect SNPs of 

large effects on the epidemiological host traits, but identification of SNPs of small to moderate 

effects on this trait requires significantly more data, in particular for infectivity. 

 

We chose a dataset comprising of 1000 individuals partly because of computational efficiency but 

also because generating datasets of this size seems feasible for transmission experiments in plants 

and most domestic livestock species, in particular aquaculture species [20, 59, 60]. However, many 

existing field data, in particular in dairy cattle populations with routine genotyping and frequent 

recordings of disease phenotypes e.g. for mastitis, bovine Tuberculosis, and other infectious diseases 

[61-63] already exceed this number by several orders of magnitude. As genotyping costs continue to 

fall and automated recording systems are applied at rapidly increasing frequency in agriculture [64, 

65], the possibility of identifying SNPs with small to moderate effects on the epidemiological host 

traits, and their mode of dominance, which was poorly estimated for the given sample size, would 

appear to be well within reach in the near future.  

It is widely recognised that disease traits are for the most part polygenic, i.e. regulated by many 

genes each with small effect, and hence that SNPs with large effect on disease phenotypes are the 

exception rather than the norm [10, 62]. This is partly due to the fact that observed disease 
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phenotypes, such as individuals’ binary infection status or infection time are the result of many 

interacting biological processes, each controlled by a different set of genes or genetic pathways and 

characteristics of the wider population. Hence the impact of an individual gene on the disease 

phenotype is diluted. In contrast, the relative impact of a particular gene on traits that are more 

closely related to specific biological processes, such as e.g. pathogen entry, replication or shedding 

affecting susceptibility, recoverability or infectivity, respectively, may be higher [66]. Therefore, it is 

not unreasonable to assume that SNPs with moderate to large effects on these epidemiological 

traits, and in particular on host infectivity, may indeed exist. Evolutionary theory suggests that alleles 

that confer low susceptibility to infection or fast recoverability from infection are subject to strong 

directional selection when individuals are commonly exposed to infection [67]. Hence, such 

beneficial alleles tend to become fixed within only a few generations, and consequently, SNPs with 

large effects on disease susceptibility or recoverability would be expected to occur primarily only in 

populations that have not experienced strong selection pressure for these traits. This is exemplified 

in the case of Infectious Pancreatic Necrosis (IPN) in farmed Atlantic salmon that have only 

undergone a few generations of selection, where a single SNP explains most of the variation in 

mortality of fish exposed to the IPN virus [60, 68]. In contrast, selection pressure on infectivity is 

expected to be relatively low, since an individual’s infectivity genes affect the disease phenotype of 

group members rather than its own disease phenotype [34, 48, 69]. Therefore, infectivity SNPs with 

large effect may indeed exist, and may now be identifiable with the methods presented here.  

The approach developed in this study and integrated into SIRE complement and succeed previous 

studies that aimed to develop statistical methods for estimating genetic effects for the different host 

epidemiological traits [25, 30-32, 34]. The key novelty of our approach lies in its ability to estimate 

genetic and non-genetic effects associated with all three epidemiological host traits from a range of 

temporal epidemic data, even when that data is incomplete.  

Applications 

Many disease challenge experiments and field studies have identified SNPs with moderate to large 

effects on measurable disease resistance phenotypes [54, 55, 70]. However, the role of these SNPs 

on transmission dynamics is often poorly understood. For example, it is generally not known 

whether individuals that carry the beneficial allele for e.g. surviving infectious challenge are less 

likely to become infected (i.e. less susceptible), or more prone to surviving infection (e.g. due to 

better recoverability), and also less prone to transmitting infection, once infected (i.e. less infective). 

From an epidemiological perspective, SNPs with favourable pleiotropic effects on all three host 

epidemiological traits are highly desirable for preventing or mitigating disease spread [71]. In 

contrast alleles associated with better survival in existing GWAS would only bring the expected 

epidemiological benefits if they don’t simultaneously confer greater infectivity. In other words, 

knowing the SNP effects for all three underlying epidemiological host traits is desirable for effective 

employment of genetic disease control. Based on the results in this paper, SIRE can readily be 

applied to disentangle such SNP effects using data from transmission experiments or field studies.  

Furthermore, although this paper focused on estimating SNP effects, SIRE could also immediately be 

applied to estimating breed, age, sex, treatment or vaccination effects, or any other factor that may 

affect disease spread, even if genetic information is absent.  

Limitations of the current approach and future work 
One of the potential practical limitations for accurately estimating infectivity SNP effects is that they 

require a large number of epidemic groups. Previous work has shown that experimental designs can 

have a significant impact on the precision and accuracy with which model parameters can be 
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estimated (as demonstrated to some extent in this paper and also investigated for indirect genetic 

effects in numerous other studies [49]). In particular, theoretical studies indicate that significant 

improvement in estimates of infectivity effects can be achieved by appropriately grouping 

genetically related individuals [32, 34]. Whilst this paper focused entirely on a fixed A allele 

frequency p across groups, a follow up paper [46] will show that appropriate variation in genotypes 

within and across contact groups can lead to substantial improvements in the precision of the 

infectivity SNP effect af, without the need for large numbers of epidemic contact groups 

(interestingly, the susceptibility and recoverability SNP effects cannot be substantially improved in 

this way).  

A tool such as SIRE that can accurately estimate the effects of single SNPs on hitherto inaccessible 

epidemiological traits presents an important first step towards creating a statistically consistent 

scheme for performing GWAS on epidemiological traits using potentially incomplete data. GWAS, 

however, typically contains additional features beyond the scope of the simple single SNP analysis 

presented here. In particular, the current software focuses on one SNP at a time for estimating 

genetic effects for susceptibility, infectivity and recovery, but ignores the contributions of other 

genes on these traits. In the current model design these are incorporated into the residual effects. 

This simplifying assumption may have little impact for appropriately designed transmission 

experiments, but may lead to biased estimates of SNP effects if genetically similar individuals are not 

randomly distributed across groups. Theory also suggests that the required sample size for GWAS 

increases with the number of loci affecting the trait under consideration [72]. Hence, further model 

development is required for enabling GWAS for the three underlying epidemiological host traits. 

Previous work in our group developed a Bayesian algorithm for estimating polygenic effects for host 

susceptibility and infectivity from incomplete epidemic data [31]. Combining both approaches may 

prove a useful way forward to allow estimation of genetic effects under all realistic genetic 

architectures and population structures.  

In summary, this paper introduces, for the first time, software that can estimate genetic and non-

genetic effects for susceptibility, infectivity and recoverability simultaneously. This user-friendly tool 

can be applied to a range of experimental and field data and will help move genetic disease control 

significantly forward, beyond the focus on genetic improvement of resistance alone. 
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Tables 
Parameter Accuracy y-intercept Slope Av. SD Description 
β 
γ 

0.833 
0.982 

0.000 

0.001 

1.080 
0.999 

0.003 
0.013 

Average transmission rate 
Average recovery rate 

k 
ag  

af 

ar 

Δg 

Δf 

Δr 

bg0 

bf0 

br0 

Σgg 

Σff 

Σrr 

Σgf 

Σgr 

Σfr 

σG 

0.806 
0.985 
0.875 
0.995 
0.910 
0.335 
0.920 
0.978 
0.871 
0.992 
0.885 
0.691 
0.981 
0.789 
0.978 
0.862 
0.899 

1.810 
-0.004 
-0.054 
-0.020 
-0.038 
0.065 
-0.005 
-0.012 
-0.035 
0.008 
0.101 
0.264 
0.027 
-0.022 
0.000 
0.002 
0.008 

0.633 
1.020 
0.860 
0.990 
0.751 
0.133 
0.781 
1.000 
1.100 
1.000 
0.903 
0.563 
1.000 
0.949 
0.959 
0.983 
1.071 

1.580 
0.091 
0.287 
0.065 
0.439 
0.530 
0.373 
0.105 
0.365 
0.073 
0.136 
0.203 
0.071 
0.230 
0.067 
0.144 
0.144 

Recovery shape parameter 
SNP effect for susceptibility 
SNP effect for infectivity 
SNP effect for recoverability  
 
Dominance factor (per trait)  
 
 
Fixed effect (per trait) 
 
 
 
Residual covariance matrix 
 
 
 
SD of group effects 

 

Table 1. Prediction accuracy, bias and precision for the parameter estimates. Other columns 

relate to the sub-plots in Fig 4 (see Fig 4 caption for information about the underlying data). 

Prediction accuracy is defined as the correlation between the inferred and true parameter values. The 

y-intercept and slope were obtained by fitting regression lines through the data points in Fig 4 (a y-

intercept of zero and slope of one indicates no bias). Av. SD gives the average posterior standard 

deviation across all data points as an indicator for precision of parameter estimates. Subscripts g, f and 

r refer to susceptibility, infectivity and recovery, respectively. 
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Figures 

 

Fig 1. SIRE software.  

Illustrative screenshots of the software package: (a) Different data sources can be imported by loading 

user defined data tables (text or cvs files), (b) prior specification can be made on parameters, (c) 

posterior distributions can be visualised as inference in being performed, and (d) summary statistics 

and MCMC diagnostics. 
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Fig 2. Simulated epidemic profiles.  

This graph shows epidemic profiles for the three SNP genotypes (i.e. AA, AB or BB), where Sg, Ig, Rg 

indicate the number of susceptible, infected and recovered individuals of genotype g, respectively. 

This example is simulated using a single contact group containing Gsize=50 individuals, of which one 

is initially infected. The model parameters θ are: β=0.006, γ=0.1, k=5, ag=0.4, af=0.3 , ar=-0.4, Δg=0.4, 

Δf=0.1, Δr=-0.3, bg0=0.2, bf0=0.3, br0=-0.2, Σgg=1, Σgf=0.3, Σgr=-0.4, Σff=1, Σfr=-0.2, Σrr=1, σG=0.5 and the 

A allele has frequency p=0.3. Note, the step jumps in curves result from discrete disease status 

transitions in individuals.  
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Fig 3. Parameter posterior distributions. 

Probability distributions for model parameters inferred from a simulated dataset which consisted of 

exact infection and recovery times (DS1) for Ngroup=20 contact groups each containing Gsize=50 

individuals. The parameter values in Fig 1 were used for the simulation (denoted by the vertical black 

dashed lines). The standard deviations (SD) give a measure of precision. 
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Fig 4. Prediction accuracy and bias.  
The inferred posterior distributions for parameters compared to their true value. Simulated data was 

generated using the base parameter set in Eq.(10) except for a single parameter which was singled out 

in each of the sub-plots above*. Each cross corresponds to the inferred posterior mean (with error bars 

indicating 95% credible intervals) of the selected parameter (whose true value is on the x-axis) when 

SIRE is applied to a single simulated dataset consisting of infection and recovery times (DS1) from 

Ngroup=20 contact groups each containing Gsize=50 individuals. A description of the model parameters, 

together with calculated prediction accuracies (correlation between true and inferred value), and bias 

(represented by intercept and slope of regression lines fitted to the data points), and average standard 

deviations are given in Table 1. (*Additionally for (g) ag=0.4, (h) af=0.4 and (i) ar=0.4, such that 

dominance has an effect).
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Fig 4 continued. 
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Fig 5. Variation in precision of the SNP effect estimates with group size Gsize.  
Posterior standard deviations (SDs) in SNP effects for (a) susceptibility ag, (b) infectivity af and (c) 

recoverability ar from simulated data with Ngroup=10 contact groups each containing Gsize individuals 

(which is varied). Different symbols represent different data scenarios: DS1) Both the infection and 

recovery times for individuals are known, DS2) only recovery times are known, and DS3) only infection 

times are known. Each symbol represents the average posterior SD over 50 simulated data replicates 

with the error bar denoting 95% of the stochastic variation about this value, i.e. 95% of posterior SDs lie 

within the interval (note, they do not represent posterior credible intervals, as in Fig 4). The black line 

indicates a slope of -½ and the dashed black and purple dash lines indicate the sample size required for 

identifying a SNP with effect size 0.4 for the trait under consideration (see main text for further 

explanation). Parameter values are given in Eq.(10). 
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Fig 6. Variation in precision of the SNP effect estimates with number of groups Ngroup.  
Posterior standard deviations (SDs) in SNP effects for (a) susceptibility ag, (b) infectivity af  and (c) 

recoverability ar from simulated data with Ngroup contact groups (which is varied) each containing 

Gsize=10 individuals. Different symbols represent different data scenarios: DS1) Both the infection and 

recovery times for individuals are known, DS2) only recovery times are known, and DS3) only 

infection times are known. Each symbol represents the average posterior SD over 50 simulated data 

replicates with the error bar denoting 95% of the stochastic variation about this value. The black line 

indicates a slope of -½. Parameter values are given in Eq.(10). 
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Fig 7. Variation in precision of the SNP effect estimates with partitioning into groups. 
Posterior standard deviations (SDs) in SNP effects for (a) susceptibility ag, (b) infectivity af  and (c) 

recoverability ar from simulated data with Ngroup contact groups each containing Gsize individuals, both 

of which are varied such that the total population Ngroup×Gsize is fixed to 1000. Different symbols 

represent different data scenarios: DS1) Both the infection and recovery times for individuals are 

known, DS2) only recovery times are known, and DS3) only infection times are known. Each symbol 

represents the average posterior SD over 50 simulated data replicates with the error bar denoting 95% 

of the stochastic variation about this value. Parameter values are given in Eq.(10). 
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Fig 8. Variation in precision of the SNP effect estimates with allele frequency p.  

Posterior standard deviations (SDs) in SNP effects for (a) susceptibility ag, (b) infectivity af  and (c) 

recoverability ar from simulated data with Ngroup=20 contact groups each containing Gsize=50 
individuals. Different symbols represent different data scenarios: DS1) Both the infection and 

recovery times for individuals are known, DS2) only recovery times are known, and DS3) only 

infection times are known. Each symbol represents the average posterior SD over 50 simulated data 

replicates with the error bar denoting 95% of the stochastic variation about this value. Parameters 

used are given in Eq.(10). 
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Fig 9. Periodic checking of disease status (DS4). Posterior standard deviations (SDs) in estimated 

SNP effects ag, af  and ar from simulated data with Ngroup=20 contact groups each containing Gsize=50 

individuals. Here it is assumed that the disease status of individuals is periodically checked with time 

interval Δt. Each symbol represents the average posterior SD over 50 simulated data replicates with 

the error bar denoting 95% of the stochastic variation about this value (with the checking times 

randomly shifted across these replicates) with the error bar denoting stochastic variation in posterior 

mean. The vertical lines represent key epidemic times: 〈tI〉 is the mean infection time (as averaged 

over an large number of simulations) and 〈tR〉 the mean recovery time. Parameter values given in 

Eq.(10). 
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Fig 10. Censoring of data (DS5).  
Posterior standard deviations (SDs) in SNP effects ag, af and ar from simulated data with Ngroup=20 

contact groups each containing Gsize=50 individuals. Each symbol represents the average posterior SD 

over 50 simulated data replicates with the error bar denoting 95% of the stochastic variation about this 

value. (a) Contact groups are observed until time tend, after which no further data is taken. (b) Contact 

groups are observed from time tstart until the end of all epidemics. The vertical lines represent key 

epidemic times: 〈tI〉 is the mean infection time (as averaged over an large number of simulations) and 

〈tR〉 the mean recovery time. Parameter values given in Eq.(10). 
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Appendix A: Recovery dynamics 
Fig A shows examples of gamma distributions for three different values of shape parameter k=1, 2 

and 10. A common approach when modelling 

epidemics is to assume k=1, corresponding to 

the Markovian assumption of constant recovery 

probability. From a biological point of view, 

however, this is rather unrealistic. Typically after 

infection, the host’s immune system takes some 

time to respond, e.g. to generate the 

appropriate antibodies to fight off the infection. 

Thus, for many real diseases k may be large.  

Consequently, incorporation of a gamma 

distributed infection duration (which is 

characterised by two parameters, a mean and a 

shape parameter, instead of just one for the 

exponential distribution) allows the model to 

more realistically capture true disease dynamics. 

Appendix B: Derivation of the likelihood 
The likelihood in Eq.(6) represents the probability the model in section 2.1 generates a certain set of 

events ξ, assuming a given set of parameters θ. This can be calculated by multiplying the 

probabilities for each of the individual sampling steps used in the simulation procedure, as described 

in Appendix F.  

During initialisation of a given contact group, the infection duration for the initially infected 

individual j is sampled with probability 

 ( | , ).j jF t w k   (B1) 

We now consider each event e in turn. In step 1 of Appendix F, the inter-event time Δt is sampled 

from the exponential distribution e t

ee
 

 (where ( )e et is the total infection rate Eq.(7) evaluated 

immediately prior to te, the time of event e). Two possibilities exist for event e:  

1. It is a recovery event. Considering the algorithm in Appendix F, step 2(a) would have been 

branched to, and this only happens if the sampled value for Δt is greater than the observed 

inter-event time te-te-1. The probability of this is calculated from the following integral:  

 1

1

( ) ( ) ( )
.e e e e e e

e e

t t t t t

e
t t

e d t e 




    


     (B2) 

2. It is an infection event. Again, considering the algorithm in Appendix F, step 2(b) would have 

been branched to, and this happens with probability 1( )e e et t

ee
  

 (which comes from the 

exponential distribution above). The individual j which becomes infected is selected with 

probability /j e  . Finally, the infection duration of that individual
jt  is sampled from a 

gamma distribution with probability density function ( | , )j jF t w k . Combining these three 

contributions gives an overall probability: 

 

Fig A. Infection duration. Shows the 

probability distribution for an individual to 

recover from their infection a time δt after they 

were infected. 
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 1( ) ( )
( | , ).e e e et t t

j j je F t w k   

   (B3) 

Multiplying the results from Eqs.(B1), (B2) and (B3) for all the infection and recovery events leads to 

the likelihood for a single contact group of:  

    1( ) ( )
( | ) ( | , ) ,e e e et t t

j m mj e m
L e F t w k     

      (B4) 

where j goes over individuals that become infected (excluding those which initiate epidemics), m 

also goes over individuals that become infected but including those which initiate epidemics and e 

goes over both infection and recovery events (with corresponding event times te).  

Since contact groups are assumed to be independent, the likelihood for multiple contact groups is 

simply the product of each separate one, as shown in Eq.(6). 

Appendix C: Prior definitions for model parameters 
The default prior in SIRE (which can be altered), which is used for all the results in this paper, is 

largely uninformative but does place upper and lower bounds on many of the key parameters to 

stop them straying into biologically unrealistic regimes. Bounding parameters in this way was found 

to be especially important when considering relatively uninformative data scenarios when 

unbounded flat priors could lead to improper posterior probability distributions. Specifically, a 

uniform prior between -2.3 and 2.3 was chosen for ag. This corresponds to assuming that it is 

biologically unrealistic for a single SNP to change the susceptibility of individuals by more than a 

factor of 100 between AA and BB individuals1. An identical uniform prior was also placed on af , ar 

and on each of the fixed effects in bg, bf and br. Similarly, a uniform prior between -3.45 and 3.45 

was placed on each of the residuals εg, εf  and εr , This larger range reflects a potential factor of 1000 

variation across individuals (chosen to be larger as residual contributions account for all other SNPs 

as well as non-genetic factors, as opposed to just the effect of the single SNP under analysis).  

The scaled dominance factors Δg, Δf, Δr, were chosen to have uniform priors between 1 and -1, i.e. 

going from complete dominance of A to complete dominance of B 2. The prior for the shape 

parameter k was chosen to be uniform between 1 and 10, where 1 represents a Poisson random 

process and 10 represents a situation in which recovery times of individuals are highly concentrated 

around their mean.  

Because parameters β and γ depend on the timescale over which the epidemic is measured3, which 

is partly pathogen specific, placing informative priors on β and γ by default is not appropriate 

(although it can be done). Instead a uniform prior between 0 and 20 was placed on the equivalent 

basic reproductive ratio R0 
4, which is a dimensionless quantity.  

                                                           
1 This factor comes from the exponential dependency in Eq.(1) coupled with the result e2×2.3 =100. 
2 If over dominance is considered a possibility, this prior distribution would be extended. 
3 E.g. if measurements are made in hours then β and γ would be very different to if they were made in days. 
4 Defined by R0=β(〈N〉-1)/γ, where 〈N〉 is the average population size of contact groups as taken from the data, 
this represents the number of infections one typically infectious individual generates on average over the 
course of its infectious period in an otherwise uninfected population. 
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Appendix D: MCMC procedure 
Markov chain Monte Carlo (MCMC) produces a list of (correlated) parameter θq and event time ξq 

samples drawn from the posterior probability distribution in Eq.(5), where q indexes sample number. 

1) Initialisation – MCMC is initially started with some set of parameters θ1 and event times ξ1 

consistent with the data y. In the case of parameters, θ1 is simply sampled from the prior 

distribution π(θ). For events, initialisation depends on the available data: DS1) events are 

defined by the data, DS2) infection times are exponential sampled backwards in time from the 

first observed recovery time5, DS3) recovery times are exponentially sampled forwards in time 

from the final observed infection time6, DS4) infection and recovery times are sampled 

uniformly in the time intervals identified between successive diagnostic tests, and DS5) events 

within the observation period are defined by the data, infection events prior to this time period 

are exponentially sampled backward in time and similarly recoveries events after this time 

period are exponentially sampled forward in time.  

2) Iteration - MCMC operates by proposing changes to the model parameters θ and event times ξ 

and accepting or rejecting these changes in accordance with a Metropolis-Hastings probability. 

In this way the underlying dynamics are able to explore all potential possibilities consistent with 

the observations. 

A single MCMC “update” consists of making the following sets of proposals: 

MCMC UPDATE 

Parameters – Each individual parameter in θ=(β, γ, k, ag, af , ar, Δg, Δf, Δr, bg, bf, br, εg, εf, εr,, Σ, G, 

σG), denoted by θj, is considered in turn. A proposed value is drawn from a normal distribution 

centred on the parameter’s current chain value  

   (C1) 

with all other parameters in θp remaining the same as in θq (if this produces an inconsistent 

value, e.g. β becomes negative, the proposal is immediately rejected). The proposal is accepted 

with Metropolis-Hastings probability 

  ( | ) ( )

( | ) ( )
min 1, .

p p p

q q q

L

MH L
P

   

   
   (C2) 

If accepted, we set θq+1= θp else θq+1= θq with ξq+1= ξq. 

Tuning Jj in Eq.(C1) is important. If it is too large, very few proposals will be accepted and if too 

small, mixing will be slow. Motivated by adaptive MCMC [73, 74], a robust heuristic method for 

optimising Jj within the burn-in period is as follows. Initially, Jj is set to a small quantity. Each 

time a proposed change on parameter j is accepted Jj is updated according to 

 1.01,new

j jJ J    (C3) 

and when rejected  

 0.995.new

j jJ J    (C4) 

                                                           
5 The standard deviation in recovery times is used to set the decay rate. 
6 The standard deviation in infection times is used to set the decay rate. 

2 ~ ( , ),p q

j j jNorm J 
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These numerical factors are chosen for two reasons: Firstly, the updates in Eqs.(C3) and (C4) 

balance each other out when acceptance occurs around 33% of the time, leading to a steady 

state solution for Jj. Secondly, they are chosen to be sufficiently close to 1 to prevent large 

fluctuations in Jj, but sufficiently far to allow the steady state solution to be found within the 

burn-in period. 

In addition to the single parameter proposals outlined above, joint proposals are also made on 

residuals along with their corresponding covariance matrix, as described in Appendix E. The 

reason these joint updates are necessary is that Σ and ε are often highly correlated within the 

model (as determined by Eq.(9)). In many cases the data provides little information regarding Σ 

itself, so these correlations can lead to extremely slow mixing.  

Events – In situations in which ξ is not precisely known (i.e. data scenarios other than DS1), the 

unknown latent event times must be stochastically changed in accordance with the posterior 

distribution. Each individual j is considered in turn. In the case of proposing changes to the 

infection time of j, the following normal distribution is sampled from: 

 
I, I, 2

, ~ ( , ),p q

j j I jt Norm t J   (C5) 

with all other event times in ξp=(tI,tR) remaining the same as in ξq. If this proposed infection time 

exceeds the recovery time 
,R q

jt the proposal is immediately rejected (infections cannot occur 

after recoveries). The proposal in Eq.(C5) is accepted with probability  

 
 
 

| ( | )

| ( | )
min 1, .

p p p

q q q

y L

MH y L
P

   

   

 
  

 
  (C6) 

If accepted, we set ξq+1= ξp else ξq+1= ξq with θq+1= θq.  

A similar proposal to Eq.(C5) is used to change recovery times. The jumping parameters JI,j and 

JR,j are again tuned to give an average acceptance probability of around 33% (using the same 

method as in Eqs.(C3) and (C4) above). Furthermore, there are data scenarios in which it is not 

possible to tell whether an individual has become infected or not. In these cases it is necessary 

to include additional proposals which insert infection/recovery event pairs and, conversely, 

other proposals which remove them. 

Each of the proposals above have been optimised to calculate only those parts of the likelihood that 

change, e.g. if the infection time of individual j is altered then only the change in likelihood in the 

period between then initial and proposed times within j’s contact group needs to be calculated. 

Furthermore, when making some sets of proposals computational speed is substantially increased by 

pre-calculating terms in the likelihood which remain unchanged.  

Appendix E: Posterior-based proposals for residuals 
This appendix describes special joint proposals in the residuals (Σ,ε) which are used to aid MCMC 

mixing. Specifically three type of proposal are considered: 1) those which randomly make changes to 

Σgg, Σgf, or Σgr and stochastically alter εg (with everything else kept fixed), 2) those which randomly 

make changes to Σff, Σgf, or Σrr and stochastically alter εf (with everything else kept fixed), and 3) 

those which randomly makes changes to Σrr, Σgr, or Σfr and stochastically alter εr (with everything 

else kept fixed). Here we describe just one of these possibilities, but others can be found by suitably 

permuting indices. 
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So-called “posterior-based proposals” (PBPs) [1] consist of three steps: 

Step 1 – A proposed is made to one of the parameters in the model. In this example  

 
2 ~ ( , ),

gg

p q

gg ggNorm J    (C7) 

with the value of
gg

J tuned to give an average acceptance probability of around 33% (using the 

same method as in Eqs.(C3) and (C4) above). 

Step 2 – Each element εg,j  in the εg is considered in turn. The values of means μq,j and μp,j and 

standard deviations σq,j and σp,j are calculated such that the normal distributions they characterise 

approximate, to some level of accuracy, the true posterior distributions for εg,j in the initial and 

proposed states (details on how this is done are discussed below). If σp,j>σq,j then for each individual 

j the proposed residuals are sampled using  

 
2

,

2
,

2 2

, , , , , , ~ (1 ) ( ), ( ) ,p j

q j

p q

g j p j g j q j p j q jNorm



        

 
     

 
  (C8) 

where κ is a tuneable constant set to 0.03, and when σp≤σq 
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  (C9) 

The somewhat complicated expressions in Eqs.(C8) and (C9) are specifically designed such that if the 

posterior is truly represented by the normal approximations (as characterised by μq,j, μp,j, σq,j and 

σp,j), the proposal is accepted with probability 1. 

Step 3 – The proposed combination ,p p

gg g ε  is accepted or rejected with Metropolis-Hastings 

probability  

  , , q,

, , ,

( | , )( | ) ( | ) ( )

( | ) ( | ) ( ) ( | , )
min 1, ,

qp p p p
norm g j q j j

q q q q p
norm g j p j p j

fy

MH y j f
P

        

         
    (C10) 

where j goes over all individuals and  
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is the Gaussian probability density function. 

Optimisation 
For efficient implementation of this approach it is necessary to generate μq,j, μp,j, σq,j and σp,j in a 

suitable manner. One approximation is to set them to values implied by prior in Eq.(9):  

 
, , , ,

p, , , ,
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M M M M

   

   

   

   
  (C12) 

where M is the inverse of the covariance matrix Σ-1. This approximation leads to so-called “model-

based proposals” (MBP). A more accurate approximation (because it takes into account the 

observed events, which themselves are informed by the data) is given by 
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  (C13) 

and this gives a first order “posterior-based proposal” (PBP). Although Eq.(C13) is computationally 

slower to calculate than Eq.(C12) (because it contains gradients in the log-likelihood), it can lead to 

larger jumps in parameter space compared to a corresponding MBP resulting in improved mixing. 

Empirically it was found that applying PBPs to parameters relating to susceptibility and recoverability 

and MBPs to parameters relating to infectivity was the fastest approach to take. 
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Appendix F: Simulation  
The Doob-Gillespie algorithm [43] provides a means of taking into account inherent stochasticity in 

Markovian compartmental models (i.e. models for which the transition rates depend solely on the 

current state of the system). The model used in this paper combines Markovian infection transitions 

with more realistic non-Markovian recovery dynamics. Below we describe how these recovery 

events are incorporated into the standard Doob-Gillespie framework.  

The purpose of this procedure is to build up a time ordered sequence of infection and recovery 

event times indexed by event number e. The following notation is used: te is the event time, xe is the 

event type (infection in. or recovery re.), je is the affected individual, and I

jt and R

jt are the infection 

and recovery times for individual j, respectively. 

Initialization: Each epidemic is assumed to be started by one (or potentially more) initially infected 

individual j at some initial time point tinit. The infection duration δtj for this individual is drawn from a 

gamma distribution parameterised in terms of a mean and shape parameter: 

 ~ ( , )j jt Gamma w k   (D1) 

(note, the dependency of wj on θ is given through Eqs. (2) and (3)). This allows us to set I

j initt t and

.R

j init nt t t   Individual j is then placed onto a list 𝓡, which represents all currently infected 

individuals. We set event index to e=1. 

Step 1: Calculate the time to the next infection event. This is done by first evaluating the total 

transition rate that any individual becomes infected  

 ,ss
    (D2) 

where the sum s goes over all currently susceptible individuals and the force of infection λs (which 

gives the probability per unit time of s becoming infected) is given by Eq.(1). In accordance with a 

Poisson process, the time to the next infection event is generated by drawing a sample from the 

exponential distribution te . In practice, this is achieved by selecting an inter-event time using 

 
log( )

,
u

t  


  (D3) 

where u is a (uniform) randomly generated number between 0 and 1. The new event time is then 

defined by 

 1 .new

et t t    (D4) 

Step 2: Choosing the event type. For the SIR model two possibilities exist: 

a) If tnew is greater than the smallest recovery time of all the individuals in 𝓡, which we label jmin, 

then we remove jmin from 𝓡 and set 

 
min min,   .,   .R

e j e et t x re j j     (D5) 

b) Otherwise, we set 

 ,   .,new

e et t x in    (D6) 
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and select the actual individual that becomes infected with probability 

 Prob( ) .s
ej s


 


  (D7) 

The infection duration
ej

t for je is sampled using Eq.(D1), and the infection and recovery times are 

set to  

 
,

.

e

e e

I

j e

R

j e n

t t

t t t



 
  (D8) 

Individual je is then placed onto the list 𝓡. 

Step 3: Increment e and jump to step 1 if there are any remaining infected individuals. 

End: Insert recovery times for any remaining individuals j in 𝓡 

 ,   .,   ,R

e j e et t x re j j     (D9) 

incrementing e after each addition.  
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Appendix G: Computational speed estimate for SIRE  

Fig G shows the CPU time SIRE takes to estimate the SNP effects as a function of the total number of 

individuals (this is based on a single 2GHz core). We find that the SNP effect associated with 

infectivity takes the longest to accurately estimate. The approximate linear scaling (represented by 

the solid black lines) means that SIRE is expected to take around one minute per 1000 individuals to 

generate 100 representative samples from the posterior under DS1 and around 10 minutes for DS2. 

Appendix H: Parameter prediction accuracy under DS2 
Fig H shows results when repeating the analysis is section 3.2 of the paper, but this time taking the 

scenario in which infection times are unknown (i.e. DS2). The corresponding regression analysis on 

these points is presented in Table H. The average SDs in Table H are smaller than those in Table 1, 

reflecting the reduction in statistical power under this data scenario. A factor of two difference in SD 

corresponds to four times as many individuals required for equivalent accuracy. 

 

Fig G. SIRE speed. The CPU time taken for SIRE to generate 100 independent posterior samples for 

the SNP effects as a function of the number of individuals (where the group size is taken to Gsize=50), as 

estimated using the effective sample size [1]. Simulated data was generated using the base parameter set 

in Eq.(10) with (a) known infection and recovery times (DS1) and (b) known recovery times (DS2). 
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Fig H. Prediction accuracy and bias. These plots summarise inferred posterior distributions for 

parameters compared to their true value. Simulated data was generated using the base parameter set in 

Eq.(10) except for a single parameter which was singled out in each of the sub-plots above*. Crosses 

correspond to the inferred posterior mean (with error bars indicating 95% credible intervals) of the 

selected parameter (whose true value is on the x-axis) when SIRE is applied to a single simulated data 

set consisting of recovery times (i.e. DS2) from Ngroup=20 contact groups each containing Gsize=50 
individuals. Prediction accuracies, and the intercept and slope of regression lines fitted to the data 

points are given in Table 1. (*Additionally for (g) ag=0.4, (h) af=0.4 and (i) ar=0.4, such that 

dominance has an effect).  
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Fig H continued. 
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Parameter Accuracy y-intercept Slope Av. SD Description 
β 
γ 

0.831 
0.956 

0.003 

-0.008 

1.191 
0.946 

0.005 
0.024 

Average transmission rate 
Average recovery rate 

k 
ag  

af 

ar 

Δg 

Δf 

Δr 

bg0 

bf0 

br0 

Σgg 

Σff 

Σrr 

Σgf 

Σgr 

Σfr 

σG 

0.494 
0.950 
0.355 
0.979 
0.791 
0.260 
0.891 
0.961 
0.411 
0.978 
0.723 
0.503 
0.574 
0.588 
0.537 
0.941 
0.906 

3.454 
-0.004 
-0.019 
-0.006 
-0.079 
0.056 
-0.040 
-0.033 
-0.004 
0.011 
0.581 
-0.141 
0.014 
0.440 
0.292 
0.101 
0.131 

0.516 
0.995 
0.370 
1.022 
0.619 
0.054 
0.857 
1.083 
0.469 
0.980 
0.416 
0.312 
0.655 
0.233 
0.382 
0.817 
0.936 

2.272 
0.173 
0.525 
0.111 
0.387 
0.544 
0.249 
0.188 
0.647 
0.111 
0.236 
0.330 
0.296 
0.266 
0.248 
0.113 
0.182 

Recovery shape parameter 
SNP effect for susceptibility 
SNP effect for infectivity 
SNP effect for recoverability  
 
Dominance factor (per trait) 
 
 
Fixed effect (per trait) 
 
 
 
Residual covariance matrix 
 
 
 
SD of group effects 

 

Table H. Prediction accuracy and bias under DS2. Prediction accuracy is defined as the 

correlation between the inferred and true parameter values (a value of one implies perfect 

inference). The y-intercept and slope are taken from regression lines fitted through the data 

point (a y-intercept of zero and slope of one indicates no bias). Av. SD gives the average 

posterior standard deviation across all datasets.  
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