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ABSTRACT

We analyzed aging trajectories of complete blood counts (CBC) and their association with the
incidence of chronic diseases and death in cohorts of aging individuals registered in the UK Biobank
and National Health and Nutrition Examination Survey (NHANES) studies. Application of a pro-
portional hazards model to the CBC data allowed us to identify the log-transformed hazard ratio
as a natural biomarker of aging, which we have named the dynamic morbidity index (DMI). DMI
increased with age in the UK Biobank and NHANES cohorts, was associated with frailty, and pre-
dicted the prospective incidence of age-related diseases and death. To better understand the nature
of DMI variations along individual aging trajectories, we acquired a sufficiently large longitudinal
database of CBC measurements from a consumer diagnostics laboratory. We observed population
DMI distribution broadening associated with a progressive loss of physiological resilience measured
by the DMI inverse auto-correlation time. Extrapolation of this data suggested that DMI recovery
time and variance would simultaneously diverge at a critical point of 120 − 150 years of age corre-
sponding to a complete loss of resilience. We conclude that the criticality resulting in the end of life
is an intrinsic biological property of an organism that is independent of stress factors and signifies
a fundamental or absolute limit of human lifespan.

INTRODUCTION

Aging is manifested as a progressive functional decline
leading to increasing prevalence [1, 2] and incidence of
chronic age-related diseases (e.g., cancers, diabetes, car-
diovascular diseases, etc. [3–5]) and disease-specific mor-
tality [6]. Much of our current understanding of the rela-
tionship of aging with changes in physiological variables
over an organism’s lifespan originates from large cross-
sectional studies, including the National Health and Nu-
trition Examination Survey (NHANES; 40592 subjects,
age range 18 − 85 y.o.) and UK Biobank (UKB; 471473
subjects, age range 39 − 73 y.o.) studies. Analysis of
such large datasets has identified a number of “biological
clocks”, including those reflecting age-related variations
in blood markers [7], DNA methylation (DNAm) states
[8, 9] or patterns of locomotor activity [10–12]. Typ-
ically, the physiological indices change from the levels
observed in the young organism at approximately linear
pace, much slower than would be expected from the ex-
ponential Gompertz mortality law [13, 14]. Most factors
that serve as biological clocks are easily measurable and,
at least in principle, may be modified pharmacologically.
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An improved understanding of the relationship between
the linear physiological state dynamics and the exponen-
tially increasing morbidity, frailty and mortality observed
during aging is needed to facilitate the rational design,
development, and clinical validation of anti-aging inter-
ventions.

RESULTS

Identification of a new biomarker of aging based on
blood cell counts

Complete blood count (CBC) measurements are in-
cluded in standard blood tests and comprise the largest
common subset of data available for both the NHANES
and UKB study populations (see Table S1). In investi-
gating whether CBC dynamics could be used to quan-
tify aging, we found that co-clustering of age- and sex-
adjusted CBC components revealed two dynamic subsys-
tems associated with oxygenation and immune functions,
represented by variations in red blood cell counts and
total and mean corpuscular hemoglobin levels and with
platelet and white blood cell counts, respectively (Fig.
1A).

Since rates of morbidity and mortality increase expo-
nentially with age, a log-linear risk model is a good start-
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FIG. 1: A. Co-clustering of the age- and sex-adjusted CBC feature fluctuations in the NHANES dataset revealed two
functionally related blood cell types, generally representing immune and oxygenation functions. We also included the
dynamic morbidity index (DMI), the log-hazard ratio of a mortality risk model trained using the NHANES samples.
As indicated by the vertical bar along the right-hand edge of the figure, the colors represent the absolute values of the
Pearson’s correlation coefficients between features. B. DMI mean values (solid line) and variance (shaded area) are
plotted relative to age for the “non-frail” (combined morbidity index, CMI < 0.1) participants of NHANES study. The
average DMI of the “most frail” (CMI > 0.6) idividuals is shown with dashed line. Data for other datasets investigated
in this study are given in Supplementary Information (Fig. S1A). C. Distributions of sex- and age-adjusted DMI in
cohorts of NHANES participants in different morbidity categories relative to the DMI mean in cohorts of “non-frail”
(1 or no diagnoses, CMI < 0.1) individuals. Note that the distribution function in the “most frail” group (more than
6 diagnoses, CMI > 0.6) exhibited the largest shift and a profound deviation from the symmetric form.

ing point for quantification of the aging process [12, 15].
We used the death register of the NHANES study (3792
death events observed in the follow-up by year 2015) and
trained the Cox proportional hazards model [16] using
the CBC measurements and sex variables (but not age)
from 23807 study participants aged 40 y.o. and older.
We therefore assumed that the risk of death depended
on the organism state at the time of CBC measurement
and the follow-up time only. The model yielded a log-
hazards ratio (log-HR) estimate (a linear combination of
log-transformed CBC variables) for every participant (see
Table S2 for description of the model). After adjustment
for sex and age, this predictor was demonstrated to be
equally well associated with mortality in the NHANES
study (HR = 1.43) and in the independent UKB study
(HR = 1.39; Table S3), which was used as a validation
dataset.

For the NHANES cohort, the CBC log-HR of the Cox
mortality model gradually increased with age (Pearson’s
correlation coefficient r = 0.29, p < 10−100, Fig. 1B).
This parameter changed at a comparable rate in the in-
dependent UKB cohort; however, the correlation coeffi-
cient was lower in this cohort due to the more limited age
range of the subjects (r = 0.13, p < 10−100, Fig. S1A).

To differentiate between the effects of chronic diseases
and disease-free aging, we followed [17] and character-
ized the health status of each study participant based
on their diagnosis with health conditions considered to
be the most prevalent age-related conditions. The num-
ber of health conditions diagnosed for an individual was
normalized to the total number of conditions included
in the analysis to yield the “compound morbidity index”
(CMI), a frailty index proxy with values ranging from

zero to one. The list of health conditions common to
the NHANES and UKB studies that were used for CMI
determination.is given in Table S3 and Supplementary
Information.

The association between frailty and estimated mor-
tality risk is readily seen as the difference between the
solid and dashed lines in Fig. 1B, which represent the
mean log-HR values in the cohorts of healthy (“non-frail”,
CMI < 0.1) and “most frail” (CMI > 0.6) NHANES par-
ticipants, respectively. Given the association between all-
cause mortality risk and morbidity, we propose to refer
to the log-HR of the mortality model as the “dynamic
morbidity index” (DMI).

In groups stratified by increasing number of health con-
dition diagnoses, the normalized distribution of DMI (af-
ter adjustment by mean DMI in age- and sex-matched
cohorts of healthy subjects) exhibited a progressive shift
to higher risk values (Fig. 1C for NHANES, Fig. S1B
for UKB). For both NHANES and UKB, the largest shift
was observed in the “most frail” (CMI > 0.6) popula-
tion. The increasingly heavy tail at the high end of the
DMI distribution in this group is characteristic of a mix-
ture of at least two distinct states which occupy adjacent
regions in the configuration space spanned by the DMI
variable. Therefore, DMI displacement after adjustment
for age and sex in cohorts of healthy subjects was ex-
pected to be determined by the fraction of “most frail”
individuals in a cohort of any given age. This was con-
firmed to be true using the NHANES dataset (Fig. S2A;
r = 0.83, p = 8.8×10−9). The fraction of surviving “most
frail” subjects increased exponentially until the age cor-
responding to the end of healthspan was reached. The
characteristic doubling rate constants for the “most frail”
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FIG. 2: A. The DMI relaxation rate (or the inverse characteristic recovery time) computed for sequential age-matched
cohorts from the GEROLONG dataset decreased approximately linearly with age and could be extrapolated to zero
at an age in the range of ∼ 110−170 y.o. (at this point, there is complete loss of resilience and, hence, loss of stability
of the organism state). The shaded area shows the 95% confidence interval. B. The auto-correlation function C(∆t)
of the DMI fluctuations during several weeks averaged in sequential 10-year age-cohorts of GEROLONG subjects
showed gradual age-related remodelling. Experimental data and fit to autocorrelation function are shown with solid
and dashed lines, respectively (see details in Supplementary Information). The DMI correlations are lost over time
∆t between the measurements and, hence, the DMI deviations from its age norm reach the equilibrium distribution
faster in younger individuals. C. The inverse variance of DMI decreased linearly in all three investigated datasets and
its extrapolated value vanished (hence, the variance diverged) at an age in the range of 120− 150 y.o. We performed
the linear fit for subjects 40 y.o. and older, excluding the “most frail” (CMI > 0.6) individuals. The shaded areas
correspond to the 95% confidence intervals. D. Representative aging trajectories are superimposed over the potential
energy landscape (vertical axis) representing regulatory constraints. The stability basin “A” is separated from the
unstable region “C” by the potential energy barrier “B”. Aging leads to a gradual decrease in the activation energy
and barrier curvature and an exponential increase in the probability of barrier crossing. The stochastic activation
into a dynamically unstable (frail) state is associated with acquisition of multiple morbidities and certain death of an
organism. The white dotted line “D” represents the trajectory of the attraction basin minimum. Examples 1 (black
solid line) and 2 (black dashed line) represent individual life-long stochastic DMI trajectories that differ with respect
to the age of first chronic disease diagnosis.

population fractions were 0.08 and 0.10 per year in the
NHANES and the UKB cohorts, respectively, in comfort-
able agreement with the accepted Gompertz mortality
doubling rate of 0.085 per year [18], see Fig. S2B.

Dynamic morbidity index and health risks

In the most healthy subjects, i.e. those with no diag-
nosed diseases at the time of assessment, the DMI pre-
dicted the future incidence of chronic age-related diseases
observed during 10-year follow-up in the UKB study (Ta-
ble S3) There was no relevant information available in
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NHANES. We tested this association using a series of
Cox proportional hazard models trained to predict the
age at the onset/diagnosis of specific diseases. We ob-
served that the morbidity hazard ratios associated with
the DMI relative to its mean in age- and sex-matched co-
horts were statistically significant predictors for at least
the most prevalent health conditions (those with more
than 3000 occurrences in the UKB population). The ef-
fect size (HR ≈ 1.03 − 1.07) was the same regardless of
whether a disease was diagnosed first in a given individ-
ual or followed any number of other diseases. Therefore,
we conclude that the DMI is a characteristic of overall
health status that is universally associated with the risks
of developing the most prevalent diseases and, therefore,
with the end of healthspan as indicated by the onset of
the first morbidity (HR ≈ 1.05 for the “First morbidity”
entry in Table S3).

In “non-frail” individuals with life-shortening
lifestyles/behaviors, such as smoking, the DMI was
also elevated, indicating a higher level of risks of future
diseases and death (Fig. S2C). Notably, however, this
effect appeared to be reversible: while the age- and sex-
adjusted DMI means were higher in current smokers
compared to non-smokers, they were indistinguishable
between groups of individuals who never smoked and
who quit smoking (c.f. [12, 19]).

Physiological state fluctuations and loss of resilience

To understand the nature of forces shaping the dynam-
ics of the aging process at higher age/time-resolution, we
acquired a large set of longitudinal CBC measurements
from a clinical diagnostics laboratory. This dataset,
which we refer to as GEROLONG, included 629 male
and 1800 female subjects aged 35 − 90 with complete
CBC analyses that were sampled 4 − 20 times within a
period of up to 42 months.

As seen with the NHANES and UKB cohorts, DMI
also increased with age in the longitudinal GEROLONG
cohort. The average DMI value and its population vari-
ance at any given age were, however, considerably larger
than those in the reference “non-frail” groups from the
NHANES and UKB studies (see Fig. S1A). This dif-
ference likely reflects an enrollment bias: many of the
GEROLONG blood samples were obtained from patients
visiting clinic centers, presumably due to health issues.
This could explain why the GEROLONG population ap-
peared generally more frail in terms of DMI than the ref-
erence cohorts of the same age from other studies (Fig.
S1A, compare the relative positions of the solid blue
line and the two dashed lines representing the GERO-
LONG cohort and the frail cohorts of the NHANES and
UKB studies, respectively). There was no medical con-
dition information available for the GEROLONG sub-
jects. Hence, we used the mean DMI of the “most frail”
NHANES and UKB participants (which coincided, ap-
proximately, with the mean DMI of all GEROLONG

subjects) as the cutoff value to select “non-frail” GERO-
LONG individuals.

Within the “non-frail” GEROLONG population, serial
CBC measurements from individuals over a periods of
time of up to three years revealed large stochastic fluc-
tuations of the DMI around its mean values, which dif-
fered between individual study participants. The aver-
aged DMI auto-correlation function is a basic property
of a stochastic process (see e.g., [20]) and decayed expo-
nentially as a function of the time delay between mea-
surements within approximately a month (see Fig. 2B).
As described in Supplementary Information, for a sta-
tionary process, the inverse auto-correlation time is an
indicator of the relaxation (recovery) rate, characteriz-
ing the time scale involved in equilibration of a system’s
state in response to external perturbations. We therefore
propose using this quantity as a measure of an organ-
ism’s “resilience”, the capacity of an individual organism
to resist and recover from the effects of physiological or
pathological stresses [21, 22]).

We fitted the auto-correlation functions to an expo-
nential function of the time delay and observed that re-
covery rates obtained from fitting to data in the subse-
quent age-cohorts decreased approximately linearly with
age (Fig 2A). Extrapolation to older ages suggested that
the equilibration rate vanishes and, hence, the recovery
time becomes formally infinite, at an age of approxi-
mately 120− 150 y.o. (95% CI, 110− 170 y.o.).

The variance of DMI increased with age in every
dataset evaluated in this study. Since the dynamic range
of random fluctuations would be inversely proportional
to the recovery force (or the recovery rate, see [20]),
we plotted the inverse variance of the DMI computed
in sex- and age-matched cohorts of healthy persons (Fig.
2C). Again, extrapolation suggested that, if the tendency
holds at older ages, the population variability would in-
crease indefinitely at an age of approximately 120− 150
y.o.

DISCUSSION

In this study, we investigated aging trajectories of
human CBC values and their association with risks
of chronic age-related diseases, mortality and life-
shortening lifestyles. We produced a proportional haz-
ards mortality model using a large NHANES dataset and
defined its log-hazard ratio prediction as the dynamic
morbidity index (DMI). This quantitative parameter dis-
played all of the expected properties of a biomarker of ag-
ing in several large independent datasets: DMI increased
with age, was predictive of the prospective incidence of
age-related diseases and death, and was associated with
typical life-shortening lifestyles, such as smoking, and
frailty. These findings support the idea that predictors
from log-linear mortality or morbidity risk models can
be effectively used to quantify the progress of aging and
effects of lifestyles and diseases [12, 15, 23].
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The simultaneous divergence of the organism state re-
covery times (critical slowing down) and the range of
DMI variations (critical fluctuations) is characteristic of
proximity of a critical point [20] at some advanced age
over 100 y.o. Under these circumstances, the organism
state dynamics are stochastic and dominated by the vari-
ation of the single dynamic variable associated with the
criticality, the DMI (Fig. 2D). Schematically, far from
the critical point (at younger ages), the organism state
perturbations can be thought of as confined to the vicin-
ity of a possible stable equilibrium state in a potential
energy basin (A). Initially, the dynamic stability is pro-
vided by a sufficiently high potential energy barrier (B)
separating this stability basin from the inevitably present
dynamically unstable regions (C) in the space of physio-
logical parameters. While in stability basin, an organism
follows the traectory (D) of the equiliblium state, which
is gradually displaced with aging even for the successfully
aging individuals.

The DMI auto-correlation times (one-two months, see
Fig. 2B) are much shorter than lifespan. The dramatic
separation of time scales makes it very unlikely that the
linear decline of the recovery force measured by the recov-
ery rate in Fig. 2A can be explained by the dynamics of
the organism state captured by the DMI variation alone.
Therefore, we conclude that the progressive remodeling of
the attraction basin geometry reflects adjustment of the
DMI fluctuations to the slow independent process that
is aging itself. In this view, the aging drift of the DMI
mean in cohorts of healthy individuals (as in Fig. 1B) is
the adaptive organism-level response to ever increasing
stress produced by the aging process.

The dynamic range of the DMI fluctuations is inversely
proportional to the recovery rate of the DMI fluctua-
tions and hence the two parameters are dependent quan-
tities. Each of them can be used equally well as a novel
biomarker of aging. For example, recovery rate can serve
as a biomarker of aging that is independent of DMI levels,
but characterizes fluctuations of DMI on time scales of a
few months or more and is associated with the progressive
loss of physiological resilience. Such age-related remod-
eling of recovery rates has been previously observed in
studies of various physiological and functional parame-
ters in humans and other mammals. For example, in hu-
mans, a gradual increase in recovery time required after
macular surgery was reported in sequential 10-year age
cohorts [24] and age was shown to be a significant factor
for twelve months recovery and the duration of hospital-
ization after hip fracture surgery [25, 26], coronary artery
bypass [27], acute lateral ankle ligament sprain [28]. A
mouse model suggested that the rate of healing of skin
wounds can be a predictor of longevity [29].

In a reasonably smooth potential energy lanndscape
forming the basin of attraction, the activation energy re-
quired for crossing the protective barrier (B) decreases
along with the curvature at the same pace, that is,
linearly with age. Whenever the protective barrier is
crossed, dynamic stability is lost (see example trajec-

tories 1 and 2 in Fig. 2D, which differ by the age of
crossing) and deviations in the physiological parameters
develop beyond control, leading to multiple morbidities,
increasing frailty, and, eventually, death.

On a population level, activation into such a frail state
is driven by stochastic forces and occurs approximately
at the age corresponding to the end of healthspan, under-
tood as “disease-free survival”. Since the probability of
barrier crossing is an exponential function of the required
activation energy (i.e., the barrier height) [20], the weak
coupling between DMI fluctuations and aging is then the
dynamic origin of the Gompertz mortality law. Since
the remaining lifespan of an individual in the frail state
is short, the proportion of frail subjects at any given age
is proportional to the barrier crossing rate, which is an
exponential function of age (see Fig. S2B).

The end of healthspan can therefore be viewed as a
form of a nucleation transition [20], corresponding in our
case to the spontaneous formation of states correspond-
ing to chronic diseases out of the metastable phase cor-
responding to healthy organisms. The DMI is then the
order parameter associated with the organism-level stress
responses at younger ages and plays the role of the “reac-
tion coordinate” of the transition to the frail state later
in life. All chronic diseases contributing to frailty and
death in our model originate from the dynamic insta-
bility associated with single protective barrier crossings.
This is, of course, a simplification and yet the assumption
could naturally explain why mortality and the incidence
of major age-related diseases increase exponentially with
age at approximately the same rate [3].

The DMI is an organism level variable and, as such,
is not a property of any specific functional subsystem or
organism compartment. Indeed, the associations of indi-
vidual CBC components with the DMI extend over the
functional clustering shown in Fig. 1A. In the vicinity of
a critical point, fluctuations associated with the critical
mode become amplified and hence the DMI should be
identifiable with the signal components explaining most
of the variance in virtually every biological signal (see,
e.g., [7, 30] for reviews including performance assessment
of variance based biological age models (such as Princi-
pal Component Analysis)-based markers of aging). For
example, in our recent study [12], we observed that the
first principal component score in the configuration space
spanning the physical activity acceleration/deceleration
statistics was strongly associated with mortality, inci-
dence of first morbidity, and health status.

According to the presented model, external stresses
(such as smoking) or diseases produce perturbations that
modify the shape of the effective potential leading to the
shift of the equilibrium DMI position. For example, the
mean DMI values in cohorts of individuals who never
smoked or who quit smoking are indistinguishable from
each other, yet significantly different from (lower than)
the mean DMI in the cohort of smokers (Fig. S2C). Thus,
the effect of the external stress factor is reflected by a
change in the DMI and is reversed as soon as the factor
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is removed. These findings agree with earlier observa-
tions suggesting that the effects of smoking on remaining
lifespan and on the risks of developing diseases are mostly
reversible once smoking is ceased well before the onset of
chronic diseases [12, 19].

The reversible character of the DMI deviations in
healthy subjects suggests that the relationship between
the DMI and survival shows signs of “antagonistic
pleiotropy”. On one hand, the elevation of physiologi-
cal variables associated with the DMI indicates reversible
activation of the most generic protective stress responses
at younger ages, when the organism state is dynamically
stable. Moderately elevated DMI levels are therefore a
marker of generic stress that can measured by molecu-
lar markers (e.g., C-reactive protein) and affects general
physical and mental health status [23]. On the other
hand, the excessive DMI observed in older organisms
can be thought of as an aberrant activation of stress-
responses beyond the dynamic stability range. This is
a characteristic of frailty, multiple chronic diseases and
death.

We propose that therapies targeting frailty-associated
phenotypes (e.g., inflammation) would, therefore, pro-
duce distinctly different effects in disease-free versus frail
populations. In healthy subjects, who reside in the re-
gion of the stability basin (B) (see Fig. 2D), a treatment-
induced reduction of DMI would quickly saturate over the
characteristic auto-correlation time and lead to a mod-
erate decrease in long-term risk of morbidity and death
without a change in resilience. Technically, this would
translate into an increase in healthspan, although the re-
duction of health risks would be transient and disappear
after cessation of the treatment. In frail individuals, how-
ever, the intervention could reduce frailty, thus increasing
lifespan beyond healthspan.

The emergence of chronic diseases and frailty out of
increasingly unstable fluctuations of the organism state

provides the necessary dynamic argument to support the
derivation of the Gompertz mortality law in the Strehler-
Mildvan theory of aging [31]. In [32, 33], the authors
suggested that the exponential growth of disease bur-
den observed in the National Population Health Survey
of Canadians over 20 y.o. could be explained by an
age-related decrease in organism recovery in the face of
a constant rate of exposure to environmental stresses.
Our study provides evidence suggesting that vanishing
resilience cannot be avoided even in the most success-
fully aging individuals and, therefore, could explain the
very high mortality seen in cohorts of super-centennials
characterized by the so-called compression of morbidity
(late onset of age-related diseases [34]). Formally, such a
state of “zero-resilience” at the critical point corresponds
to the absolute zero on the vitality scale in the Strehler-
Mildvan theory of aging, thus representing a natural limit
on human lifespan.

The proximity to the critical point indicates that the
apparent human lifespan limit is not likely to be improved
by therapies aimed against specific chronic diseases or
frailty syndrome. Thus, no strong life extension is possi-
ble by preventing or curing diseases without interception
of the aging process, the root cause of the underlying
loss of resilience. We do not foresee any laws of nature
prohibiting such an intervention. Therefore, further de-
velopment of the aging model presented in this work has
the potential to eventually lead to experimental demon-
stration of a meaningful life-extending therapy.

MATERIALS AND METHODS

Full details for the materials and methods used in this
study, including information of the CBC parameters, Cox
proportional hazards model, health conditions, and anal-
ysis of physiological state fluctuations are provided in the
Supplementary Information.
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SUPPLEMENTARY INFORMATION

Complete Blood Count Datasets

NHANES CBC data were retrieved from the category
“Complete Blood Count with 5-part Differential - Whole
Blood” for NHANES surveys 1999 − 2010. Correspond-
ing UKB CBC data fields with related database codes
are listed in Table S1. Samples with missing (or filled
with zero) data for any of the used CBC components
were discarded. Differential white blood cell percent-
ages were converted to cell counts by multiplication by
0.01 ×WBC. Neutrophils (NEU) data field was calcu-
lated as 0.01×WBC× (100%−MONO− LYM− EOS)
(thus actually included neutrophils and basophils). Af-
ter these calculations, all CBC parameters were log-
transformed.

Hazards model

The Cox proportional hazards model was trained using
NHANES 2015 Public-Use Linked Mortality data. Af-
ter filtering out samples with missing CBC data, this
yielded a NHANES dataset slice of 40592 participants
aged 18 − 85 y.o. Cox model was trained based on data
of participants aged 40− 85 y.o. (11731 male and 12076
female) with 3792 recorded death events during follow-up
until the year 2015 (1999− 2014 surveys). CBC compo-
nents and the biological sex label were used as covari-
ates. The model was well-predictive of all-cause mortal-
ity and yielded a concordance index value of CI = 0.76
in NHANES and CI = 0.72 in UKB (samples collected
2007−2011, 216250 male and 255223 female participants
aged 39 − 75 y.o., 13162 recorded death events during
follow-up until the year 2016). The Cox proportional
hazards model was used as implemented in lifelines pack-
age (version 0.14.6) in python. The parameters of model
fitting are given in Table S2. The model was then ap-
plied to calculate the hazards ratio for all samples in the
GEROLONG, UKB and NHANES cohorts (including in-
dividuals younger than 40 y.o.).

The most prevalent chronic diseases and health
status

We quantified the health status of individuals using the
sum of major age-related medical conditions that they
were diagnosed with, which we termed the compound
morbidity index, CMI. The CMI is similar in spirit to the
frailty index suggested for NHANES [17]. We were not
able to use the frailty index because it was based on Ques-
tionnaire and Examination data that were not consistent
between all NHANES surveys. Also, we did not have
enough corresponding data for the UKB dataset. For
CMI determination, we followed [34] and selected the top
11 morbidities strongly associated with age after the age

of 40. The list of health conditions included cancer (any
kind), cardiovascular conditions (angina pectoris, coro-
nary heart disease, heart attack, heart failure, stroke, or
hypertension), diabetes, arthritis and emphysema. No-
tably, we did not include dementia in the list of diseases
since it occurs late in life and hence is severely under-
represented in the UKB cohort due to its limited age
range. We categorized participants who had more than 6
of those conditions as the “most frail” (CMI > 0.6), and
those with CMI < 0.1 as the “non-frail”. NHANES data
for diagnosis with a health condition and age at diagnosis
is available in the questionnaire category “Medical Con-
ditions” (MCQ). Data on diabetes and hypertension was
retrieved additionally from questionnaire categories “Dia-
betes” (DIQ) and “Blood Pressure & Cholesterol” (BPQ),
respectively.

UK Biobank does not provide aggregated data on these
medical conditions. Rather, it provides self-reported
questionnaire data (UKB, Category 100074) and diag-
noses made during hospital in-patient stay according to
ICD10 codes (UKB, Category 2002). We aggregated self-
reported and ICD10 (block level) data to match that of
NHANES for transferability of the results between pop-
ulations and datasets. We used the following ICD10
codes to cover the health conditions in UK Biobank: hy-
pertension (I10-I15), arthritis (M00-M25), cancer (C00-
C99), diabetes (E10-E14), coronary heart disease (I20-
I25), myocardial infarction (I21, I22), angina pectoris
(I20), stroke (I60-I64), emphysema (J43, J44), and con-
gestive heart failure (I50).

Analysis of physiological state fluctuations

The data presented in this manuscript suggests that
DMI fluctuations are governed by external factors as well
as intrinsic forces that can be restorative or disruptive.
The fluctuations in DMI are fast compared to the rate of
aging changes and, therefore, the dynamics of the organ-
ism state can be described by the stochastic Langevine
equation

ẋ(t) = −εx(t) + f(t), (1)

where ε > 0, and x(t) = DMI(t)−DMI0 is the deviation
of the DMI from its equilibrium value DMI0, determined
by the individual organism, environment and life history
properties. The recovery rate ε is proportional to inverse
equilibration time and characterizes deterministic forces
responsible for the organism state maintenance. The in-
evitable stochastic factors, f(t), stand for the effects of
endogenous and external stress, are assumed zero-mean
and uncorrelated, 〈f(t)f(t′)〉 = Bδ(t − t′) with B be-
ing the power of the stochastic stress (〈...〉 stands for the
averaging over realization of the random process).

The stationary solution of Eq. (1) is a random function
with zero mean and variance σ2 = 〈δx2〉 = B/ε. That is
why we choose to plot the inverse DMI fluctuations vari-
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ance 1/σ2 and the recovery rate from the auto-correlation
function in Figs. 2A and 2C.

To obtain an estimate for the recovery rate ε, we used
the normalized auto-correlation function of the time lag

∆t between the measurements,

C(∆t) =
〈(
x(t+ ∆t)− x(t)

)2〉
t
σ−2 =

(
1− e−ε∆t

)
.

Here 〈...〉t stands for the everaging along the individual
trajectories.
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TABLE S1: CBC data used in the study.

CBC component Abbreviation NHANES UKB
Hemoglobin HB LBXHGB Haemoglobin concentration (30020)
Red blood cell count RBC LBXRBCSI Red blood cell (erythrocyte) count (20010)
Mean corpuscular volume MCV LBXMCVSI Mean corpuscular volume (30040)
Mean corpuscular hemoglobin concentration MCHC LBXMC Mean corpuscular haemoglobin concentration (30060)
Red blood cell distribution width RDW LBXRDW Red blood cell (erythrocyte) distribution width (30070)
Platelets PLT LBXPLTSI Platelet count (30080)
Monocytes, % MONO LBXMOPCT Monocyte percentage (30190)
Lymphocytes, % LYM LBXLYPCT Lymphocyte percentage (30180)
Eosinophils, % EOS LBXEOPCT Eosinophill percentage (30210)
White blood cell count WBC LBXWBCSI White blood cell (leukocyte) count (30000)

TABLE S2: NHANES Cox proportional mortality hazards model parameters.

Covariate HR (95% CI) p-value (multivariate)
Haemoglobin 0.81 (0.59 - 1.11) p = 0.51
Red blood cell count 0.99 (0.72 - 1.36) p = 0.98
Mean corpuscular volume 1.50 (1.21 - 1.86) p = 0.058
Mean corpuscular haemoglobin concentration 0.88 (0.80 - 0.96) p = 0.14
Red blood cell distribution width 1.37 (1.35 - 1.38) p = 8.4E − 122 ***
Platelets 0.86 (0.84 - 0.87) p = 3.6E − 26 ***
White blood cell count 1.27 (1.25 - 1.29) p = 8.3E − 39 ***
Monocytes, % 1.20 (1.18 - 1.23) p = 1E − 22 ***
Lymphocytes, % 0.79 (0.77 - 0.80) p = 2.5E − 45 ***
Eosinophils, % 1.07 (1.05 - 1.09) p = 6.1E − 05 ***
Sex 1.20 (1.18 - 1.22) p = 6.2E − 28 ***

TABLE S3: Significance of prediction of acquiring a health condition based on estimated log hazards ratio (adjusted for
age and gender). Only UKB subjects with none of the listed health conditions at the time of survey were considered;
the total number of subjects evaluated for each condition was 263956. The numbers in parentheses in the far right
column indicate the occurrence of the disease being the first diagnosis in an individual.

Condition HR (95% CI) p-value nevents (nis first morbidity)
Death 1.35 (1.33 - 1.37) 4.9E-110 4745 (927)
First morbidity 1.05 (1.05 - 1.06) 3E-40 68126 (68126)
Hypertension 1.04 (1.04 - 1.05) 1.2E-13 31143 (25681)
Arthritis 1.07 (1.07 - 1.08) 1.7E-32 28745 (24451)
cancers 1.03 (1.02 - 1.04) 2.7E-05 18838 (15860)
Coronary heart disease 1.05 (1.04 - 1.06) 2.9E-05 7422 (5500)
Diabetes 1.03 (1.02 - 1.05) 0.0084 6605 (5265)
Angina pectoris 1.02 (1.00 - 1.03) 0.35 3747 (2164)
Emphysema 1.48 (1.45 - 1.51) 4.5E-108 2382 (1508)
Heart attack 1.05 (1.03 - 1.08) 0.012 2186 (1605)
Stroke 1.10 (1.08 - 1.13) 4.1E-05 1686 (1168)
Heart failure 1.32 (1.29 - 1.36) 6.2E-26 1209 (583)
Bronchitis 1.18 (1.12 - 1.25) 0.0034 280 (177)
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A
B

FIG. S1: A. DMI mean values (lines) and variance (shaded areas) are plotted relative to age for the NHANES (same
as in Fig. 1B), UKB and GEROLONG datasets (color-matched with respect to each study). For NHANES and UKB
the solid line and shaded regions mark the population average ad the range spanned by one standard deviation from
it for the “non-frail” (CMI < 0.1) participats. The population mean for the “most frail” (CMI > 0.6) individuals is
shown with dashed lines. B. Distributions of sex- and age-adjusted DMI in cohorts of UKB participants in different
morbidity categories relative to the DMI mean in cohorts of “non-frail” (one or no diagnoses, CMI < 0.1) individuals.
Note that the distribution function in the “most frail” group (more than 6 diagnoses, CMI > 0.6) exhibited the largest
shift and a profound deviation from the symmetric form, similarly as it was seen in NHANES.

A B C

FIG. S2: B. Fraction of frail persons is strongly correlated with the average log hazards ratio deviation from “non-frail”
population average in NHANES. C. Exponential fit showed that until the of 70 y.o. the fraction of the “most frail”
population grows approximately exponnentially with age with the doubling rate constants of 0.08 and 0.10 per year in
the NHANES and the UKB cohorts, respectively. A. Distribution of log hazards ratio in age- and sex-matched cohorts
of NHANES participants who never smoked, smoked previously but quit prior to the time of study participation, or
were current smokers at the time of the study.
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