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FIG. 1: A. Co-clustering of the age- and sex-adjusted CBC feature fluctuations in the NHANES dataset revealed two
functionally related blood cell types, generally representing immune and oxygenation functions. We also included the
dynamic morbidity index (DMI), the log-hazard ratio of a mortality risk model trained using the NHANES samples.
As indicated by the vertical bar along the right-hand edge of the figure, the colors represent the absolute values
of the Pearson’s correlation coefficients between features. B. DMI mean values (solid line) and variance (shaded
area) are plotted relative to age for the “non-frail” (combined morbidity index, CMI < 0.1) participants of NHANES
study. The average DMI of the “most frail” (CMI > 0.6) individuals is shown with the dashed line. Data for other
datasets investigated in this study are given in Supplementary Information (Fig. S1A). C. Distributions of sex- and
age-adjusted DMI in cohorts of NHANES participants in different morbidity categories relative to the DMI mean in
cohorts of “non-frail” (1 or no diagnoses, CMI < 0.1) individuals. Note that the distribution function in the “most frail”
group (more than 6 diagnoses, CMI > 0.6) exhibited the largest shift and a profound deviation from the symmetric
form.
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FIG. 2: A. Fraction of frail persons is strongly correlated with the excess DMI, that is the difference between the DMI
of an individual and its average and the sex- and age-matched cohort in the “non-frail” population in NHANES. B
Exponential fit showed that until the age of 70 y.o. the fraction of the “most frail” individuals in the population grows
approximately exponentially with age with the doubling rate constants of 0.08 and 0.10 per year in the NHANES and
the UKB cohorts, respectively. C. Distribution of log hazards ratio in age- and sex-matched cohorts of NHANES
participants who never smoked, smoked previously but quit prior to the time of study participation, or were current
smokers at the time of the study.

proportional hazard models trained to predict the age at strated particularly high associations. Therefore, we con-

the onset /diagnosis of specific diseases. We observed that
the morbidity hazard ratios associated with the DMI rel-
ative to its mean in age- and sex-matched cohorts were
statistically significant predictors for at least the most
prevalent health conditions (those with more than 3000
occurrences in the UKB population). The effect size
(HR ~ 1.03 — 1.07) was the same regardless of whether
a disease was diagnosed first in a given individual or fol-
lowed any number of other diseases. Only emphysema
and heart failure which are known to be strongly asso-
ciated with increased neutrophill counts [20, 21] demon-

clude that the DMI is a characteristic of overall health
status that is universally associated with the risks of de-
veloping the most prevalent diseases and, therefore, with
the end of healthspan as indicated by the onset of the first
morbidity (HR a2 1.05 for the “First morbidity” entry in
Table S2).

In “non-frail” individuals with life-shortening
lifestyles/behaviors, such as smoking, the DMI was
also elevated, indicating a higher level of risks of future
diseases and death (Fig. 2C). Notably, however, this
effect appeared to be reversible: while the age- and sex-
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FIG. 3: The DMI relaxation rate (or the inverse characteristic recovery time) computed for sequential age-matched
cohorts from the GEROLONG dataset decreased approximately linearly with age and could be extrapolated to zero
at an age in the range of ~ 110—170 y.o. (at this point, there is complete loss of resilience and, hence, loss of stability
of the organism state). The shaded area shows the 95% confidence interval. The auto-correlation function C'(At)
of the DMI fluctuations during several weeks averaged in sequential 10-year age-cohorts of GEROLONG subjects
showed gradual age-related remodelling. Experimental data and fit to autocorrelation function are shown with solid
and dashed lines, respectively (see details in Supplementary Information). The DMI correlations are lost over time
At between the measurements and, hence, the DMI deviations from its age norm reach the equilibrium distribution
faster in younger individuals. [C} The inverse variance of DMI decreased linearly in all three investigated datasets and
its extrapolated value vanished (hence, the variance diverged) at an age in the range of 120 — 150 y.o. We performed
the linear fit for subjects 40 y.o. and older, excluding the “most frail” (CMI > 0.6) individuals. The shaded areas
correspond to the 95% confidence intervals. The blue and green dots and lines show the inverse variance of log-scaled
measure of total physical activity (the number of steps per day recorded by a wearable accelerometer) for UKB
and NHANES participants, respectively. Representative aging trajectories are superimposed over the potential
energy landscape (vertical axis) representing regulatory constraints. The stability basin “A” is separated from the
unstable region “C” by the potential energy barrier “B”. Aging leads to a gradual decrease in the activation energy
and barrier curvature and an exponential increase in the probability of barrier crossing. The stochastic activation
into a dynamically unstable (frail) state is associated with acquisition of multiple morbidities and certain death of an
organism. The white dotted line “D” represents the trajectory of the attraction basin minimum. Examples 1 (black

solid line) and 2 (black dashed line) represent individual life-long stochastic DMI trajectories that differ with respect
to the age of first chronic disease diagnosis.

adjusted DMI means were higher in current smokers
compared to non-smokers, they were indistinguishable
between groups of individuals who never smoked and
who quit smoking (c.f. [12, 22]). To understand the dynamic properties of the organ-
ism state fluctuations in relation to aging and diseases ,
we acquired a large anonymized set of longitudinal CBC

Physiological state fluctuations and loss of resilience
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measurements from InVitro, the major Russian clinical
diagnostics laboratory. This dataset, which we referred
to as GEROLONG, included 828 male and 1517 female
subjects aged 35 — 90 with complete CBC analyses that
were sampled 12 — 20 times within a period of up to 42
months.

Consistently with our previous observations in the
NHANES and UKB cohorts, DMI also increased with
age in the longitudinal GEROLONG cohort. The aver-
age DMI value and its population variance at any given
age were, however, considerably larger than those in the
reference “non-frail” groups from the NHANES and UKB
studies (see Fig. . This difference likely reflects an
enrollment bias: many of the GEROLONG blood sam-
ples were obtained from patients visiting clinic centers,
presumably due to health issues. This could explain why
the GEROLONG population appeared generally more
frail in terms of DMI than the reference cohorts of the
same age from other studies (Fig. compare the rel-
ative positions of the solid blue line and the two dashed
lines representing the GEROLONG cohort and the frail
cohorts of the NHANES and UKB studies, respectively).
There was no medical condition information available for
the GEROLONG subjects. Hence, we used the mean
DMI of the “most frail” NHANES and UKB participants
(which coincided, approximately, with the mean DMI of
all GEROLONG subjects) as the cutoff value to select
“non-frail” GEROLONG individuals.

Within the “non-frail” GEROLONG population (274
male and 682 female subjects aged 35 — 90), serial CBC
measurements along the individual aging trajectories
over periods of time of up to three years revealed large
stochastic fluctuations of the DMI around its mean val-
ues, which were considerably different among individual
study participants. The averaged DMI auto-correlation
function (see e.g., [23]) decayed exponentially as a func-
tion of the time delay between measurements within ap-
proximately a month (see Fig. .

The inverse auto-correlation time is the basic statisti-
cal property of a stationary stochastic process and is an
indicator of the relaxation (recovery) rate, characterizing
the time scale involved in the equilibration of a system’s
state in response to external perturbations (see SI Ap-
pendix). We therefore propose using this quantity as a
measure of an organism’s “resilience”, the capacity of an
individual organism to resist and recover from the effects
of physiological or pathological stresses [24] 25]).

We fitted the auto-correlation functions to an expo-
nential function of the time delay and observed that re-
covery rates obtained from fitting to data in the subse-
quent age-cohorts decreased approximately linearly with
age (Fig. Extrapolation to older ages suggested that
the equilibration rate vanishes and, hence, the recovery
time becomes formally infinite, at an age of approxi-
mately 120 — 150 y.o. (95% CI, 110 — 170 y.o.).

The variance of DMI increased with age in every
dataset evaluated in this study. Since the dynamic range
of random fluctuations would be inversely proportional

to the recovery force (or the recovery rate, see [23]),
we plotted the inverse variance of the DMI computed
in sex- and age-matched cohorts of healthy persons (Fig.
. Again, extrapolation suggested that, if the tendency
holds at older ages, the population variability would in-
crease indefinitely at an age of approximately 120 — 150
y.0.

The amplification of the fluctuations of the organism
state variables with age is not limited to CBC features. In
[12] we observed, that the variability of physical activity
(namely, the logarithm of the average physical activity),
that is another hallmark of aging and is associated with
age and risks of death or major deceases, also increases
with age. In Fig. we plotted the inverse variance of
this physical activity feature and found that it linearly
decreases with age in such a way that the corresponding
variance diverges at the same critical point at the age of
approximately 120 — 150 y.o.

DISCUSSION

We investigated aging trajectories of human CBC val-
ues and their association with risks of chronic age-related
diseases, mortality and life-shortening lifestyles. We
produced a proportional hazards mortality model using
NHANES dataset and defined its log-hazard ratio predic-
tion as the dynamic morbidity index (DMI). This quan-
titative parameter displayed all of the expected proper-
ties of a biomarker of aging in several large independent
datasets: DMI increased with age, was predictive of the
prospective incidence of age-related diseases and death,
and was associated with typical life-shortening lifestyles,
such as smoking, and morbidity. These findings sup-
port the idea that predictors from log-linear mortality or
morbidity risk models can be effectively used to quantify
the progress of aging and effects of lifestyles and diseases
[12, 14, 26].

The simultaneous divergence of the organism state re-
covery times (critical slowing down) and the range of
DMI variations (critical fluctuations) is characteristic of
proximity of a critical point [23] 27] at some advanced age
over 100 y.o. Under these circumstances, the organism
state dynamics are stochastic and dominated by the vari-
ation of the single dynamic variable associated with the
criticality, the DMI (Fig. [3D)). Schematically, far from
the critical point (at younger ages), the organism state
perturbations can be thought of as confined to the vicin-
ity of a possible stable equilibrium state in a potential
energy basin (A). Initially, the dynamic stability is pro-
vided by a sufficiently high potential energy barrier (B)
separating this stability basin from the inevitably present
dynamically unstable regions (C') in the space of physio-
logical parameters. While in stability basin, an organism
follows the trajectory (D) of the equilibrium state, which
is gradually displaced with aging even for the successfully
aging individuals.

The DMI auto-correlation times (one-two months, see
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Fig. are much shorter than lifespan. The dramatic
separation of time scales makes it very unlikely that the
linear decline of the recovery force measured by the recov-
ery rate in Fig. [BA] can be explained by the dynamics of
the organism state captured by the DMI variation alone.
Therefore, we conclude that the progressive remodeling of
the attraction basin geometry reflects adjustment of the
DMI fluctuations to the slow independent process that
is aging itself. In this view, the aging drift of the DMI
mean in cohorts of healthy individuals (as in Fig. is
the adaptive organism-level response to ever increasing
stress produced by the aging process.

The longitudinal analysis in this work demonstrated
that the DMI undergoes a random walk under the influ-
ence of stochastic stress factors and slowly increases, on
average, as the organism ages. The dynamic range of the
DMI fluctuations is inversely proportional to the recovery
rate of the DMI fluctuations, and hence the two parame-
ters are dependent quantities. Therefore, the mean DMI,
on the one hand, and the dependent variables, the DMI
variability and the auto-correlation time, on the other,
comprise the minimum pair of independent biomarkers
of human aging.

The DMI recovery rate characterizes fluctuations of
DMI on time scales of a few months or more, decreases
with age and thus indicates the progressive loss of phys-
iological resilience. Such age-related remodeling of re-
covery rates has been previously observed in studies of
various physiological and functional parameters in hu-
mans and other mammals. For example, in humans, a
gradual increase in recovery time required after macu-
lar surgery was reported in sequential 10-year age co-
horts [28] and age was shown to be a significant factor
for twelve months recovery and the duration of hospital-
ization after hip fracture surgery [29,[30], coronary artery
bypass [31], acute lateral ankle ligament sprain [32]. A
mouse model suggested that the rate of healing of skin
wounds also can be a predictor of longevity [33]. This
age-related slowing down of recovery rate may be inde-
pendent of an organism ability to resist to stress [34].
Recovery rate has been shown as a predictor of mortal-
ity on its own [35] and thus may serve as an early sign
of health condition outcomes [27, [36]. By analogy to
resilience in ecological systems, the concept of physical
resilience measured as the rate of recovery has been in-
troduced in recent reviews [37, [38].

The resilience can only be measured directly from
high-quality longitudinal physiological data. Framing-
ham Heart Study [39], Dunedin Multidisciplinary Health
and Development Study [40] and other efforts produced
a growing number of reports involving statistical anal-
ysis of repeated measurements from the same persons,
see, e.g., [41l 42]. Most of the time, however, the subse-
quent samples are years apart and hence time between
the measurements greatly exceeds the organism state au-
tocorrelation time reported here. This is why, to the best
of our understanding, the relation of the organism state
recovery rate and mortality has remained largely elusive.

In the presence of stresses, the loss of resilience should
lead to destabilization of the organism state. Indeed, in
a reasonably smooth potential energy landscape forming
the basin of attraction, the activation energy required for
crossing the protective barrier (B) decreases along with
the curvature at the same pace, that is, linearly with
age. Whenever the protective barrier is crossed, dynamic
stability is lost (see example trajectories 1 and 2 in Fig.
which differ by the age of crossing) and deviations
in the physiological parameters develop beyond control,
leading to multiple morbidities, and, eventually, death.

On a population level, activation into such a frail state
is driven by stochastic forces and occurs approximately
at the age corresponding to the end of healthspan, under-
stood as “disease-free survival”. Since the probability of
barrier crossing is an exponential function of the required
activation energy (i.e., the barrier height) [23], the weak
coupling between DMI fluctuations and aging is then the
dynamic origin of the Gompertz mortality law. Since
the remaining lifespan of an individual in the frail state
is short, the proportion of frail subjects at any given age
is proportional to the barrier crossing rate, which is an
exponential function of age (see Fig. .

The end of healthspan can therefore be viewed as a
form of a nucleation transition [23], corresponding in our
case to the spontaneous formation of states correspond-
ing to chronic diseases out of the metastable phase cor-
responding to healthy organisms. The DMI is then the
order parameter associated with the organism-level stress
responses at younger ages and plays the role of the “reac-
tion coordinate” of the transition to the frail state later
in life. All chronic diseases and death in our model orig-
inate from the dynamic instability associated with single
protective barrier crossings. This is, of course, a simpli-
fication and yet the assumption could naturally explain
why mortality and the incidence of major age-related dis-
eases increase exponentially with age at approximately
the same rate [3].

The reduction of slow organism state dynamics to that
of a single variable is typical for the proximity of a tipping
or critical point [27]. DMI is therefore the property of
the organism as a whole, rather than a characteristics of
any specific functional subsystem or organism compart-
ment. Indeed, the associations of individual CBC com-
ponents with the DMI extend over the functional cluster-
ing shown in Fig. [TA] In the vicinity of a critical point,
fluctuations associated with the criticality become ampli-
fied and hence the DMI should be identifiable with the
signal components explaining most of the variance in vir-
tually every biological signal (see, e.g., [T, [43] for reviews
including performance assessment of variance-based bio-
logical age models (e.g. based on Principal Component
Analysis). In agreement with the proposed qualitative
picture, close to the critical point, the inverse variance of
the apparently unrelated physiological variable, the log-
transformed physical activity, vanishes at approximately
the same age as that of the blood-derived markers. In
our recent study [I2], we observed that the first princi-
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pal component score in the configuration space spanning
the physical activity acceleration/deceleration statistics
was strongly associated with mortality, incidence of first
morbidity, and health status.

According to the presented model, external stresses
(such as smoking) or diseases produce perturbations that
modify the shape of the effective potential leading to the
shift of the equilibrium DMI position. For example, the
mean DMI values in cohorts of individuals who never
smoked or who quit smoking are indistinguishable from
each other, yet significantly different from (lower than)
the mean DMI in the cohort of smokers (Fig. . Thus,
the effect of the external stress factor is reflected by a
change in the DMI and is reversed as soon as the factor
is removed. These findings agree with earlier observa-
tions suggesting that the effects of smoking on remaining
lifespan and on the risks of developing diseases are mostly
reversible once smoking is ceased well before the onset of
chronic diseases [12, 22]. The decline in the lung cancer
risk after smoking ablation [44] is slower than the recov-
ery rate reported here. This may be the evidence sug-
gesting that long-time stresses may cause hard-to repair
damage to the specific tissues and thus produce lasting
effects on the resilience.

The reversible character of the DMI deviations in
healthy subjects suggests a complex relationship between
the DMI and survival. On the one hand, the elevation of
physiological variables associated with the DMI indicates
reversible activation of the most generic protective stress
responses at younger ages, when the organism state is
dynamically stable. Moderately elevated DMI levels are
therefore a marker of generic stress that can measured
by molecular markers (e.g., C-reactive protein) and af-
fects general physical and mental health status [26]. On
the other hand, the excessive DMI observed in older in-
dividuals can be thought of as an aberrant activation
of stress-responses beyond the dynamic stability range.
This is a characteristics of chronic diseases and death.

We propose that therapies targeting frailty-associated
phenotypes (e.g., inflammation) would, therefore, pro-
duce distinctly different effects in disease-free versus frail
populations. In healthy subjects, who reside in the re-
gion of the stability basin (B) (see Fig. [3D), a treatment-
induced reduction of DMI would quickly saturate over the
characteristic auto-correlation time and lead to a mod-
erate decrease in long-term risk of morbidity and death
without a change in resilience. Technically, this would
translate into an increase in healthspan, although the
reduction of health risks would be transient and disap-
pear after cessation of the treatment. In frail individu-
als, however, the intervention could produce lasting ef-
fects and reduce frailty, thus increasing lifespan beyond
healthspan. This argument may be supported by longitu-
dinal studies in mice suggesting that the organism state
is dynamically unstable, the organism state fluctuations
get amplified exponentially at a rate compatible with the

mortality rate doubling time, and the effects of transient
treatments with life-extending drugs such as rapamycin
produce a lasting attenuation of frailty index [45].

The emergence of chronic diseases out of increasingly
unstable fluctuations of the organism state provides the
necessary dynamic argument to support the derivation
of the Gompertz mortality law in the Strehler-Mildvan
theory of aging [46]. In [47, [48], the authors suggested
that the exponential growth of disease burden observed
in the National Population Health Survey of Canadians
over 20 y.o. could be explained by an age-related decrease
in organism recovery in the face of a constant rate of
exposure to environmental stresses. Our study provides
evidence suggesting that vanishing resilience cannot be
avoided even in the most successfully aging individuals
and, therefore, could explain the very high mortality seen
in cohorts of super-centennials characterized by the so-
called compression of morbidity (late onset of age-related
diseases [49]). Formally, such a state of “zero-resilience”
at the critical point corresponds to the absolute zero on
the vitality scale in the Strehler-Mildvan theory of aging,
thus representing a natural limit on human lifespan

The semi-quantitative description of human aging and
morbidity proposed here belongs to a class of phenomeno-
logical models. Whereas it is possible to associate the
variation of the organism state measured by DMI with
the effects of stresses or diseases, the data analysis pre-
sented here does not provide any mechanistic explana-
tions for the progressive loss of resilience. It is worth
to note that the recent study predicts the maximum hu-
man lifespan limit from telomere shortening [50] that is
compatible with the estimations presented here. It would
therefore be interesting to see if the resilience loss in hu-
man cohorts is associated or even caused by the loss of
regenerative capacity due to Hayflick limit.

The proximity to the critical point indicates that the
apparent human lifespan limit is not likely to be improved
by therapies aimed against specific chronic diseases or
frailty syndrome. Thus, no strong life extension is possi-
ble by preventing or curing diseases without interception
of the aging process, the root cause of the underlying
loss of resilience. We do not foresee any laws of nature
prohibiting such an intervention. Therefore, further de-
velopment of the aging model presented in this work has
may eventually lead to experimental demonstration of a
dramatic life-extending therapy.

MATERIALS AND METHODS

Full details for the materials and methods used in this
study, including information of the CBC parameters, Cox
proportional hazards model, health conditions, and anal-
ysis of physiological state fluctuations are provided in the
Supplementary Information Appendix.
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SUPPLEMENTARY INFORMATION
Complete Blood Count Datasets

NHANES CBC data were retrieved from the category
“Complete Blood Count with 5-part Differential - Whole
Blood” for NHANES surveys 1999 — 2010. Correspond-
ing UKB CBC data fields with related database codes
are listed in Table Samples with missing (or filled
with zero) data for any of the used CBC components
were discarded. Differential white blood cell percent-
ages were converted to cell counts by multiplication by
0.01 x WBC. Neutrophils (NEU) data field was calcu-
lated as 0.01 x WBC x (100% — MONO — LYM — EOS)
(thus actually included neutrophils and basophils). Af-
ter these calculations, all CBC parameters were log-
transformed.

Hazards model

The Cox proportional hazards model was trained using
NHANES 2015 Public-Use Linked Mortality data. CBC
data and mortality linked follow-up available for 40592
NHANES participants aged 18 — 85 y.o. was used. Cox
model was trained based on data of participants aged
40 — 85 y.o. (11731 male and 12076 female) with 3792
recorded death events during follow-up until the year
2015 (1999 — 2014 surveys). CBC components and the
biological sex label were used as covariates. The model
was well-predictive of all-cause mortality and yielded a
concordance index value of CI = 0.68 in NHANES and
CI = 0.66 in UKB (samples collected 2007 —2011, 216250
male and 255223 female participants aged 39 — 75 y.o.,
13162 recorded death events during follow-up until the
year 2016). The Cox proportional hazards model was
used as implemented in lifelines package (version 0.14.6)
in python. The model was then applied to calculate the
hazards ratio for all samples in the GEROLONG, UKB
and NHANES cohorts (including individuals younger
than 40 y.o.).

The most prevalent chronic diseases and health
status

We quantified the health status of individuals using the
sum of major age-related medical conditions that they
were diagnosed with, which we termed the compound
morbidity index, CMI. The CMI is similar in spirit to the
frailty index suggested for NHANES [I7]. We were not
able to use the frailty index because it was based on Ques-
tionnaire and Examination data that were not consistent
between all NHANES surveys. Also, we did not have
enough corresponding data for the UKB dataset. For
CMI determination, we followed [49] and selected the top
11 morbidities strongly associated with age after the age
of 40. The list of health conditions included cancer (any
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kind), cardiovascular conditions (angina pectoris, coro-
nary heart disease, heart attack, heart failure, stroke, or
hypertension), diabetes, arthritis and emphysema. No-
tably, we did not include dementia in the list of diseases
since it occurs late in life and hence is severely under-
represented in the UKB cohort due to its limited age
range. We categorized participants who had more than 6
of those conditions as the “most frail” (CMI > 0.6), and
those with CMI < 0.1 as the “non-frail”. NHANES data
for diagnosis with a health condition and age at diagnosis
is available in the questionnaire category “Medical Con-
ditions” (MCQ). Data on diabetes and hypertension was
retrieved additionally from questionnaire categories “Dia-
betes” (DIQ) and “Blood Pressure & Cholesterol” (BPQ),
respectively.

UK Biobank does not provide aggregated data on these
medical conditions. Rather, it provides self-reported
questionnaire data (UKB, Category 100074) and diag-
noses made during hospital in-patient stay according to
ICD10 codes (UKB, Category 2002). We aggregated self-
reported and ICD10 (block level) data to match that of
NHANES for transferability of the results between pop-
ulations and datasets. We used the following ICD10
codes to cover the health conditions in UK Biobank: hy-
pertension (I10-115), arthritis (M00-M25), cancer (C00-
C99), diabetes (E10-E14), coronary heart disease (I20-
125), myocardial infarction (121, 122), angina pectoris
(120), stroke (I60-164), emphysema (J43, J44), and con-
gestive heart failure (I50).

Analysis of physiological state fluctuations

The data presented in this manuscript suggests that
DMI fluctuations are governed by external factors as well
as intrinsic forces that can be restorative or disruptive.
The fluctuations in DMI are fast compared to the rate of
aging changes and, therefore, the dynamics of the organ-
ism state can be described by the stochastic Langevine
equation

@(t) = —ex(t) + f(1), (1)

here ¢ > 0, and z(t) = DMI(¢) — DMIj is the deviation
of the DMI from its equilibrium value DMI, determined
by the individual organism, environment and life history
properties. The recovery rate ¢ is proportional to inverse
equilibration time and characterizes deterministic forces
responsible for the organism state maintenance. The in-
evitable stochastic factors, f(t), stand for the effects of
endogenous and external stress, are assumed zero-mean
and uncorrelated, (f(¢)f(t')) = 2B§(t — t') with B be-
ing the power of the stochastic stress ({(...) stands for the
averaging over realization of the random process).

The stationary solution of Eq. is a random func-
tion with zero mean and variance 0% = (6z?) = B/e.
That is why we choose to plot the recovery rate from the
auto-correlation function and the inverse DMI fluctua-
tions variance 1/0% and in Figs. and respectively.
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To obtain an estimate for the recovery rate €, we used Here (...); stands for the everaging along the individual
the normalized fluctuations as a function of the time lag  trajectories.
At between the measurements,

<(9:(t + At) — x(t))2>t/202 = (1 — eiEAt>.
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TABLE S1: CBC data used in the study.

CBC component

Abbreviation NHANES

12

UKB

Hemoglobin HB LBXHGB Haemoglobin concentration (30020)

Red blood cell count RBC LBXRBCSI Red blood cell (erythrocyte) count (20010)

Mean corpuscular volume MCV LBXMCVSI Mean corpuscular volume (30040)

Mean corpuscular hemoglobin concentration MCHC LBXMC Mean corpuscular haemoglobin concentration (30060)
Red blood cell distribution width RDW LBXRDW  Red blood cell (erythrocyte) distribution width (30070)
Platelets PLT LBXPLTSI  Platelet count (30080)

Monocytes, % MONO LBXMOPCT Monocyte percentage (30190)

Lymphocytes, % LYM LBXLYPCT Lymphocyte percentage (30180)

Eosinophils, % EOS LBXEOPCT Eosinophill percentage (30210)

White blood cell count WBC LBXWBCSI White blood cell (leukocyte) count (30000)

TABLE S2: Significance of prediction of acquiring a health condition based on estimated log hazards ratio (adjusted for
age and gender). Only UKB subjects with none of the listed health conditions at the time of survey were considered;
the total number of subjects evaluated for each condition was 263956. The numbers in parentheses in the far right
column indicate the occurrence of the disease being the first diagnosis in an individual.

Condition HR (95% CI) p-value  Devents (Dis first morbidity )
Death 1.35 (1.33 - 1.37) 4.9E-110 4745 (927)
First morbidity 1.05 (1.05 - 1.06) 3E-40 68126 (68126)
Hypertension 1.04 (1.04 - 1.05) 1.2E-13 31143 (25681)
Arthritis 1.07 (1.07 - 1.08) 1.7E-32 28745 (24451)
cancers 1.03 (1.02- 1.04) 2.7E-05 18838 (15860)
Coronary heart disease 1.05 (1.04 - 1.06) 2.9E-05 7422 (5500)
Diabetes 1.03 (1.02- 1.05) 0.0084 6605 (5265)
Angina pectoris 1.02 (1.00 - 1.03) 0.35 3747 (2164)
Emphysema 1.48 (1.45 - 1.51) 4.5E-108 2382 (1508)
Heart attack 1.05 (1.03 - 1.08) 0.012 2186 (1605)
Stroke 1.10 (1.08 - 1.13) 4.1E-05 1686 (1168)
Heart failure 1.32 (1.29 - 1.36) 6.2E-26 1209 (583)
Bronchitis 1.18 (1.12 - 1.25) 0.0034 280 (177)
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FIG. S1: DMI mean values (lines) and variance (shaded areas) are plotted relative to age for the NHANES (same
as in Fig. 1B), UKB and GEROLONG datasets (color-matched with respect to each study). For NHANES and UKB
the solid line and shaded regions mark the population average ad the range spanned by one standard deviation from
it for the “non-frail” (CMI < 0.1) participats. The population mean for the “most frail” (CMI > 0.6) individuals is
shown with dashed lines. Distributions of sex- and age-adjusted DMI in cohorts of UKB participants in different
morbidity categories relative to the DMI mean in cohorts of “non-frail” (one or no diagnoses, CMI < 0.1) individuals.
Note that the distribution function in the “most frail” group (more than 6 diagnoses, CMI > 0.6) exhibited the largest
shift and a profound deviation from the symmetric form, similarly as it was seen in NHANES.
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