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Abstract If pathogen species, strains or clones do not interact, intuition suggests20

the proportion of co-infected hosts should be the product of the individual21

prevalences. Independence consequently underpins the wide range of methods for22

detecting pathogen interactions from cross-sectional survey data. However, the23

very simplest of epidemiological models challenge the underlying assumption of24

statistical independence. Even if pathogens do not interact, death of co-infected25

hosts causes net prevalences of individual pathogens to decrease simultaneously.26

The induced positive correlation between prevalences means the proportion of27

co-infected hosts is expected to be higher than multiplication would suggest. By28

modeling the dynamics of multiple non-interacting pathogens, we develop a pair of29

novel tests of interaction that properly account for non-independence. Our tests30

allow us to reinterpret data from previous studies including pathogens of humans,31

plants, and animals. Our work demonstrates how methods to identify interactions32

between pathogens can be updated using simple epidemic models.33
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1 Introduction39

It is increasingly recognized that infections often involve multiple pathogen species40

or strains/clones of the same species (Balmer and Tanner, 2011; Vaumourin et al.,41

2015). Infection by one pathogen can affect susceptibility to subsequent infection by42

others (Griffiths et al., 2011; Petney and Andrews, 1998). Co-infection can also affect43

the severity and/or duration of infection, as well as the extent of symptoms and the44

level of infectiousness (Graham et al., 2005). Antagonistic, neutral and facilitative45

interactions are possible (Karvonen et al., 2018; Rigaud et al., 2010). Co-infection46

therefore potentially has significant epidemiological, clinical and evolutionary impli-47

cations (Susi et al., 2015; Hilker et al., 2017; Alizon et al., 2013).48

However, detecting and quantifying biological interactions between pathogens is49

notoriously challenging (Johnson and Buller, 2011; Hellard et al., 2015). In pathogens50

of some host taxa, most notably plant pathogens, biological interactions can be51

quantified by direct experimentation (Mascia and Gallitelli, 2016). However, often52

ethical considerations mean this is impossible, and so any signal of interaction must53

be extracted from population scale data. Analysis of longitudinal data remains the54

gold standard (Fenton et al., 2014), although the associated methods are not infal-55

lible (Telfer et al., 2010). However, collecting longitudinal data requires a dedicated56

and intensive sampling campaign, meaning in practice cross-sectional data are often57

all that are available. Methods for cross-sectional data typically concentrate on iden-58

tifying deviation from statistical independence, using standard methods such as χ259

tests or log-linear modelling to test whether the observed probability of co-infection60

differs from the product of the prevalences of the individual pathogens (Booth and61

Bundy, 1995; Howard et al., 2001; Bogaert et al., 2004; Raso et al., 2004; Regev-62

Yochay et al., 2004; Nielsen et al., 2006; Chaturvedi et al., 2011; Rositch et al., 2012;63

Degarege et al., 2012; Malagón et al., 2016; Teweldemedhin et al., 2018). Detecting64

such a non-random statistical association between pathogens is then taken to signal65

a biological interaction. The underlying mechanism can range, for example, from66

individual-scale direct effects on within-host pathogen dynamics (Tollenaere et al.,67

2016; Mascia and Gallitelli, 2016), to indirect within-host immune-mediated interac-68

tions (de Roode et al., 2005), to indirect population-scale “ecological interference”69

caused by competition for susceptible hosts (Rohani et al., 1998, 2003).70
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A well-known difficulty is that factors other than biological interactions between71

pathogens can drive statistical associations. For instance, host heterogeneity – that72

some hosts are simply more likely than others to become infected – can generate73

positive statistical associations, since co-infection is more common in the most vul-74

nerable hosts. Heterogeneity in host age can also generate statistical associations,75

as infections accumulate in older individuals (Lord et al., 1999; Kucharski and Gog,76

2012; Kucharski et al., 2016). Methods aimed at disentangling such confounding fac-77

tors have been developed, but show mixed results in detecting biological interactions78

(Pedersen and Fenton, 2007; Fenton et al., 2010; Hellard et al., 2012; Vaumourin79

et al., 2014). Methods using dynamic epidemiological models to track co-infections80

are also emerging, although more often than not require longitudinal data (Shrestha81

et al., 2011, 2013; Reich et al., 2013; Man et al., 2018; Alizon et al., 2019).82

More fundamentally, however, the underpinning and long standing assumption83

that non-interaction implies statistical independence (Forbes, 1907; Cohen, 1973)84

has not been challenged. Here we confront the intuition that biological interactions85

can be detected via statistical associations, demonstrating how simple epidemiolog-86

ical models can change the way we think about biological interactions. In particular,87

we show that non-interacting pathogens should not be expected to have prevalences88

that are statistically independent. Co-infection by non-interacting pathogens is more89

probable than multiplication would suggest, invalidating any test invoking statistical90

independence.91

The paper is organized as follows. First, we use a simple epidemiological model92

to show that the probability that a host is co-infected by both of a pair of non-93

interacting pathogens is greater than the product of the net prevalences of the in-94

dividual pathogens. Second, we extend this result to an arbitrary number of non-95

interacting pathogens. This allows us to construct a novel test for biological inter-96

action, based on testing the extent to which co-infection data can be explained by97

our epidemiological models in which pathogens do not interact. Different versions of98

this test, conditioned on the form of available data and whether or not co-infections99

are caused by different pathogen species, allow us to reinterpret a number of pre-100

vious reports (Chaturvedi et al., 2011; López-Villavicencio et al., 2007; Andersson101

et al., 2013; Koepfli et al., 2011; Nickbakhsh et al., 2016; Seabloom et al., 2009;102
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Moutailler et al., 2016; Howard et al., 2001; Molineaux et al., 1980). Our examples103

include plant, animal and human pathogens, and the methodology can potentially104

be applied to any cross-sectional survey data tracking co-infection.105

2 Results106

2.1 Two non-interacting pathogens107

2.1.1 Dynamics of the individual pathogens108

We consider two distinct pathogen species, strains or clones (henceforth pathogens),109

which we assume do not interact, i.e. the interaction between the host and one110

of the pathogens is entirely unaffected by its infection status with respect to the111

other. Epidemiological properties that are therefore unaffected by the presence or112

absence of the other pathogen include initial susceptibility, within-host dynamics113

including rates of accumulation and/or movement within tissues, host responses to114

infection, as well as onward transmission. Assuming a fixed-size host population and115

Susceptible-Infected-Susceptible (S-I-S) dynamics (Keeling and Rohani, 2007), the116

proportion of the host population infected by pathogen  ∈ {1, 2} follows117

̇ = β(1 − ) − μ, (1)

in which the dot denotes differentiation with respect to time, β is a pathogen-specific118

infection rate, and μ is the host’s natural death rate.119

While natural mortality may be negligible for acute infections, it cannot be ne-120

glected for chronic (i.e. long-lasting) infections, which are responsible for a large121

fraction of co-infections in humans and animals (Griffiths et al., 2011; Gorsich et al.,122

2018). Likewise, plants remain infected over their entire lifetime following infection123

by most pathogens, including almost all plant viruses, as well as the anther smut124

fungus, which drives one of our examples here (López-Villavicencio et al., 2007).125

We assume that the disease-induced death rate (virulence) is zero, as otherwise126

there would be ecological interactions between pathogens (Rohani et al., 2003).127

However our model can be extended to handle pathogen-specific rates of clearance128

(Supplementary Information: Sections S1.4, S1.5 and S2.3).129
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2.1.2 Tracking co-infection130

Figure 1: Schematic of the model
tracking a pair of non-interacting
pathogens. The model is defined
in Eqs. (1-3): J∅ denotes uninfected
hosts, J1 and J2 are hosts singly in-
fected by pathogens 1 and 2, respec-
tively, J1,2 are co-infected hosts, 1 =
J1+ J1,2 and 2 = J2+ J1,2 are net densi-
ties of hosts infected by pathogens 1
and 2, respectively.

Making identical assumptions, but instead distinguishing hosts infected by differ-131

ent combinations of pathogens, leads to an alternate representation of the dynam-132

ics. We denote the proportion of hosts infected by only one of the two pathogens by133

J, with J1,2 representing the proportion co-infected. Pathogen-specific net forces of134

infection are135

F = β = β(J + J1,2) , (2)

and so136

J̇1 = F1J∅ − (F2 + μ)J1 ,

J̇2 = F2J∅ − (F1 + μ)J2 , (3)

J̇1,2 = F2J1 + F1J2 − μJ1,2 .

in which J∅ = 1− J1− J2− J1,2 is the proportion of hosts uninfected by either pathogen137

(Fig. 1).138

2.1.3 Prevalence of co-infected hosts139

We assume the basic reproduction number, R0, = β/μ > 1 for both pathogens.140

Solving Eq. (3) numerically for arbitrary but representative parameters (Fig. 2A)141

shows the proportion of co-infected hosts (J1,2) to be larger than the product of the142
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individual prevalences (P = 12 from Eq. (1)). That J1,2(t) ≥ P(t) for large t (for all143

parameters) can be proved analytically (Supplementary Information: Section S1.1).144

Simulations of a stochastic analogue of the model (Fig. 2B) reveal the key driver145

of this behavior. The net prevalences of the pathogens considered in isolation, 1 and146

2, are positively correlated (Fig. 2C; Eq. (27) in Methods: Section 4.1.4, “Stochastic147

models”), due to simultaneous reductions whenever co-infected hosts die.148
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Figure 2: Simulations of the two-pathogen model show that net densities of the two

pathogens are positively correlated. J1 and J2 are hosts singly infected by pathogens 1 and 2,

respectively, J1,2 are co-infected hosts, 1 = J1 + J1,2 and 2 = J2 + J1,2 are net densities of hosts in-

fected by pathogens 1 and 2, respectively. (A) Dynamics of the deterministic model (1-3), with β1 = 5,

β2 = 2.5, and μ = 1 (parameters have units of inverse time). (B) Dynamics of a stochastic version of

the model, in a population of size N = 1000 (see also Methods: Section 4.1.4, “Stochastic models”). (C)

A single trajectory from the stochastic simulation (black line) in panel B (restricted to the time interval

starting from the dashed line at t = 5) in the phase plane (1, 2), and the 90% and 99% confidence

ellipses (dashed and dotted curves, respectively) generated from an analytical approximation to the

stochastic model.

2.1.4 Deviation from statistical independence149

For R0, > 1 the relative deviation of the equilibrium prevalence of co-infection (J̄1,2)150

from that required by statistical independence (P̄ = ̄1 ̄2) is151

J̄1,2 − P̄

P̄
=

μ

β1 + β2 − μ
=

1

R0,1 + R0,2 − 1
≥ 0 (4)

(Eq. (9) in Methods: Section 4.1.1, “Equilibria of the two-pathogen model”). The152

deviation is therefore zero if and only if the host natural death rate μ = 0.153

The observed outcome would conform with statistical independence only for non-154

interacting pathogens where there is no host natural death (at the timescale of an155
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infection). This reiterates the role of host natural death in causing deviation from a156

statistical association pattern.157

This result (Eq. (4)) was first published by Kucharski and Gog (2012) in a differ-158

ent context (model reduction in multi-strain influenza models). Moreover, using a159

continuous age-structured model, Kucharski and Gog (2012) showed that one may160

recover statistical independence within infinitesimal age-classes. The result in Eq.161

(4) is related to aging, as individuals acquire more infections as they age. As age162

increases, so does the probability of being infected with pathogens 1 and/or 2. There-163

fore, the prevalences of pathogens 1 and 2 are positively correlated (Kucharski et al.,164

2016). The reason for a greater deviation from independence as the mortality rate165

μ increases is likely due to the fact that prevalence is increasing and concave with166

respect to age, and saturates in older age-classes (Lord et al., 1999).167

2.2 Testing for interactions between pathogens168

Eq. (3) can be straightforwardly extended to track n pathogens which do not interact169

in any way (including pairwise and three-way interactions). Equilibria of this model170

are prevalences of different classes of infected or co-infected hosts carrying different171

combinations of non-interacting pathogens. These can be used to derive a test for172

interaction between pathogens which properly accounts for the lack of statistical173

independence revealed by our analysis of the simple two-pathogen model.174

2.2.1 Modelling co-infection by n non-interacting pathogens175

We denote the proportion of hosts simultaneously co-infected by the (non-empty)176

set of pathogens  to be J, and use Ω =  \ {} (for  ∈ ) to represent combinations177

with one fewer pathogen.178

The dynamics of the 2n − 1 distinct values of J follow179

J̇ =
∑

∈
FJΩ −

�

∑

 /∈
F + μ

�

J, (5)

in which the net force of infection of pathogen  is180

F = β = β
∑

∈∇

J, (6)
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and ∇ is the set of all subsets of {1, . . . ,n} containing  as an element. Eq. (5) can181

be interpreted by noting182

• the first term tracks inflow due to hosts carrying one fewer pathogen becoming183

infected;184

• the second term tracks the outflows due to hosts becoming infected by an185

additional pathogen, or death.186

Predicted prevalences. If R0, = β/μ > 1 for all  = 1, . . . ,n, the equilibrium preva-187

lence of hosts infected by any given combination of pathogens, J, can be obtained188

by (recursively) solving a system of 2n linear equations (Eq. (16) in Methods: Section189

4.1.2, “Equilibria of the n-pathogen model”).190

These equilibrium prevalences are the prediction of our “Non-interacting Distinct191

Pathogens” (NiDP) model, which in dimensionless form has n parameters (the R0,’s,192

 = 1, . . . ,n; Methods: Section 4.2.2, “Fitting the models”).193

Epidemiologically interchangeable pathogens. If we simplify the model by as-194

suming that all pathogen infection rates are equal (i.e. β = β for all ), then if195

R0 = β/μ > 1, the proportion of hosts infected by k distinct pathogens can be ob-196

tained by (recursively) solving n + 1 linear equations (Eq. (22) in Methods: Section197

4.1.3, “Deriving the NiSP model from the NiDP model”). This constitutes the predic-198

tion of our “Non-interacting Similar Pathogens” (NiSP) model, a simplified form of the199

NiDP model requiring only a single parameter (R0).200

2.2.2 Using the models to test for interactions201

If either the NiSP or NiDP model adequately explain co-infection data, those data are202

consistent with the underpinning assumption that pathogens do not interact. Which203

model is fitted depends on the form of the available data.204

Numbers of distinct pathogens. Studies often quantify only the number of dis-205

tinct pathogens carried by individual hosts, without necessarily specifying the combi-206

nations involved (López-Villavicencio et al., 2007; Seabloom et al., 2009; Chaturvedi207
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Figure 3: Comparing predictions of the NiSP model with binomial models assuming statisti-
cal independence. In using the NiSP model, pathogens are assumed to be epidemiologically inter-
changeable: we have therefore restricted attention to data sets concerning strains/clones of a single
pathogen species. (A) strains of human papillomavirus (Chaturvedi et al., 2011); (B) strains of the an-
ther smut pathogen (M. violaceum) on the white campion (S. latifolia) (López-Villavicencio et al., 2007);
(C) strains of tick-transmitted bacteria (B. afzelii) on bank voles (M. glareolus) (Andersson et al., 2013);
and (D) clones of malaria (P. vivax) (Koepfli et al., 2011). Insets to each panel show a “zoomed-in”
section of the graph corresponding to high multiplicities of clone/strain co-infection. Asterisks indicate
predicted counts smaller than 0.1. In all four cases, the NiSP model is a better fit to the data than the
binomial model (ΔAIC = 572.8, 158.6, 293.8 and 596.3, respectively). For the data shown in panel (A),
there is no evidence that the NiSP model does not fit the data (lack of goodness-of-fit p = 0.08), and
so our test indicates the human papillomavirus strains do not interact. For the data shown in panels
(B)-(D), there is evidence of lack of goodness-of-fit (all have lack of goodness-of-fit p < 0.01). Our test
therefore indicates these strains/clones interact (or are epidemiologically different).
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et al., 2011; Koepfli et al., 2011; Andersson et al., 2013; Moutailler et al., 2016; Nick-208

bakhsh et al., 2016). There are insufficient degrees of freedom in such data to fit the209

NiDP model, and so we fall back upon the NiSP model. In using the NiSP model, we210

additionally assume all pathogens within a given study are epidemiologically inter-211

changeable.212

We identified four suitable studies reporting data concerning strains/clones of a213

single pathogen, and tested whether these data are consistent with no interaction.214

For all four studies (Fig. 3), the best-fitting NiSP model is a better fit to the data215

than the corresponding binomial model assuming statistical independence (Eq. (28)216

in Methods: Section 4.2.1, “Models corresponding to assuming statistical indepen-217

dence”). Three additional examples for data-sets considering distinct pathogens,218

which deviate more markedly from the epidemiological equivalence assumption, are219

in the Supplementary Information (Section S2.1).220

In one case – co-infection by different strains of human papillomavirus (Chaturvedi221

et al., 2011) (Fig. 3A) – we find no evidence that the reported data cannot be ex-222

plained by the NiSP model. These data therefore support the hypothesis of no inter-223

action – and indeed no epidemiological differences – between the pathogen strains224

in question.225

In the three other cases we considered – strains of anther smut (Microbotryum226

violaceum) on the white campion (Silene latifolia) (López-Villavicencio et al., 2007)227

(Fig. 3B); strains of the tick-transmitted bacterium Borrelia afzelii on bank voles (My-228

odes glareolus) (Andersson et al., 2013) (Fig. 3C); and clones of a single malaria par-229

asite (Plasmodium vivax) infecting children (Koepfli et al., 2011) (Fig. 3D) – despite230

outperforming the model corresponding to statistical independence, the best-fitting231

NiSP model does not adequately explain the data. We therefore reject the hypothe-232

ses of no interaction in all three cases, noting that our use of the NiSP model means233

it might be epidemiological differences between pathogen strains/clones that have234

in fact been revealed.235

Combinations of pathogens. Other studies report the proportion of hosts in-236

fected by particular combinations (rather than counts) of pathogens, although many237

of those concentrate on helminth macroparasites for which our underlying S-I-S238
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Figure 4: Using the NiDP model to re-analyse malaria data sets considered by Howard et al.
(2001). In using the NiDP model there is no need to assume malaria-causing Plasmodium spp. are
epidemiologically interchangeable. (A) Comparing the predictions of the NiDP model with a multinomial
model of infection (i.e. statistical independence) for the data set on P. falciparum (F), P. malariae (M)
and P. ovale (O) co-infection in Nigeria reported by Molineaux et al. (1980). The NiDP model is a better
fit to the data than the multinomial model (ΔAIC = 326.2); additionally, there is no evidence of lack
of goodness-of-fit (p = 0.40). This data set is therefore consistent with no interaction between the
three Plasmodium species. (B) Comparing the results of fitting the NiDP model and the methodology
of Howard et al. (2001) based on log-linear regression and so statistical-independence. For 16 (i.e.
12 + 4) out of the 41 data sets we considered, the conclusions of the two methods differ.
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model is well-known to be inappropriate (Anderson and May, 1991).239

However, a methodological article by Howard et al. (2001) introduces the use240

of log-linear modeling to test for statistical associations. Conveniently, that article241

reports the results of that methodology as applied to a large number of studies242

focusing on Plasmodium spp. causing malaria.243

By interrogating the original data sources (Methods: Section 4.3.2, “Combinations244

of pathogens (NiDP model)”), we found a total of 41 studies of malaria reporting the245

disease status of at least N = 100 individuals, and in which three of P. falciparum,246

P. malariae, P. ovale and P. vivax were considered. Data therefore consist of counts247

of the number of individuals infected with different combinations of three of these248

four pathogens, a total of eight classes. There were sufficient degrees of freedom249

to fit the NiDP model, which here has three parameters, each corresponding to the250

infection rate of a single Plasmodium spp. Fig. 4A shows the example of fitting the251

NiDP model to data from a study of malaria in Nigeria (Molineaux et al., 1980).252

Fitting the NiDP model allows us to test for interactions between Plasmodium253

spp., without assuming they are epidemiologically interchangeable. In 18 of the 41254

cases we considered, our methods suggest the data are consistent with no inter-255

action (Fig. 4B). We note that in 12 of these 18 cases the methodology based on256

statistical independence of Howard et al. (2001) instead suggests the Plasmodium257

spp. interact.258

3 Discussion259

We have shown that pathogens which do not interact and so have uncoupled preva-260

lence dynamics (Eq. (1)) are not statistically independent. For two pathogens,261

the prevalence of co-infection is always greater than the product of the preva-262

lences (Eq. (4)), unless host natural death does not occur. This result was first pub-263

lished in an age-structured, multi-strain influenza model (Kucharski and Gog, 2012).264

Pathogens share a single host in co-infections, and so when a co-infected host dies,265

net prevalences of both pathogens decrease simultaneously. The prevalences of in-266

dividual pathogens, regarded as random variables, therefore co-vary positively. A267

related interpretation is due to Kucharski and Gog (2012): the prevalences of the268
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pathogens are positively correlated through a single independent variable, namely269

the age of the hosts. As a side result, we note our analysis indicates a high-profile270

model of May and Nowak (1995) is based on a faulty assumption of probabilistic in-271

dependence (Supplementary Information: Section S1.3). More importantly, our anal-272

ysis shows that statistically independent pathogens may well be interacting (Supple-273

mentary Information: Section S1.5) which confirms that statistical independence is274

far from equivalent to the absence of biological interaction between pathogens.275

We extended our model to an arbitrary number of pathogens to develop a novel276

test for interaction that properly accounts for statistical non-independence. Many277

data sets summarize co-infections in terms of multiplicity of infection, regardless278

of which pathogens are involved. Since there would be as many epidemiological279

parameters as pathogens in our default NiDP model, and so as many parameters as280

data-points, the full model would be over-parameterised. We therefore introduced281

the additional assumption that all pathogens are epidemiologically interchangeable.282

This formed the basis of the parsimonious NiSP model, which is most appropriate for283

testing for interactions between strains or clones of a single pathogen species.284

Despite the strong and perhaps even unrealistic assumption that strains/clones285

are interchangeable, the NiSP model outperformed the binomial model assuming286

statistical independence for all four data sets we considered. In particular, the NiSP287

model successfully captured the fat tails characteristic of observed multiplicity of288

infection distributions. All four data sets therefore support the idea that co-infection289

is far more frequent than statistical independence would imply.290

For the data set concerning co-infection by different strains of human papillo-291

mavirus (Chaturvedi et al., 2011), the NiSP model also passed the goodness-of-fit292

test, allowing us to conclude strains of this pathogen do not interact. Goodness-293

of-fit for such a simple model is a particularly conservative test, especially for the294

NiSP model, when we assume pathogens clones/strains are epidemiologically inter-295

changeable.296

We illustrated our methods via case studies for which suitable data are readily297

available, and our purpose was not to come to definitive conclusions concerning any298

particular system. That would require dedicated studies. However, by fitting even299

a highly-simplified version of our model to data, we have demonstrated how results300
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of simple epidemiological models challenge previous methods based on statistical301

independence.302

To explore further the implications of our findings, we analyzed available data sets303

tracking combinations of pathogens involved in each occurrence of co-infection. For304

methodological comparison purposes, we restricted ourselves to data referenced in305

Howard et al. (2001), concerning interactions between Plasmodium spp. causing306

malaria. Relaxing the assumption of epidemiological interchangeability (i.e. using307

the NiDP model), we found that 43.9% (i.e. 18/41) of data sets considered in Howard308

et al. (2001) are consistent with no interaction.309

One may wonder whether focusing on age classes may be sufficient to correct310

for the positive correlation between non-interacting pathogens (Lord et al., 1999).311

Of the 41 data sets identified by Howard et al. (2001) that we analysed, 14 focused312

only on data collected from children, and therefore, associations are less likely less313

likely to emerge solely by the confounding effect of age (Fenton et al., 2010). Of314

these 14 studies, we came to the same conclusion as Howard et al. (2001) in only 6315

cases. We identified 2 cases in which our methods suggest there is an interaction in316

which Howard et al. (2001) concluded no interaction (studies 71 and 77), as well as317

6 cases in which we conclude no interaction whereas Howard et al. (2001) conclude318

there is an interaction (studies 76, 68, 69, 70, 79 and 80). Thus, focusing on discrete319

and arbitrary age classes may not be sufficient to correct for the positive correlation320

between non-interacting pathogens.321

Again we do not intend to conclusively demonstrate interactions – or lack of in-322

teractions – for malaria. Instead what is important is that our results very often323

diverge from those originally reported in Howard et al. (2001) using a method based324

on statistical associations, namely log-linear regression. Log-linear regression suf-325

fers from well-acknowledged difficulties in cases in which there are zero counts (i.e.326

certain combinations of pathogens are not observed) (Fienberg and Rinaldo, 2012).327

Such cases often arise in epidemiology. Methods based on epidemiological models328

therefore offer a twofold advantage: biological interactions are not confounded with329

statistical associations, and parameter estimation is well-posed, irrespective of zero330

counts.331

Moreover, simple epidemiological models (with no explicit age structure) intrin-332
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sically correct the bias due to the positive correlation between age and prevalence,333

which makes it unnecessary to control for age. Therefore, and this may be our main334

conclusion: although age is an evident confounding factor, epidemiological models335

make it unnecessary to keep track of the age of infected hosts. This is made possible336

by replacing the paradigm of “statistical Independence and random distributions”337

with “model-based distributions in absence of biological interactions.”338

We focused here on the simple S-I-S model, since it is sufficiently generic to be339

applicable to a number of systems. However, an important assumption of our model340

is that natural mortality occurs at a time scale comparable to that of an infection.341

Our model is therefore tailored for chronic (i.e. long-lasting) infections, which rep-342

resent a large fraction of of co-infections in humans, animals, and plants. Also,343

our study is restricted to nonlethal infections, as otherwise there may be ecological344

interactions between pathogens. In future work focusing on particular pathogens,345

models including additional system-specific detail would of course be appropriate.346

We leave further analysis of more complex underpinning epidemiological models to347

such future research.348

Lastly, we speculate our results may have implications beyond epidemiology.349

After all, pathogens are species which form meta-populations occupying discrete350

patches (hosts) (Seabloom et al., 2015). Meta-community ecology has long been351

concerned with whether interactions between species can be detected from co-352

occurrence data (Forbes, 1907; Caswell, 1976; Connor and Simberloff, 1979) and353

most existing methods are based on detecting statistical associations (Gotelli, 2000;354

Gotelli and Ulrich, 2012), but see Hastings (1987). Our dynamical modeling approach355

may also provide a new perspective in this area.356
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4 Methods357

4.1 Mathematical analyses358

4.1.1 Equilibria of the two-pathogen model359

The 2-pathogen model is given by Eq. (1-2-3). Since the population size is constant,360

J∅ = 1 − J1 − J2 − J1,2, and so it follows that361

J̇∅ = μ(J1 + J2 + J1,2) − (F1 + F2) J∅ = μ(1 − J∅) − (F1 + F2) J∅ . (7)

It is well-known (Keeling and Rohani, 2007) that if R0, = β/μ > 1 and (0) > 0,362

the prevalence of pathogen  will tend to an equilibrium ̄ = 1 − 1/R0,.363

Since F = β and J =  − J1,2, the rate of change of co-infected hosts in Eq. (3)364

can be recast as365

J̇1,2 = β22(1 − J1,2) + β11(2 − J1,2) − μJ1,2 . (8)

The equilibrium prevalence of co-infected hosts (J̄1,2) can therefore be written in366

terms of the individual net prevalences at equilibrium (̄1 and ̄2),367

J̄1,2 =
�

β1 + β2
β1 + β2 − μ

�

̄1 ̄2. (9)

This immediately leads to the result concerning the deviation of J̄1,2 from P̄ = ̄1 ̄2368

(i.e., the expected prevalence of co-infected hosts given statistical independence)369

quoted in Eq. (4).370

4.1.2 Equilibria of the n-pathogen model371

The n-pathogen model is given by Eq. (1-5-6). Since the host population size is372

constant, J∅ = 1 −
∑

∈∇ J, where ∇ is the set of all 2n − 1 sets with infected or co-373

infected hosts. It is also true that374

J̇∅ = μ(1 − J∅) −
� n
∑

=1

F

�

J∅ . (10)
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At equilibrium, Eq. (5) becomes375

0 =
∑

∈
F̄ J̄Ω −

�

∑

 /∈
F̄ + μ

�

J̄ , (11)

in which J̄Ω and J̄ are equilibrium prevalences, and F̄ is the force of infection of376

pathogen  at equilibrium, i.e.377

F̄ = β ̄ = β

�

1 −
μ

β

�

= β − μ. (12)

Since these forces of infection are constant and do not depend on the equilibrium378

prevalences, the set of 2n − 1 equations partially characterizing the equilibrium is379

linear, with380

0 =
∑

∈
(β − μ) J̄Ω −

�

∑

 /∈
(β − μ) + μ

�

J̄ . (13)

Similarly, Eq. (10) is linear381

0 = μ(1 − J̄∅) −
� n
∑

=1

(β − μ)
�

J̄∅ . (14)

The equilibrium prevalences can be written very conveniently in a recursive form382

(i.e. using the first equation to fix J̄∅, using J̄∅ to independently calculate all values383

of J̄ for || = 1, then using the set of values of J̄ when || = 1 to independently384

calculate all values of J̄ for || = 2, and so on). A recurrence relation to find all385

equilibrium prevalences can therefore be initiated with the following expression for386

the density of uninfected hosts:387

J̄∅ =
μ

μ +
∑n

=1(β − μ)
=

1

1 +
∑n

=1(R0, − 1)
. (15)

Then, one may recursively use the following equation, equivalent to Eq. (13):388

J̄ =

∑

∈ (β − μ) J̄Ω
μ +

∑

 /∈ (β − μ)
=

∑

∈ (R0, − 1) J̄Ω
1 +

∑

 /∈ (R0, − 1)
. (16)

Since the densities in Eq. (16) are entirely in terms of the equilibrium densities389

of hosts carrying one fewer pathogen (J̄Ω), this allows us to recursively find the390

densities of all pathogens given pathogen-by-pathogen values of R0,.391
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4.1.3 Deriving the NiSP model from the NiDP model392

If all pathogens are interchangeable, and so have identical values of R0, = R0 ∀,393

then for any pair of combinations of infecting pathogens, 1 and 2, it must be the394

case that J̄1 = J̄2 whenever |1| = |2|. This means the equilibrium prevalences of395

hosts infected by the same number of distinct pathogens must all be equal, irrespec-396

tive of the particular combination of pathogens that is carried. In this case solving397

the system is much simpler. First, Eq. (11) can be rewritten as398

0 = ||F̄J̄Ω −
�

(n − ||)F̄ + μ
�

J̄ , (17)

in which F̄ = β − μ. The net prevalence of hosts infected by k distinct pathogens is399

M̄k =
∑

∈∇(k)
J̄, (18)

in which ∇(k) is the set of combinations of {1, . . . ,n} with k elements. Since the400

form of Eq. (17) depends only on ||, all individual prevalences involved in M̄k are401

identical, and so402

M̄k = Cnk J̄,k, (19)

in which Cnk is a combinatorial coefficient, and J̄,k is any of the individual prevalences403

for which || = k. The ratio between successive values of M̄k is given by404

M̄k

M̄k−1
=

Cnk
Cnk−1

J̄,k

J̄,k−1
=
n − k + 1

k

J̄,k

J̄,k−1
. (20)

From Eq. (15), it follows that405

M̄0 =
μ

μ + nF̄
=

1

1 + n(R0 − 1)
, (21)

in which R0 = β/μ. For 1 ≤ k ≤ n, Eq. (17) and (20) together imply406

M̄k =
(n − k + 1)F̄

(n − k)F̄ + μ
M̄k−1 =

(n − k + 1)(R0 − 1)

(n − k)(R0 − 1) + 1
M̄k−1 , (22)

a form which admits a simple recursive solution.407
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4.1.4 Stochastic models408

Figs. 2B and 2C were generated by simulating the stochastic differential equation409

corresponding to Eq. (3); simulating a continuous time Markov chain model using410

Gillespie’s algorithm gave consistent results. Confidence ellipses were obtained from411

an approximate expression for the covariance matrix at equilibrium (see below).412

Continuous-time Markov chain. The continuous-time Markov chain model cor-413

responding to the unscaled version of Eq. (3-7) tracks a vector of integer-valued414

random variables X(t) = (J∅(t), J1(t), J2(t), J1,2(t)). Defining ΔX = X(t + Δt) − X(t) =415

(ΔJ∅, ΔJ1, ΔJ2, ΔJ1,2), changes of ±1 to each element of X(t) occur in small periods416

of time Δt at the rates given in Table 1. Stochastic trajectories from this model can417

conveniently be simulated via the Gillespie algorithm (Gillespie, 1977). Note that418

the numeric values of the infection rates and the host birth rate must be altered to419

account for the scaling by population size.420

Table 1: Transitions in the two-pathogen stochastic models. The prevalence of uninfected host is J∅, the
prevalence of each class of singly-infected hosts is J (for  ∈ [1, 2]), and the prevalence of co-infected
host is J1,2. The net force of infection of pathogen  is F = β/N = β(J+ J1,2)/N (note the scaling by the
population size N relative to the forces of infection as used in the deterministic version of the model).
To ensure a constant host population size, we have made the simplifying assumption that removal and
replacement occur simultaneously; this has no effect on our qualitative results.

Event Event Rate Change(s) to state
number variable(s) (ΔX)

1 Infection of uninfected host by pathogen 1 F1J∅Δt + o(Δt) J∅ → J∅ − 1
J1 → J1 + 1

2 Infection of uninfected host by pathogen 2 F2J∅Δt + o(Δt) J∅ → J∅ − 1
J2 → J2 + 1

3 Infection by pathogen 1 of host singly-infected by pathogen 2 F1J2Δt + o(Δt) J2 → J2 − 1
J1,2 → J1,2 + 1

4 Infection by pathogen 2 of host singly-infected by pathogen 1 F2J1Δt + o(Δt) J1 → J1 − 1
J1,2 → J1,2 + 1

5 Death of host singly-infected by pathogen 1 μJ1Δt + o(Δt) J1 → J1 − 1
and replacement with an uninfected host J∅ → J∅ + 1

6 Death of host singly-infected by pathogen 2 μJ2Δt + o(Δt) J2 → J2 − 1
and replacement with an uninfected host J∅ → J∅ + 1

7 Death of co-infected host μJ1,2Δt + o(Δt) J1,2 → J1,2 − 1
and replacement with an uninfected host J∅ → J∅ + 1

Stochastic differential equations. The model can also be written as a system421

of stochastic differential equations (SDEs), an approximation to the continuous-time422

Markov chain that is valid for sufficiently large N (Kurtz, 1970) and which is partic-423

ularly well-suited for simulation of the stochastic model when the population size is424
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large. This form of the model again tracks the seven events in Table 1, although in425

the SDE formulation the random variables in X(t) are continuous-valued. A heuristic426

derivation is based on a normal approximation described below. Alternately, the for-427

ward Kolmogorov differential equations in the continuous-time Markov chain model428

are closely related to the Fokker Planck equation for the probability density function429

of the SDE model (Allen et al., 2008).430

The expected change E(ΔX) and covariance of the changes V(ΔX) can be com-431

puted from Table 1 to order Δt via432

E(ΔX) ≈ ƒ̃Δt nd V(ΔX) ≈ E(ΔX[ΔX]T) = Δt, (23)

where dJ = ƒ̃dt is the unscaled version of the deterministic model as specified in Eq.433

(3-7) with N = J∅ + J1 + J2 + J1,2 (a constant) and F = β(J + J1,2)/N. In addition, the434

matrix  is given by435

















μ(N − J∅) + (F1 + F2)J∅ −F1J∅ − μJ1 −F2J∅ − μJ2 −μJ1,2

−F1J∅ − μJ1 F1J∅ + (F2 + μ)J1 0 −F2J1

−F2J∅ − μJ2 0 F2J∅ + (F1 + μ)J2 −F1J2

−μJ1,2 −F2J1 −F1J2 F2J1 + F1J2 + μJ1,2

















.

(24)

The changes in a small time interval Δt are approximated by a normal distribution436

via the Central Limit Theorem: ΔX(t) − E(ΔX(t)) ≈ Norml(0,Δt), where 0 = zero437

vector. The covariance matrix  can be written as  = GGT . Letting Δt → 0, the SDE438

model can therefore be expressed as439

dX = ƒ̃dt + GdW. (25)

The matrix G is not unique but a simple form with dimension 4 × 7 accounts for440

each event in Table 1 (Allen et al., 2008). Each entry in matrix G involves a square441

root and W is a vector of seven independent standard Wiener processes, where442

dW ≈ ΔW(t) = W(t + Δt) − W(t) ∼ Norml(0,Δt). An explicit form for the SDE443
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model in Eq. (25) is444

dJ∅ = ƒ̃0dt −
Æ

F1J∅ dW1 −
Æ

F2J∅ dW2 +
Æ

μJ1 dW5 +
Æ

μJ2 dW6 +
Æ

μJ1,2 dW7 ,

dJ1 = ƒ̃1dt +
Æ

F1J∅ dW1 −
Æ

F2J1 dW4 −
Æ

μJ1 dW5 , (26)

dJ2 = ƒ̃2dt +
Æ

F2J∅ dW2 −
Æ

F1J2 dW3 −
Æ

μJ2 dW6 ,

dJ1,2 = ƒ̃1,2dt +
Æ

F1J2 dW3 +
Æ

F2J1 dW4 −
Æ

μJ1,2 dW7 .

Covariance matrix at the endemic equilibrium. In Supplementary Information445

(Section S1.2) we show that the covariance between the prevalences of pathogen 1446

and pathogen 2 as they fluctuate in the vicinity of their equilibrium values is approx-447

imately448

cov
�

1

N
,
2

N

�

=
μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]
=

(β1 + β2)(β1 − μ)(β2 − μ)μ

Nβ1β2(β1 + β2 − μ)(β1 − μ + β2 − μ)
≥ 0 ,

(27)

with equality if and only if μ = 0 (assuming β > μ,  = 1, 2). Only in the specific case449

μ = 0, is the deviation from statistical independence equal to zero (Eq. (4)).450

4.2 Statistical methods451

4.2.1 Models corresponding to assuming statistical independence452

If data are observations of numbers of individuals infected with k distinct pathogens,453

Ok, for k ∈ [0,n], statistical independence corresponds to assuming the infection454

load of a single individual follows the one-parameter, binomial model Bn(n,p), in455

which p is the pathogen prevalence (assumed identical for each pathogen, and fit-456

ted appropriately to the data), and n is the maximum number of infections that is457

possible (i.e. the total number of distinct pathogens under consideration). Model pre-458

dictions are then simply N samples from this binomial distribution, where N =
∑

k Ok459

is the total number of individuals observed in the data. One interpretation is as a460

multinomial model in which461

Ok ∼ Nqk where qk = Cnkp
k(1 − p)n−k. (28)
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For the data for malaria corresponding to numbers of individuals, O, infected by dif-462

ferent sets of pathogens, , statistical independence corresponds to an n-parameter463

multinomial model, parameterised by the prevalences of the individual pathogens p464

(again fitted to the data), i.e.465

O ∼ N
∏

∈
p
∏

 /∈
(1 − p). (29)

4.2.2 Fitting the models466

The host natural death rate, μ, can be scaled out of the equilibrium prevalences467

by rescaling time. Fitting the models therefore corresponds to finding value(s) for468

scaled infection rate(s) β, i.e. R0, = β/μ (all are equal for the NiSP model).469

The method used to fit the model does not depend on whether the data are470

numbers of hosts infected by a particular combination of pathogens, or numbers of471

hosts carrying particular numbers of distinct pathogens, since both can be viewed472

as N samples drawn from a multinomial distribution, with qj observations of the jth473

class. If the corresponding probabilities generated by the model being fitted are pj,474

then the log-likelihood is475

L =
∑

j

qj log(pj). (30)

The models were fitted by maximizing L via optim() in R (R Core Team, 2016).476

Convergence to a plausible global maximum was checked by repeatedly refitting477

the model from randomly chosen starting sets of parameters. All models were fitted478

in a transformed form to allow only biologically-meaningful values of parameters;479

that is, the basic reproduction numbers were estimated after transformation with480

log (R0, − 1) to ensure R0, > 1.481

4.2.3 Model comparison482

To compare the best-fitting NiSP or NiDP model and an appropriate model assuming483

statistical independence (binomial or multinomial), we use the Akaike Information484

Criterion AC = 2k − 2L̂, in which L̂ is the log-likelihood of the best-fitting version of485

each model and k is the number of model parameters. This is necessary since these486

comparisons involve pairs of models that are not nested.487
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4.2.4 Goodness-of-fit488

We use a Monte-Carlo technique to estimate p-values for model goodness-of-fit, gen-489

erating 1, 000, 000 independent sets of samples of total size N from the multino-490

mial distribution corresponding to the best-fitting model, calculating the likelihood491

(Eq. (30)) of each of these synthetic data sets, and recording the proportion with a492

smaller value of L than the value calculated for the data (Sokal and Rohlf, 2012). This493

was done using the function xmonte() in the R package XNomial (Engels, 2015).494

4.3 Sources of data and results of model fitting495

4.3.1 Numbers of distinct pathogens (NiSP model)496

Results of fitting the NiSP model to data from four publications for strains of a single497

pathogen are presented in Figure 3. Error bars are 95% confidence intervals using498

exact methods for binomial proportions via binconf() in the R package Hmisc (Har-499

rell Jr et al., 2016). Results for three further data sets concerning different pathogens500

of a single host (Andersson et al., 2013; Moutailler et al., 2016; Nickbakhsh et al.,501

2016) are provided as Supplementary Information (Section S2.1).502

For convenience the raw data as extracted for use in model fitting are re-tabulated503

in Table 2. Results of model fitting are summarized in Table 3. We used the value504

n = 102 for the number of distinct strains in López-Villavicencio et al. (2007) follow-505

ing personal communication with the authors; there might be undetected genetic506

differences due to missing data – which would require a larger value of n in our507

model fitting procedure – but we confirmed that our inferences are unaffected by508

taking any value of n ∈ [100, 200].509

4.3.2 Combinations of pathogens (NiDP model)510

Howard et al. (2001) report results of analyzing 73 data sets concerning multiple511

Plasmodium spp. causing malaria (rows 68–140 of Table 1 in that paper). We re-512

analyzed the subset of these studies satisfying certain additional constraints as de-513

tailed in the main text (see Supplementary Information: Section S2.2 for a full de-514

scription of how the studies were filtered). This left a final total of 41 data sets taken515

from 35 distinct papers: 24 data sets considering the three-way interaction between516
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Table 2: Sources of data for fitting the NiSP model in which pathogen types, clones or strains
are assumed to be epidemiologically-interchangeable. The data sets include human papillomavirus
(Chaturvedi et al., 2011), anther smut (M. violaceum) (López-Villavicencio et al., 2007), Borrelia afzelii
on bank voles (Andersson et al., 2013), and malaria (Plasmodium vivax) (Koepfli et al., 2011).

Pathogens with n distinct Observed counts, Ok Total
types, strains or clones n 0 1 2 3 4 5 6 7 8 9 N

Human papillomavirus 25 2933 1409 646 267 102 39 12 2 2 - 5412
Anther smut (M. violaceum) 102 285 74 60 32 14 3 3 2 1 1 475
Borrelia afzelii on bank voles 7 807 33 26 13 10 11 6 - - - 906
Malaria (Plasmodium vivax) 57 1023 404 291 208 118 50 16 5 1 1 2117

Table 3: Fitting the NiSP model. The NiSP model was highly supported over the binomial model (ΔAIC�
10) in all cases tested. The final column of the table – GoF – corresponds to the goodness-of-fit test of
the NiSP model; values p > 0.05 correspond to lack of evidence for failure to fit the data, and so the
NiSP model is adequate for the data concerning human papillomavirus (Chaturvedi et al., 2011).

NiSP Binomial GoF
R0 L p L ΔAIC=2ΔL p

Human papillomavirus 1.032 -6580.9 0.031 -6868.8 575.8 0.077
Anther smut (M. violaceum) 1.008 -614.0 0.008 -693.3 158.6 0.001
Borrelia afzelii on bank voles 1.044 -652.1 0.040 -799.0 293.8 0.000
Malaria (Plasmodium vivax) 1.021 -3169.2 0.021 -3467.3 596.3 0.000

P. falciparum, P. malariae and P. vivax and 17 data sets considering the three-way517

interaction between P. falciparum, P. malariae and P. ovale.518

We used our method based on the NiDP model to test whether any of these data519

sets were consistent with no interaction between the Plasmodium spp. considered520

(Table 4). We found 15 data sets for which the NiDP model was: i) a better fit than521

the multinomial model as indicated by ΔAIC ≥ 2; ii) sufficient to explain the data522

as revealed by our goodness-of-fit test. In these 15 cases our methods therefore523

support the hypothesis of no interaction. For 11 of these 15 data sets (76, 109, 118,524

130, 132, 68, 69, 70, 79, 95, 97, 98, 99, 100, 102) the results as reported in (Howard525

et al., 2001) instead suggest the strains interact.526

5 Data availability527

The cross-sectional survey data extracted from previous publications which we have528

used to test our methodology are tabulated in Table 2 in the main text, and Tables529

S2 and S4 in the Supplementary Information. These data are available in electronic530

format as .csv files from the corresponding author upon reasonable request.531
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Table 4: Fitting the NiDP model. Data sets which are consistent with no interaction between the Plas-
modium spp. considered are highlighted in grey. Such data sets have both p-values for the goodness-
of-fit test of the NiDP model p(GoF) > 0.05, and ΔAC ≥ 2, meaning the NiDP model is adequate. The
multinomial model corresponds to the statistical independence hypothesis. Parameters R0,1 and R0,2
are associated with P. falciparum and P. malariae, respectively. Parameter R0,3 corresponds either to
P. vivax (upper part of the table, data sets 74–137) or to P. ovale (lower part of the table, data sets 68–
103). The final column contains a tick whenever at least one association between a pair of pathogens
was assessed to be significant in Howard et al. (2001). Red ticks correspond to possible statistical
associations that are consistent with our no-interaction model (NiDP), i.e. cases in which our methods
lead to results diverging from those reported in Howard et al. (2001).

NiDP Multinomial Association(s) in
R0,1 R0,2 R0,3 L p(GoF) p1 p2 p3 L p(GoF) ΔAIC Howard et al. (2001)

74 1.764 1.256 1.004 -340.7 0.000 0.468 0.220 0.004 -311.0 0.000 -59.3 Ø

75 1.694 1.248 1.022 -194.8 0.000 0.445 0.215 0.022 -177.4 0.000 -34.8 Ø

76 1.235 1.019 1.005 -492.5 0.251 0.190 0.019 0.005 -493.7 0.098 2.4 Ø

82 1.776 1.165 1.108 -996.0 0.000 0.463 0.147 0.101 -936.3 0.000 -119.2 Ø

84 1.212 1.017 1.207 -684.2 0.000 0.180 0.017 0.177 -660.4 0.000 -47.6 Ø

88 1.296 1.120 1.260 -314.7 0.000 0.242 0.111 0.217 -295.0 0.000 -39.3 Ø

106 1.818 1.146 1.055 -4105.2 0.000 0.442 0.125 0.052 -4296.6 0.000 382.9 Ø

108 1.241 1.024 1.096 -1147.5 0.000 0.197 0.023 0.089 -1132.1 0.721 -30.9 7

109 1.023 1.013 1.045 -359.3 0.866 0.023 0.013 0.043 -361.1 0.343 3.5 Ø

111 1.198 1.005 1.786 -1929.2 0.000 0.175 0.005 0.467 -1798.8 0.000 -260.7 Ø

112 1.307 1.086 1.056 -119.6 0.115 0.241 0.080 0.054 -116.6 0.552 -6.0 7

113 1.213 1.007 1.119 -1324.1 0.000 0.179 0.007 0.108 -1290.8 0.000 -66.6 Ø

114 1.615 1.084 1.038 -1224.4 0.000 0.392 0.080 0.037 -1182.6 0.000 -83.6 Ø

116 1.780 1.124 1.100 -1035.1 0.000 0.471 0.116 0.094 -953.5 0.000 -163.2 Ø

117 1.072 1.000 1.268 -31530.5 0.000 0.068 0.000 0.214 -30958.7 0.000 -1143.5 Ø

118 1.085 1.039 1.171 -225.3 0.990 0.078 0.037 0.146 -227.5 0.515 4.5 Ø

119 1.433 1.164 1.375 -265.7 0.000 0.325 0.146 0.291 -249.0 0.146 -33.6 Ø

123 1.016 1.055 1.098 -6684.7 0.000 0.016 0.052 0.090 -6623.5 0.000 -122.4 Ø

124 1.254 1.100 1.082 -3600.6 0.000 0.206 0.092 0.076 -3541.3 0.017 -118.7 Ø

127 1.341 1.005 1.266 -1087.4 0.000 0.265 0.005 0.219 -1039.0 0.000 -96.8 Ø

130 1.013 1.002 1.350 -352.7 0.978 0.013 0.002 0.259 -353.7 0.636 2.0 7

132 1.397 1.027 1.074 -591.8 0.347 0.285 0.026 0.068 -594.3 0.067 4.9 Ø

133 1.571 1.022 1.332 -687.9 0.000 0.375 0.022 0.257 -676.2 0.001 -23.4 Ø

137 1.196 1.005 1.130 -2356.8 0.000 0.166 0.005 0.117 -2309.6 0.000 -94.3 Ø

68 1.910 1.091 1.021 -152.0 0.200 0.469 0.082 0.020 -157.8 0.002 11.7 Ø

69 4.827 1.443 1.036 -177.2 0.822 0.796 0.310 0.035 -181.4 0.121 8.5 Ø

70 4.612 1.203 1.089 -239.2 0.953 0.781 0.168 0.082 -247.4 0.012 16.4 Ø

71 6.070 1.370 1.181 -310.1 0.001 0.822 0.261 0.148 -336.2 0.000 52.1 7

77 14.275 1.383 1.142 -155.3 0.032 0.944 0.286 0.127 -150.4 0.931 -9.9 7

78 4.171 1.178 1.006 -166.2 0.264 0.773 0.153 0.006 -163.2 0.997 -5.8 7

79 1.855 1.033 1.005 -1260.1 0.969 0.461 0.032 0.005 -1263.4 0.224 6.6 Ø

80 1.546 1.062 1.021 -715.1 0.735 0.355 0.059 0.020 -715.2 0.675 0.2 Ø

95 1.855 1.033 1.005 -1260.1 0.970 0.461 0.032 0.005 -1263.4 0.224 6.6 7

96 1.910 1.071 1.017 -240.4 0.019 0.469 0.065 0.016 -248.9 0.000 17.1 7

97 1.952 1.077 1.004 -242.6 0.568 0.486 0.071 0.004 -246.7 0.031 8.3 Ø

98 1.662 1.014 1.018 -183.7 0.373 0.396 0.013 0.018 -187.0 0.030 6.6 7

99 1.627 1.019 1.019 -133.7 0.823 0.384 0.019 0.019 -135.6 0.332 3.8 7

100 1.037 1.003 1.000 -432.1 0.254 0.035 0.003 0.000 -433.2 0.083 2.3 Ø

101 3.590 1.269 1.063 -11014.1 0.000 0.720 0.211 0.060 -11392.7 0.000 757.3 Ø

102 2.473 1.153 1.027 -8188.9 0.403 0.595 0.132 0.027 -8352.0 0.000 326.2 Ø

103 1.798 1.180 1.015 -7425.7 0.000 0.437 0.150 0.015 -7736.6 0.000 621.8 Ø
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6 Code availability532

Code illustrating all statistical methods is freely available at:533

https://github.com/nikcunniffe/Coinfection.534
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