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Abstract

Gene Regulatory networks that control gene expression are widely studied yet the interactions
that make them up are difficult to predict from high throughput data. Deep Learning methods
such as convolutional neural networks can perform surprisingly good classifications on a variety
of data types and the matrix-like gene expression profiles would seem to be ideal input data for
deep learning approaches. In this short study I compiled training sets of expression data using
the Arabidopsis AtGenExpress global stress expression data set and known transcription factor-
target interactions from the Arabidopsis PLACE database. I built and optimised convolutional
neural networks with a best model providing 95 % accuracy of classification on a held-out
validation set. Investigation of the activations within this model revealed that classification
was based on positive correlation of expression profiles in short sections. This result shows
that a convolutional neural network can be used to make classifications and reveal the basis
of those calssifications for gene expression data sets, indicating that a convolutional neural
network is a useful and interpretable tool for exploratory classification of biological data. The
final model is available for download and as a web application.

Introduction

Gene regulatory networks are molecular interaction networks that control the expression of
genes. These networks play essential roles in all aspects of cellular activity, acting as integra-
tors of cell signalling pathways and acting as one layer of control of the abundance of necessary
proteins in the cell. The transcriptional component of these networks comprises the core tran-
scriptional machinery and numerous condition specific protein transcription factors that bind
promoters of target genes and affect, positively or negatively, the rate of transcription of the
gene. Further control of the effect of the gene and its protein can be mitigated by modification
of the translation rate, protein processing and other biochemical states downstream.

Such networks have therefore been a topic of much study, the wide range of permutations
of transcription factor target gene interactions means experimentally cataloguing them is
expensive and time consuming, though high-throughput methods do exist and are among the
most reliable data sources. Nonetheless the difficulty of these methods have inspired efforts to
infer networks from more tractable and easily performed experiments. Some notable areas have
been the prediction of transcription factor and target gene relationships de novo from models
created by inference from data such as DNA sequence of target genes, binding experiments
such as ChIPSeq and transcript abundance data from microarrays or RNAseq (Wille et al.,
2004, Friedman (2004),Butte et al. (2000),Liang, Fuhrman and Somogyi (1998)). These tools
integrate various information including known binding site information, expression levels and
co-expression profiles to predict regulatory interactions and assemble entire networks.
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The AtGenExpress global stress expression data set (Kilian et al., 2007) is a compendium
of transcript expression studies carried out on the model plant Arabidopsis thaliana during
various abiotic stress challenges including cold, drought, genotoxic, osmotic, oxidative, salt,
UV-B and wounding. The data set was generated with the Affymetrix ATH1 gene chip (Red-
man et al., 2004) which contains probesets representing approximately 23750 genes. This
chip has been widely used with over 14000 samples using it submitted to the GEO expression
omnibus (Soboleva et al., 2012). There are numerous databases of experimentally demon-
strated transcription factor and targets in Arabidopsis, such as AGRIS (Palaniswamy et al.,
2006), PLACE and PlantCARE. The AtRegNet database contains around 4000 confirmed
direct regulatory interactions.

Deep learning models based on neural networks have seen surprisingly good results in
varied classification problems in recent years. Convolutional Neural Networks (CNNs) are a
subclass of neural network that have been applied in image classification and facial recognition
(Krizhevsky, Sutskever and Hinton, 2012, Lawrence et al. (1997)), drug discovery (Wallach,
Dzamba and Heifets, 2015), time series data (Pyrkov et al., 2018) and natural language
processing (Collobert and Weston, 2008). CNNs operate by composing local features into a
larger hierarchical model. They achieve this by convolution of input data, essentially restriction
of the input into smaller filters that are transformed into an output feature map (Lawrence
et al., 1997). The application of these convolution layers downsamples the data while retaining
pattern information and creates filter hierarchies by looking at proportionally larger sections
of the input. Training of these models requires a classified set of data with positive and
negative examples such that the model can learn to discriminate. The expression profiles in
the AtGenExpress data and the known interactions in AtRegNet provide data from which such
classified training sets can be made. As a proof-of-technology experiment I constructed a CNN
from these data. The resulting model has strong predictive power and I document the model
development and an associated web-tool below. The model can be used to predict Arabidopsis
TF/gene relationships in abiotic stress and may be useful for researchers investigating gene
function in abiotic stress.

Methods

Preparation of AtGenExpress abiotic stress microarray data

Affymetrix .cel files were downloaded from Gene Expression Omnibus and processed. All
232 .cel files under GEO accessions GSE33790, GSE33996, GSE5620, GSE5621, GSE5622,
GSE5623, GSE5624, GSE5625, GSE5626, GSE5627 and GSE5628 (see supplemental_-
1_cleaned_cel_file_info.csv for all details of files used). These files were quantile
normalised using RMA (Hobbs et al., 2003) with median polishing. The normalised log-
transformed expression data were used as input data for training sets.

Preparation of training, test and hold-out validation sets from normalised array data

The AtRegNet database was downloaded from Agris Knowledgebase, specifically the file -
http://agris-knowledgebase.org/Downloads/AtRegNet.zip, from this a list of confirmed, direct
regulatory transcription factor and target relationships was extracted - these form the basis of
positive training examples. Arabidopsis Genome Initiative codes (AGI) for genes in AtRegNet
were mapped to Affyemtrix ATH121501 probesets using information in the TAIR AFFY -
AGI mapping in https://www.arabidopsis.org/download_files/Microarrays/Affymetrix/affy_-
ATH1_array_elements-2010-12-20.txt. Expression profiles for each pair of TF/target genes
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were extracted and labelled as positive examples. An equal number of randomly selected
pairs of gene expression profiles were selected and labelled as negative training examples. A
balanced dataset of 8704 training examples was produced in this way.

Code and data

All code for preparation of training sets is provided in a code and data repository at
https://github.com/danmaclean/tf_cnn.

Development of deep neural networks

All neural network models were developed using the keras library (version 2.2.4) in R (ver-
sion 3.5.2), an API for the TensorFlow library (version 1.10). All code was developed in
RStudio (version 1.1.463) and is provided in the code and data repository accompanying this
manuscript.

Development of web application

The web facing version of the tool was developed using the R shiny package (version 1.2.0)
and is hosted on shiny.io at https://danmaclean.shinyapps.io/query_pairs.

Results

Developing a Convolutional Neural Network to classify TF/Target pairs

I extracted expression profiles for the 4351 TF/Target pairs from the normalised expression
data, labelled these as positive training examples and generated a further 4351 random pairs
of expression profiles, to be labelled as negative training examples. This resulted in a tensor
of dimension 8702, 232, 2. The tensor was shuffled, and divide so that 80 % was used
for training, 10 % validation and 10 % final hold-out test (6900, 901, 901 profiles per set,
respectively).

As the individual data are relatively small (2 x 232 matrices) a small model with few layers
was tried. I built a separable CNN with two convolutional layers separated by a Max Pooling
layer, the convolutional layers feed into a single dense layer before the final classification
layer. The relu function was used as the activation in all layers except the final dense which
was sigmoid. The objective function was binary crossentropy and the optimiszer was
RMSprop in all runs. Also a batch size of 512 was used. All runs lasted for 30 epochs of
training. This basic structure is summarised in Figure 1.

Estimating hyperparameters

As a first step it was necessary to estimate appropriate hyperparameters of the candidate CNN
model. I performed evaluations of the model at different filter and unit counts for the CNN
and dense layers. The values were varied through 8,16,32 and 64 and each combination
was tested for accuracy on a hold out validation set at the 30th epoch. The accuracy at
the 30th epoch is presented in Fig 2. The models each showed accuracy greater than 85%
with the highest 91%. In general higher filter and unit counts gave higher hold out validation
accuracy, with the highest being the 64/32 filters per convolutional layer and dense layer.

On inspection of the training history the individual best models could be seen to be
overfitting slightly with increases in loss at the end of the training period (Figure 3 A).
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Figure 1: Schematic of initial small CNN model. 2x232 input matrices are fed into a first
convolutional layer, a maximum pooling layer, a second convolutional layer then a dense
network layer after flattening.
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Figure 2: Hyperparameter scan for varied filter and unit counts for a two CNN and one dense
layer model. Spot size and colours represent accuracy at the 30th epoch.
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Figure 3: Accuracy and Loss profiles over training history for training and validation set for a
model with A) 32,64/32 filters per convolutional layer/dense layer. B) 4,8/4 in the respective
layers.
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Table 1: Top 5 runs of a small CNN network model with optional added batch normalisation
and dropout layers showing configurations and values.
Val Acc Val Loss Norm Layer 1 Used Norm Layer 2 Used Dropout Used Dropout Rate Batch Size Epochs
0.9568 0.1311 FALSE TRUE TRUE 0.01 512 30
0.9545 0.1282 FALSE TRUE FALSE 0.01 512 40
0.9534 0.1147 TRUE TRUE TRUE 0.05 512 30
0.9512 0.1424 FALSE TRUE TRUE 0.01 256 30
0.9512 0.1464 FALSE TRUE TRUE 0.10 256 40

Hence, I selected and tested smaller models manually with slightly lower accuracies to
move into a next tuning phase to investigate the effect of regularizations on the accuracy. I
made a new base model of 4,8 filters in the convolutional layers and 4 in the dense layer as
this showed an accuracy of 0.89 without indication of overtraining.

To finally tune this model I ran further iterations run adding or leaving out batch nor-
malisation layers after convolutional layers and dropout layers after dense layers. I also varied
batch size and epoch number. Table 1 show the result and configuration for the top 5 most
accurate runs.

The most accurate run showed no indication of overtraining at 30 epochs (Figure 3 B. I
selected this as a final model and evaluated on the heretofore unseen hold-out validation set
for which it showed accuracy of 0.95 and loss of 0.137.

Distribution of classification probabilities across the entire training set

A useful model would be one that had a clear separation of classifications for positive and neg-
ative examples, to understand this for my model I examined the distributions of classification
probabilities. I supplied the model with the training data and used it to return probabilities
that each training example was a positive example and cross referenced this with the actual
class. In the vast majority of cases the classification probability was very close to 0 for negative
training examples: 82 percent of points were less than 0.05. Similarly classification probability
was very close to 1 for positive training examples: 86 percent of points were greater than 0.95
(Figure 4).

Assessing the signals the model uses to classify

An advantage of CNNs relative to other deep neural networks is their relative interpretability.
A CNN can be exploited to extract activation maps when provided with data, these maps can
highlight the regions of the input to which the CNN is most strongly responding - IE which
portion of the expression profiles the model is classifying with. To examine the responses of
the model, I ran the training data back through and extracted network activations. These
profiles were smoothed and the single largest peak per profile extracted. The expression
estimates corresponding to these peaks were extracted and clustered. Numbers of clusters
were estimated using principal components analysis and clustering performed with k-means
clustering, k = 3, Figure 5 A. The mean cluster profiles were extracted and can be seen
in Figure 5 B. All the mean profiles show a positive correlation between the target and TF,
indication that this model is classifying based on positively correlated changes in transcript
abundance between target and TF.
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Figure 4: Distribution of model generated probabilities of training examples being a true
interacting pair
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Figure 5: A) Scree plot following principal component analysis of clustered TF/Gene expression
profile in regions of highest CNN activation. B) Mean expression profiles of k-means clusters
with expression profile extracted from region of highest CNN activation
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A webtool incorporating the model so that can be easily used for prediction

To make the tool directly useful to researchers without need for developing code, I created a
small webtool that takes gene lists as input and returns the probability of regulation according
to the model. This model is available at https://danmaclean.shinyapps.io/query_pairs. The
use can supply a list of AGI or Affy format identifiers as potential regulators and as potential
target genes. The tool will then apply the model and return a table indicating the prediction
probability of each interaction. A figure showing the distribution of the interaction probabilities
relative to the training set used in this study is also generated. The user can download the
table in spreadsheet friendly format.

Discussion

In this study I trained and tuned a convolutional neural network using Affymetrix microar-
ray data from Arabidopsis plants subjected to abiotic stress. The network was trained on
expression profile data in a series of small 2 x 232 matrices. The network trained quickly,
in under three minutes on a common laptop configuration. With tuning and hyperparameter
optimisation the network achieved accuracy of 95% on around 6000 training examples without
overfitting. The produced model seemed to be classifying on positive correlations within the
expression profiles. This makes the model a useful tool, in a certain niche. Those who are
interested in predicting positive Arabidopsis TF and target relationships in abiotic stress would
find it useful.

The model is limited and some caveats should be taken seriously. The primary thing to
note is that the activiation patterns I observed were positive, and the model appears only to
classify on these. Negatively correlated patterns will not be predicted as true classes. A true
negative regulator of expression will probably not classify with the model.

A behaviour like this is probably inherited from the training set. Positively correlated
interactions would seem to be the ones most easy to discover and verify and therefore the
most numerous sort of interaction in the biological experiments from which the interaction
data were distilled.

The model could be extended, the relatively small AtGenExpress expression dataset could
be replaced by larger more sensitive and expansive RNAseq datasets for input expression
profiles.

The most important aspect of the work presented here is that it was straightforward to
build and optimise an effective deep learning classifier on a small-ish training set (thousands
rather than millions of training examples) without large compute resources. The work is an
excellent example of how datasets generated by individual laboratories could be utilised in
deep learning. By taking the optimisation strategy and model structure described here as a
starting point many small local datasets could be put to use in myriad classification exercises.
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