Long-Term Outcomes of Pediatric Graves Disease Patients Treated with Anti-Thyroid Drugs: Experience from a Taiwan Medical Center

Short title

Long-term outcomes in children and adolescents with Graves disease

Ya-Ting Chiang^{1,2}, Wei-Hsin Ting^{1,3,4}, Chi-Yu Huang^{1,3}, Shih-Kang Huang¹,

Chon-In Chan¹, Bi-Wen Cheng⁵, Chao-Hsu Lin⁵, Yi-Lei Wu⁶, Chen-Mei Hung⁷,

Hsin-Jung Li⁸, Chia-Jung Chan⁹, Yann-Jinn Lee^{1,3,10,11,12*}

¹Department of Pediatric Endocrinology, MacKay Children's Hospital, Taipei, Taiwan

²Department of Pediatric Endocrinology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan

³Department of Medicine, MacKay Medical College, New Taipei City, Taiwan

⁴ MacKay Junior college of Medicine, Nursing and Management, New Taipei City, Taiwan

⁵ Department of Pediatrics, MacKay Memorial Hospital HsinChu, Hsin-Chu, Taiwan

⁶ Department of Pediatrics, Changhua Christian Hospital, Chang-Hua, Taiwan

⁷ Department of Pediatrics, Hsinchu Cathay General Hospital, Hsin-Chu, Taiwan

⁸ Department of Pediatrics, St. Martin De Porres Hospital, Chiayi, Taiwan

⁹ Chiahung Clinic, Taichung, Taiwan

¹⁰ Department of Medical Research, MacKay Memorial Hospital Tamsui, New Taipei

City, Taiwan

¹¹ Department of Pediatrics, School of Medicine, College of Medicine, Taipei

Medical University, Taipei, Taiwan

¹²Institute of Biomedical Sciences, MacKay Medical College, New Taipei City,

Taiwan

*Corresponding author

E-mail: <u>yannlee@mmh.org.tw</u> (Lee YJ)

¶ These authors contributed equally to this work

1 Abstract

2	Graves disease (GD) is the most common cause of thyrotoxicosis in children and
3	adolescents, accounting for 15% of all thyroid diseases during childhood.
4	Anti-thyroid drugs (ATD) are recommended as the first-line treatment in children and
5	adolescents. However, the remission rate is lower in children than in adults, and the
6	optimal treatment duration and favorite factors associated with remission remain
7	unknown. We aimed to investigate long-term outcomes of pediatric GD patients
8	receiving ATD. We retrospectively reviewed medical charts of 300 pediatric GD
9	subjects, who were initially treated with ATD and followed up for more than one year,
10	from 1985 to 2017 at MacKay Children's Hospital. The 300 patients comprised 257
11	(85.7%) females and 43 (14.3%) males, median age at diagnosis was 11.6 (range
12	2.7-17.8) years, and median follow-up period was 4.7 (range 1.1-23.9) years. Overall,
13	122 patients achieved the criteria for discontinuing ATD treatment, seventy-nine
14	(39.9%) patients achieved remission, with a median follow-up period of 5.3 (range
15	1.5-20.1) years. Patients in the remission group were more likely to be aged < 5 years
16	(remission vs. relapse vs. ongoing ATD; 11.4 vs. 0 vs. 2.6%, P=0.02), less likely to
17	have a family history of thyroid disease (24.1 vs. 42.1 vs. 52.6 %, P=0.001), and had

- 18 lower TRAb levels (42.8 vs. 53.6 vs. 65.1 %, P=0.02). Conclusion: Long-term ATD
- 19 remains an effective treatment option for GD in children and adolescents. Pediatric
- 20 GD patients aged < 5 years, having no family history of thyroid disease and having
- 21 lower TRAb levels were more likely to achieve remission.

22 Introduction

23	Graves disease (GD) is a common disorder in adults, with a prevalence of
24	approximately 0.5-1%. Pediatric patients account for $< 5\%$ of the total number of GD
25	patients [1]. However, GD remains the most frequent cause of thyrotoxicosis in
26	children and adolescents, accounting for 15% of thyroid disease during childhood [2].
27	The incidence increases gradually from young children and peaks in adolescents [3].
28	The optimal treatment option for GD in children and adolescents remains
29	controversial. Current treatment approaches for GD include anti-thyroid drugs (ATD),
30	radioactive iodine and surgery. ATD is usually recommended as the first-line
31	treatment for GD in children and adolescents. However, the remission rate is lower in
32	children than in adults [2, 4, 5]; the optimal treatment duration and the favorite factors
33	associated with remission have not yet been established in children and adolescents
34	[6-8].
35	The issue of how long ATD should be used in pediatric GD is important and
36	warrants further study [5, 9]. In adult GD patients, if remission does not occur after
37	12-18 months of ATD therapy, the chance of remission with prolonged therapy is
38	very low [4, 10]. In the pediatric population, longer treatment duration is associated

39	with a higher remission rate. Lipple reported that the median time to remission with
40	ATD was 4.3 years, and the expected remission rate was 25% every 2 years [11].
41	Leger reported that overall estimated remission rates after withdrawing ATD
42	increased with time and were 20, 37, 45, and 49% after 4, 6, 8, and 10 years follow-up,
43	respectively [6]. A retrospective study in Japan revealed that the remission rate was
44	46.2% after a median duration of 3.8 years [12]. However, long-term remission rate of
45	pediatric GD cases treated with ATD was very low (< 20%), in cohorts from Australia
46	[13] and Denmark [14].
47	Pediatric GD patients with some clinical or laboratory characteristics may have a
48	higher chance of remission. A prospective study in France revealed that younger (age
49	< 5 years), non-Caucasian children with severe initial presentation had a higher
50	chance of relapse and required longer ATD treatment [7]. Another prospective study
51	reported that initial less severe hyperthyroidism and the presence of other
52	autoimmune conditions were remission predictors [6]. A similar study in the USA
53	demonstrated that lower total T3, euthyroidism within 3 months of PTU and older age
54	(age > 14.6 years) were significant remission predictors [8]; however, the largest
55	retrospective study to date did not identify any significant factors to predict remission

56 [12]. These above studies showed no consistent findings and few studies were

- 57 conducted in the Asian population.
- 58 We aimed to investigate the long-term outcomes of pediatric GD patients who
- 59 received ATD and identify probable clinical or laboratory factors associated with
- 60 remission. We documented our 32-year experience in 300 children and adolescents
- 61 with GD. Patients were classified as remission, relapse, and ongoing ATD groups;
- 62 clinical and laboratory characteristics were presented and analyzed.

63 Material and methods

64	We retrospectively reviewed medical charts of 396 GD subjects from 1985 to 2017 at
65	MacKay Children's Hospital. All the patients were diagnosed before 18 years of age.
66	GD was diagnosed based on clinical and laboratory evidence, including thyrotoxicosis,
67	diffuse goiter, with or without ophthalmopathy, elevated free T4/total T4 and
68	suppressed TSH levels, and presence of autoantibodies against TSH receptor [4, 15].
69	Seventy-one patients were followed for less than one year, 6 patients received
70	radioactive therapy and 19 patients received surgery as definite therapy and thus were
71	excluded from our analyses. The remaining 300 patients initially treated with ATD
72	and followed up for > 1 year constituted our study population.
73	We collected the following information from patients' medical charts: age at
74	diagnosis, sex, height, weight, body mass index (BMI), pubertal status, family history
75	of thyroid disease (including autoimmune thyroid disease, goiter, thyroid nodule and
76	thyroid cancer) in third-degree relatives, personal history of other autoimmune disease
77	(type 1 diabetes, myasthenia gravis) or other syndrome (Down syndrome), initial free
78	T4 (fT4), TSH receptor antibody (TRAb) levels, and interval until fT4, TRAb level
79	normalized. All patients were initially treated with carbimazole or methimazole, with

80	a starting dose between 2.5 and 30 mg/day, (0.05-0.80 mg/kg/day) depending on the
81	patients' age, body weight, clinical severity, and initial fT4 levels. PTU was only used
82	when the patients could not tolerate the side effect of carbimazole or methimazole.
83	The dose was subsequently titrated and adjusted to maintain euthyroidism. Patients
84	were initially followed at 2-4 weeks interval and then every 3 months after thyroid
85	function test results normalized. ATD was discontinued if euthyroidism was
86	maintained at a low dose (methimazole \leq 2.5 mg/day) for more than 6-12 months, and
87	the TRAb was near or within the normal range. Remission was defined as the
88	maintenance of euthyroidism \geq 12 months after ATD was discontinued and no
89	recurrence of thyrotoxicosis was recorded during the follow-up period. Relapse was
90	defined as an elevated fT4, suppressed TSH levels together with restarting ATD use.
91	We obtained informed written consent from the parents or guardians of the
92	children, and the study was approved by Mackay Memorial Hospital institutional
93	review board (18MMHIS156e).
0.4	Statistical analysis

94 Statistical analysis

95 We preformed descriptive statistics with categorical variables expressed as

96 percentages and continuous variables as medians (25-75 percentiles) or means \pm SD.

97	Univariate analysis	. A comparis	son of frequ	uencies was	performed	employing the
					p • • • • • • •	•

- 98 chi-square test or Fisher's exact test (in case of expected frequencies < 5). A
- 99 comparison of continuous variables was carried out using One-way ANNOVA or
- 100 Kruskal-Wallis test while multiple groups were compared.
- 101 **Multivariate analysis.** Multivariate logistic regression model was used to identify the
- 102 possible remission predictors. Variables that were associated with remission in the
- 103 univariate analysis and those judged to be potentially clinically relevant were entered
- 104 the model. The variables used in the analysis were the proportion of young patients
- 105 (age < 5 years), the proportion of patients with negative family history, initial fT4
- 106 levels, and TRAb levels at diagnosis. All the statistical analyses were performed using
- 107 SAS software (version 9.4).

108 **Results**

109 The 300) patients comprised 257	(85.7%)	females and 43	(14.3%) r	nales. Their median
-------------	--------------------------	---------	----------------	-----------	---------------------

- age at diagnosis was 11.6 (range 2.7-17.8), and 11 patients (3.7%) were diagnosed
- 111 before the 5 years of age. The age and sex distributions were shown in Fig 1. One
- 112 hundred and twelve patients (37.3%) reported a family history of thyroid disease. The
- 113 median follow-up period of these patients was 4.7 (range 1.1-23.9) years. There were
- 114 102 patients (34%) who were lost follow-up during the study period. Those who were
- 115 lost follow-up had no significant differences in the clinical and laboratory
- 116 characteristics compared with those who remained in the study, except for shorter
- 117 follow-up period (3.7 vs. 5.3 years, *P*=0.004).
- 118

119 Fig 1. Age and sex distribution of children and adolescents with Graves disease

120 (GD) diagnosis.

- 121 The 300 patients consisted of 257 females and 43 males. The median age at diagnosis
- 122 was 11.6 years (range 2.7–17.8 years). The incidence of GD increased markedly
- 123 during adolescence.

125	From 198 patients who continued ATD treatment, ATD treatment was
126	subsequently ongoing in 76 (38.4%) and was categorized as ongoing ATD treatment
127	group. ATD was discontinued in 122 (61.6%) patients who met the criteria for
128	discontinuing ATD treatment. Seventy-nine (39.9%) patients met the remission
129	criteria, with a median follow-up of 5.3 (range 1.5-20.1) years and were classified as
130	the remission group. Thirty-eight (19.2%) patients relapsed after ATD was
131	discontinued, with a median of 0.7 (range 0.08-5.2) years and were assigned to the
132	relapse group. The clinical course of the study population was shown in Fig 2.
100	
133	
133	Fig 2. Clinical course of the study population initially treated with anti-thyroid
	Fig 2. Clinical course of the study population initially treated with anti-thyroid drug (ATD).
134	
134 135	drug (ATD).
134 135 136	drug (ATD). Of the 396 GD patients, 71 were followed for <1 year, 25 received definite therapy,
134 135 136 137	<pre>drug (ATD). Of the 396 GD patients, 71 were followed for <1 year, 25 received definite therapy, and were excluded from our analyses. Of the remaining 300 patients, 102 patients</pre>
134 135 136 137 138	drug (ATD). Of the 396 GD patients, 71 were followed for <1 year, 25 received definite therapy, and were excluded from our analyses. Of the remaining 300 patients, 102 patients were lost to follow-up during the study period. Of the 198 who continued ATD

142 38 (19.2%) experienced a relapse, and 5 (2.5%) were lost to follow-up.

143

144	Patients in the remission group were more likely to be aged < 5 years (remission
145	vs. relapse vs. ongoing ATD; 11.4 vs. 0 vs. 2.6%, <i>P</i> =0.02), less likely to have a
146	family history of thyroid disease (24.1 vs. 42.1 vs. 52.6%, P=0.001), and had lower
147	TRAb levels (42.8 vs. 53.6 vs. 65.1 %, P=0.02), (Table 1). In the remission group,
148	patients aged < 5 years tended to receive ATD for a longer period than those with
149	older age (younger vs. older age group: 7.2 vs. 5.0 years, P=0.28). The other variables
150	including male proportion, the proportion of puberty, height, weight and BMI z score,
151	the proportion of patients with other diseases, initial ATD dose, initial serum fT4, and
152	the interval until fT4 and TRAb levels became normal did not show any significant

153 differences across the three groups.

154 Table 1. Clinical and Biochemical Characteristics of Four Groups: Remission Group, Relapse Group, and Ongoing Anti-Thy	roid Drug
--	-----------

155 Treatment Group

parameters	N	Remission Group, N = 79	Relapse group, N = 38	Ongoing ATD treatment group, N =76	P-value
Age at diagnosis (years)	193	11.7 (8.5-13.6)	11.0 (9.1-15.2)	12.1 (10.3-15.1)	0.11
Age < 5 years, %	193	11.4	0	2.6	0.02*
Sex, % male	193	13.9	13.2	11.8	0.93
% puberty	284	67.5	66.7	81.1	0.12
*Height SDS at diagnosis	165	0.50 (-0.10-1.10)	0.40 (-0.45-1.15)	0.60 (0-1.40)	0.59
*Weight SDS at diagnosis	166	-0.40 (-0.90-0.10)	-0.40 (-0.90-0.40)	-0.20 (-0.90-0.20)	0.79
*BMI SDS at diagnosis	165	-0.80 (-1.20, -0.10)	-0.75 (-1.15, -0.10)	-0.70 (-1.00-0)	0.73
Family history of thyroid	193				
disease, %		24.1	42.1	52.6	0.001*
Other disease, %	193	21.5	10.5	14.5	0.27
Initial ATD dose					
(mg/kg/day)	191	0.41 (0.28-0.50)	0.35 (0.25-0.50)	0.36 (0.24-0.46)	0.18
Initial fT4 (ng/dL)	169	4.23 (3.14-5.58)	4.11 (3.14-5.50)	4.40 (3.37-5.07)	0.91
Initial TRAb, %	164	42.8 (29.2-72.8)	53.6 (30.6-72.6)	65.1 (47.2-77.7)	0.02*
fT4 at end of ATD Tx	113	1.37 (1.17-1.60)	1.39 (1.22-1.53)	NA	0.88
TRAb at end of ATD Tx	103	7.13 (0.84-9.81)	6.57 (3.14-9.28)	NA	0.40
Time until fT4 became					
normal (months)	193	5.0 (2.2-8.7)	3.5 (1.9-4.7)	3.4 (1.9-6.9)	0.13

(years)	183	5.30 (2.90-8.60)	7.00 (5.60-8.20)	4.1 (2.40-6.00)	0.0001
Duration of ATD Rx					
normal (months)	141	31.4 (17.0-60.5)	25.8(14.4-34.3)	24.2 (13.3-35.3)	0.05
Time until TRAb became					

156 Data were Median (25-75 percentile) in continuous variables or percentage in category variables

157 *One-way ANNOVA; Other variables: Kruskal-Wallis Test

- 158 In the multivariate logistic regression model, we further identified patients who
- 159 were aged < 5 years (Odds ratio [OR]: 12.6, 95% confidence interval [CI], 2.19-72.6;
- 160 P = 0.005), had no family history of thyroid disease (OR: 3.75, 95% CI, 1.80-7.81; P
- 161 = 0.0004), and had a lower initial TRAb levels (OR: 0.98, 95% CI, 0.97-0.99; P =
- 162 0.01) as remission predictors in pediatric GD (Table 2).

	Univariate ana	lysis	Multivariate analysis			
Variable	Odds ratio (95% CI)	P value	Odds ratio (95% CI)	I) P value 0.005		
Age < 5 years	7.20 (1.51-34.3)	0.01	12.6 (2.19-72.6)			
No family history of thyroid disease	3.05 (1.62-5.74)	0.001	3.75 (1.80-7.81)	0.0004		
Initial TRAb, %	0.98 (0.97-0.997)	0.01	0.98 (0.97-0.99)	0.01		

Table 2. Factors associated with remission in child and adolescents with Graves disease, multiple logistic regression model

165 **Discussion**

166	In this study, we demonstrated that patients who aged < 5 years, who had no
167	family history of thyroid disease and who had lower TRAb levels were more likely to
168	achieve remission. There were 34% patients who were lost follow-up during the study
169	period. Among patients who continued the ATD treatment, the long-term remission
170	rate in pediatric GD patients was 39.9% after a median of 5.3 years of ATD treatment.
171	Our results suggested that GD patients who aged < 5 years had a higher chance
172	to achieve remission and tended to receive ATD for a longer course. These young
173	children were assumed to have better medical adherence under caregivers'
174	surveillance. Previous studies reported that pre-pubertal children needed a longer
175	medical treatment and had a lower remission rate than pubertal children [16]. Lazar et
176	al. reported that the remission rate was not different between pre-pubertal children and
177	adolescents, but the time to remission tended to be longer in pre-pubertal children [17].
178	Two prospective studies showed that younger GD patients were less likely to achieve
179	remission [8] or more likely to relapse after discontinuing ATD [7]. However, other
180	retrospective studies performed in Japan [12] and Taiwan [18] did not determine age
181	as a remission predictor. Because GD is rare in pre-pubertal children, especially in
182	those aged < 5 years, further studies are needed to clarify the relationship between
183	onset age and remission rate.
184	Our study showed that nearly 40% of pediatric GD patients had a family history
185	of thyroid disease, consistent with previous studies in the literature [6, 7, 12, 19]. Our

186 study also revealed that GD patients with a positive family history of thyroid disease

187 were less likely to achieve remission. A similar study performed in 194 adult GD

188 patients also proved that GD patients with a family history of thyroid disorders were

189 2.5 times more likely not to response to ATD treatment [20]. Although not all studies 190 demonstrated a significant association between thyroid disease family history and the 191 chance of remission [7, 8, 12, 21], our study still implied that family history acts as a 192 remission indicator at the time of GD diagnosis. 193 Consistent with previous reports, our study also demonstrated that GD patients 194 with lower titers of TRAb at diagnosis had a higher chance to remission [7, 21, 22]. 195 TRAb was reported to be well correlated with GD severity and extra-thyroidal 196 manifestations [23], showing concomitancy with the clinical course and being 197 valuable for the diagnosis and management of children with GD [24]. A retrospective 198 study conducted in 115 children aged 3-15 years showed that a TRAb level ≤ 2.5 199 times the upper reference limit, TRAb normalization during ATD and TRAb 200 normalization time may predict further euthyroidism or hypothyroidism after ATD 201 treatment stopped [21]. Pediatric GD patients with non-Caucasian origins, higher 202 TRAb levels, higher free T4 levels, and younger age at diagnosis were reported to 203 have a higher relapse rate [7]. These above studies, combined with our findings, confirmed TRAb as an indicator of GD activity and the predictive role for future 204 205 remission occurrence after medical therapy. 206 Contradictory to adult GD cases, while a fixed course of ATD (no longer than 18 207 months) was recommended [25, 26], most studies showed that a longer ATD 208 treatment duration increased remission rates in pediatric GD [2, 6, 7]. Recent

209 published guidelines therefore suggested a prolonged course of ATD therapy before

210 proceeding to definite therapy [26, 27]. However, the median time to remission

211 reported in the literature was highly variable, and the optimal duration of ATD has not

212 yet been determined. Our treatment protocol resulted in 40% of remission which is

consisted with previous studies [12, 28], after a median of 5.3 years of ATD treatment.

214 As shown in our study, long-term medical therapy resulted in high rates of lost follow 215 up. Some clinicians believe that hypothyroidism is preferable to hyperthyroidism, 216 because it is easier to treat and has a less serious morbidity [29]. However, medical 217 adherence is problematic not only for long-term ATD therapy but also for the 218 thyroxine supplement after hypothyroidism induced by definite therapy [30, 31]. 219 Further long-term, prospective studies are required to determine the optimal duration 220 of ATD treatment for pediatric GD. 221 There were several limitations in our study. The first limitation came from its 222 retrospective nature, and high rates of lost follow up, which highlighted the 223 difficulties in the daily practice. Since pediatric GD patients need a protracted ATD 224 course to attain remission, meticulous and realistic counseling of patients and families 225 should be started from the time of diagnosis [31]. Second, we did not analyze the 226 patients' characteristics who receiving radioactive iodine and total thyroidectomy, 227 because few patients chose definite therapy in our institute, even in the relapse group. 228 Third, the documentation of a family history of thyroid disease is not limited to 229 autoimmune thyroid disease, which might introduce some bias to our estimate. Finally, 230 the definition of remission is euthyroidism for only 12 months after ATD is 231 discontinued. It is possible that patients experienced relapse one year after 232 discontinuing medication. However, previous studies indicated that the risk of relapse 233 declines with times [7, 12]. 234 In conclusion, we identified pediatric GD patients who aged < 5 years, had no 235 family history of thyroid disease and had lower TRAb levels were more likely to 236 achieve remission. These remission predictors helped us to discuss with patients and 237 families in the process of shared decision making and treatment plan. Long-term ATD

238 is still a treatment option for pediatric GD, because our study showed that it resulted

- in a remission rate of 40%, with a median of 5.3 years ATD course. Such a long-term
- treatment course was inevitably associated with a poor medical adherence, realistic
- 241 discussion and consultation should be applied in every newly diagnosed pediatric GD
- 242 patients.
- 243

244 Acknowledgments

- 245 This study was supported by grants RD1050151 from Mackay Medical College; and
- 246 MMH 108-119 and MMH E-108-7 from MacKay Memorial Hospital, Taipei,
- 247 Taiwan.

248 **References**

- 249 1. Abraham-Nordling M, Bystrom K, Torring O, Lantz M, Berg G, Calissendorff J,
- et al. Incidence of hyperthyroidism in Sweden. Eur J Endocrinol.
- 251 2011;165(6):899-905. doi: 10.1530/EJE-11-0548. PubMed PMID: 21908653.
- 252 2. Leger J, Kaguelidou F, Alberti C, Carel JC. Graves' disease in children. Best Pract
- 253 Res Clin Endocrinol Metab. 2014;28(2):233-43. doi: 10.1016/j.beem.2013.08.008.
- 254 PubMed PMID: 24629864.
- 255 3. Lavard L, Ranlov I, Perrild H, Andersen O, Jacobsen BB. Incidence of juvenile
- thyrotoxicosis in Denmark, 1982-1988. A nationwide study. Eur J Endocrinol.
- 257 1994;130(6):565-8. PubMed PMID: 8205255.
- 258 4. DAVIES TF, LAURBERG P, BAHN RS. Hyperthyroid disorders. In: Melmed S,
- 259 MBChB, MACP; , Polonsky KS, MD; , Larsen PR, MD, FRCP; , Kronenberg HM,
- 260 MD, editors. Williams Textbook of Endocrinology, Thirteenth Edition.

261 Philadelphia, PA 19103-2899: Elsevier; 2016. p. 369-415.

- 262 5. Kaguelidou F, Carel JC, Leger J. Graves' disease in childhood: advances in
- 263 management with antithyroid drug therapy. Horm Res. 2009;71(6):310-7. doi:
- 264 10.1159/000223414. PubMed PMID: 19506387.
- 265 6. Leger J, Gelwane G, Kaguelidou F, Benmerad M, Alberti C, French Childhood
- 266 Graves' Disease Study G. Positive impact of long-term antithyroid drug treatment
- 267 on the outcome of children with Graves' disease: national long-term cohort study.
- 268 J Clin Endocrinol Metab. 2012;97(1):110-9. doi: 10.1210/jc.2011-1944. PubMed
- 269 PMID: 22031519.
- 270 7. Kaguelidou F, Alberti C, Castanet M, Guitteny MA, Czernichow P, Leger J, et al.
- 271 Predictors of autoimmune hyperthyroidism relapse in children after

272		discontinuation of antithyroid drug treatment. J Clin Endocrinol Metab.
273		2008;93(10):3817-26. doi: 10.1210/jc.2008-0842. PubMed PMID: 18628515.
274	8.	Glaser NS, Styne DM, Organization of Pediatric Endocrinologists of Northern
275		California Collaborative Graves' Disease Study G. Predicting the likelihood of
276		remission in children with Graves' disease: a prospective, multicenter study.
277		Pediatrics. 2008;121(3):e481-8. doi: 10.1542/peds.2007-1535. PubMed PMID:
278		18267979.
279	9.	Rivkees SA. Pediatric Graves' disease: controversies in management. Horm Res
280		Paediatr. 2010;74(5):305-11. doi: 10.1159/000320028. PubMed PMID: 20924158.
281	10.	Weetman AP. Graves' hyperthyroidism: how long should antithyroid drug therapy
282		be continued to achieve remission? Nat Clin Pract Endocrinol Metab.
283		2006;2(1):2-3. doi: 10.1038/ncpendmet0068. PubMed PMID: 16932244.
284	11.	Lippe BM, Landaw EM, Kaplan SA. Hyperthyroidism in children treated with
285		long term medical therapy: twenty-five percent remission every two years. J Clin
286		Endocrinol Metab. 1987;64(6):1241-5. doi: 10.1210/jcem-64-6-1241. PubMed
287		PMID: 3571426.
288	12.	Ohye H, Minagawa A, Noh JY, Mukasa K, Kunii Y, Watanabe N, et al.
289		Antithyroid drug treatment for graves' disease in children: a long-term
290		retrospective study at a single institution. Thyroid. 2014;24(2):200-7. doi:
291		10.1089/thy.2012.0612. PubMed PMID: 23926918.
292	13.	Jevalikar G, Solis J, Zacharin M. Long-term outcomes of pediatric Graves' disease.
293		J Pediatr Endocrinol Metab. 2014;27(11-12):1131-6. doi:
294		10.1515/jpem-2013-0342. PubMed PMID: 24945422.
295	14.	Havgaard Kjaer R, Smedegard Andersen M, Hansen D. Increasing Incidence of
296		Juvenile Thyrotoxicosis in Denmark: A Nationwide Study, 1998-2012. Horm Res

297	D 1' /	0015 04(0) 1(10 11 50 000	10000 D 11	Med PMID: 261	110/0
70.7	Doodiotr		11 / 101	• 1/1 1 1 5 (1// 1/ 1/ 1	/1211005 Durb		11067
191	Раешан		1/-/ (10)	101139/000	410901 600		11907

- 298 15. Barlow AB, Wheatcroft N, Watson P, Weetman AP. Association of
- HLA-DQA1*0501 with Graves' disease in English Caucasian men and women.
- 300 Clin Endocrinol (Oxf). 1996;44(1):73-7. Epub 1996/01/01. PubMed PMID:
- 301 8706297.
- 302 16. Shulman DI, Muhar I, Jorgensen EV, Diamond FB, Bercu BB, Root AW.
- 303 Autoimmune hyperthyroidism in prepubertal children and adolescents:
- 304 comparison of clinical and biochemical features at diagnosis and responses to
- 305 medical therapy. Thyroid. 1997;7(5):755-60. doi: 10.1089/thy.1997.7.755.
- 306 PubMed PMID: 9349579.
- 307 17. Lazar L, Kalter-Leibovici O, Pertzelan A, Weintrob N, Josefsberg Z, Phillip M.
- 308 Thyrotoxicosis in prepubertal children compared with pubertal and postpubertal
- patients. J Clin Endocrinol Metab. 2000;85(10):3678-82. doi:
- 310 10.1210/jcem.85.10.6922. PubMed PMID: 11061522.
- 311 18. Leu SW, Chi CS, Shu SG. Outcome of antithyroid medication and radioiodine
- therapy in pediatric Graves' disease. Acta Paediatr Taiwan. 2003;44(4):220-6.
- 313 PubMed PMID: 14674226.
- 314 19. Manji N, Carr-Smith JD, Boelaert K, Allahabadia A, Armitage M, Chatterjee VK,
- et al. Influences of age, gender, smoking, and family history on autoimmune
- thyroid disease phenotype. J Clin Endocrinol Metab. 2006;91(12):4873-80. doi:
- 317 10.1210/jc.2006-1402. PubMed PMID: 16968788.
- 20. Dauksiene D, Dauksa A, Mickuviene N. Independent pretreatment predictors of
 Graves' disease outcome. Medicina (Kaunas). 2013;49(10):427-34. PubMed
 PMID: 24709784.
- 321 21. Gastaldi R, Poggi E, Mussa A, Weber G, Vigone MC, Salerno M, et al. Graves

000	1.	•	1 .1 1	.1	• 1	· •	1	1		. • 1	1.		•	•
322	disease	1n c	hildren.	thyro	1d-	stimu	lating	hormone	recentor	antibo	dies	as r	emise	sion

323 markers. J Pediatr. 2014;164(5):1189-94 e1. doi: 10.1016/j.jpeds.2013.12.047.

324 PubMed PMID: 24518168.

- 325 22. Vitti P, Rago T, Chiovato L, Pallini S, Santini F, Fiore E, et al. Clinical features of
- 326 patients with Graves' disease undergoing remission after antithyroid drug
- treatment. Thyroid. 1997;7(3):369-75. doi: 10.1089/thy.1997.7.369. PubMed
- 328 PMID: 9226205.
- 329 23. Diana T, Brown RS, Bossowski A, Segni M, Niedziela M, Konig J, et al. Clinical
- relevance of thyroid-stimulating autoantibodies in pediatric graves' disease-a
- multicenter study. J Clin Endocrinol Metab. 2014;99(5):1648-55. doi:
- 332 10.1210/jc.2013-4026. PubMed PMID: 24517152.
- 24. Shibayama K, Ohyama Y, Yokota Y, Ohtsu S, Takubo N, Matsuura N. Assays for
 thyroid-stimulating antibodies and thyrotropin-binding inhibitory
- immunoglobulins in children with Graves' disease. Endocr J. 2005;52(5):505-10.
- 336 PubMed PMID: 16284425.
- 337 25. Abraham P, Avenell A, Park CM, Watson WA, Bevan JS. A systematic review of
- drug therapy for Graves' hyperthyroidism. Eur J Endocrinol. 2005;153(4):489-98.
- doi: 10.1530/eje.1.01993. PubMed PMID: 16189168.
- 26. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016
- 341 American Thyroid Association Guidelines for Diagnosis and Management of
- 342 Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid.
- 343 2016;26(10):1343-421. doi: 10.1089/thy.2016.0229. PubMed PMID: 27521067.
- 344 27. Committee on Pharmaceutical Affairs JSfPE, the Pediatric Thyroid Disease
- 345 Committee JTA, Minamitani K, Sato H, Ohye H, Harada S, et al. Guidelines for
- the treatment of childhood-onset Graves' disease in Japan, 2016. Clin Pediatr

- 347 Endocrinol. 2017;26(2):29-62. doi: 10.1297/cpe.26.29. PubMed PMID: 28458457;
- 348 PubMed Central PMCID: PMCPMC5402306.
- 349 28. Azizi F, Amouzegar A. Management of thyrotoxicosis in children and adolescents:
- 350 35 years' experience in 304 patients. J Pediatr Endocrinol Metab.
- 351 2018;31(2):159-65. doi: 10.1515/jpem-2017-0394. PubMed PMID: 29306930.
- 352 29. Leger J, Carel JC. Hyperthyroidism in childhood: causes, when and how to treat. J
- 353 Clin Res Pediatr Endocrinol. 2013;5 Suppl 1:50-6. doi: 10.4274/jcrpe.854.
- PubMed PMID: 23154161; PubMed Central PMCID: PMCPMC3608005.
- 355 30. Kourime M, McGowan S, Al Towati M, Ahmed SF, Stewart G, Williamson S, et
- al. Long-term outcome of thyrotoxicosis in childhood and adolescence in the west
- 357 of Scotland: the case for long-term antithyroid treatment and the importance of
- initial counselling. Arch Dis Child. 2018;103(7):637-42. doi:
- 359 10.1136/archdischild-2017-313454. PubMed PMID: 29269558; PubMed Central
- 360 PMCID: PMCPMC6047164.
- 361 31. Cheetham T, Lane L. Graves' disease. Time to move on. Arch Dis Child. 2018.
- doi: 10.1136/archdischild-2017-314486. PubMed PMID: 29348117

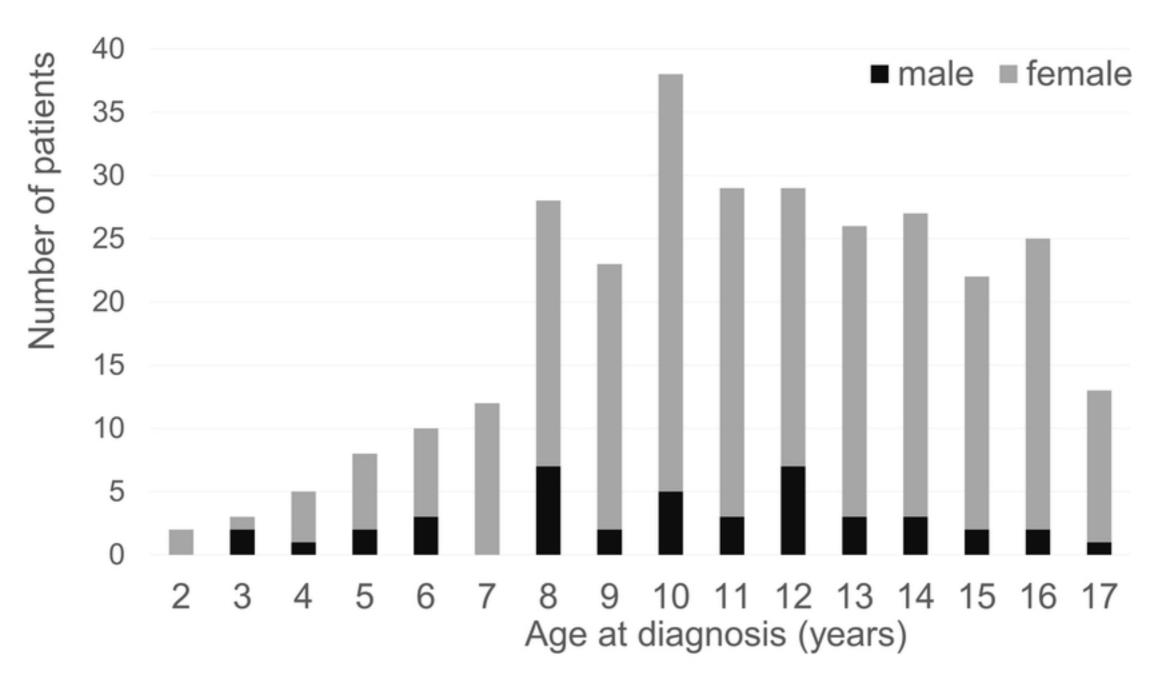
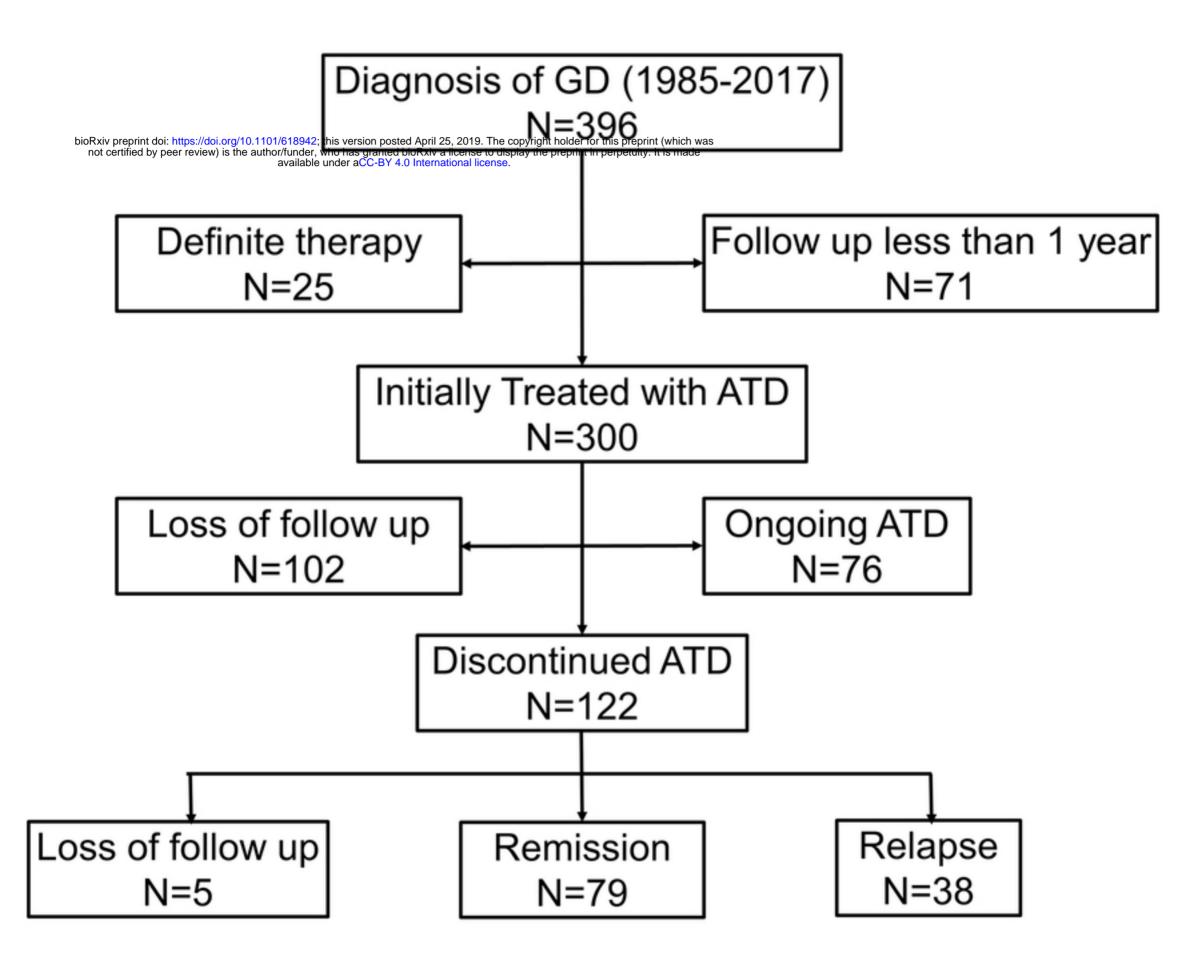



Fig1

Fig2