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Abstract 32 

         Pathogens play an important role in the evolution of plant populations, but genetic 33 

mechanisms underlying disease resistance may differ greatly between geographic areas as well 34 

as over time. Local adaptation is thought to be an important step in plant evolution, and may be 35 

impacted by differential pathogen pressures in concert with abiotic factors. This study uses 36 

locally adapted ecotypes of the native perennial switchgrass (Panicum virgatum) to examine the 37 

temporal and spatial variation in the genetic architecture of resistance to fungal pathogens, 38 

namely switchgrass leaf rust (Puccinia novopanici). To identify loci underlying variation in 39 

pathogen resistance in switchgrass, we scored rust damage across an outcrossed mapping 40 

population at eight locations across the central United States from southern Texas to Michigan. 41 

We followed rust progression at these sites for three years and mapped quantitative trait loci 42 

(QTLs) using function-valued transformations of rust progression curves. Overall, we mapped 51 43 

QTLs that varied in presence and strength over the three-year period. Two large-effect QTLs 44 

were consistently associated with variation in rust progression in multiple sites and years, and are 45 

therefore potentially the result of the same underlying resistance genes. Interestingly, these two 46 

large-effect QTLs were almost exclusively detected in northern sites. This pattern could be 47 

caused by geographic difference in genetic architecture. The distribution of rust strains or 48 

variation in climatic conditions across the field sites could result in genotype-by-environment 49 

interactions in efficacy of rust resistance loci. Beyond reducing rust damage by 34%, the 50 

beneficial alleles at the two loci also increased biomass by 44%, suggesting a direct benefit by 51 

pleiotropy or indirect benefit through genetic linkage. Our results suggest an important role for 52 

fungal pathogens in the local adaptation of switchgrass and illustrate an influential geographic 53 

component of the genetic architecture of plant disease resistance. 54 

  55 

Introduction 56 

 Understanding the factors that determine how well a particular population is adapted to 57 

its environment is a major goal of evolutionary biology. Plant populations often exhibit local 58 

adaptation, in which populations are more successful in their local environments than foreign 59 

genotypes in that environment (Leimu & Fisher 2008; Kawecki & Ebert 2004). Traditional 60 

studies of local adaptation have focused on the abiotic factors that contribute to differential 61 

population success (e.g. Clausen et al. 1940). Recent advances in molecular biology have 62 
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allowed researchers to directly link abiotic stresses to genetic differences between populations, 63 

showing variation in the genetic basis of local adaptation (McKay et al. 2003; Lowry & Willis 64 

2010; Fournier-Level et al. 2011; Price et al. 2018; He et al. 2018). However, biotic interactions 65 

have been less-studied in this context, but may be essential for explaining variation in local 66 

adaptation (Macel et al. 2007; Grøndahl & Ehlers 2008; Crémieux et al. 2008). Pathogens can 67 

impose strong disruptive selection on plant populations when they are constrained in the areas 68 

they infect, and therefore shape local adaptation (Giraud et al. 2017; Mursinoff & Tack 2017). 69 

Therefore, a full understanding of plant adaptation requires characterization of the genetic basis 70 

of local adaptation to pathogens in conjunction with the abiotic environment.  71 

Molecular coevolution between microbe and host has been documented throughout the 72 

tree of life (Hooper & Gordon 2001; Gagneux et al. 2006; Alfano & Collmer 2004; Dodds et al. 73 

2006) and is an important tool to understand large-scale evolution (Moran et al. 2008; 74 

Woolhouse et al. 2002). The most basic genetic mechanism underlying this dynamic is a gene-75 

for-gene interaction, whereby infection success is determined by variation at a single locus in 76 

both the pathogen and host (Agrios 1997; Kniskern & Rausher 2006). In the host, resistance (R) 77 

genes usually code for proteins that recognize either the direct product of a single pathogen gene 78 

or some downstream protein in its signaling pathway (Jones & Dangl 2006). Pathogen genes that 79 

have a corresponding R-gene in their host are termed ‘avirulence’ genes because their presence 80 

means that plant resistance will be effective. Plant R-gene products trigger a cascade of changes 81 

in response to the avirulence gene that may result in the hypersensitive response and systemic 82 

acquired resistance (Kniskern & Rausher 2006). The hypersensitive response (HR) is a local 83 

upregulation of various protective mechanisms, including production of reactive oxygen species 84 

(ROS) and free radicals that may kill a pathogen, but typically at the cost of cell death and 85 

possible loss of fitness and growth (Tian et al. 2003; Jones & Dangl 2006). Systemic acquired 86 

resistance (SAR) is more akin to an innate immune response in vertebrates, whereby pathogen 87 

recognition molecules are increased in expression throughout the plant, improving resistance to 88 

later infections (Jones & Dangl 2006). SAR also shows a fitness cost, but has been demonstrated 89 

to maintain fitness under disease pressure (Traw et al. 2007).  90 

The gene-for-gene coevolutionary model is appealingly simple and can sometimes 91 

explain the pattern of race-specific resistance in many plant species (e.g. van Leur et al. 1989). 92 

However, quantitative resistance may also evolve, whereby resistance is governed by allelic 93 
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composition at several to many loci (Geiger & Heun 1989; Agrios 1997; Young 1996). These 94 

mechanisms are typically more complex, involving polygenic adaptations for morphological or 95 

phenological changes, production of antimicrobial compounds, and modification of effector 96 

targets (Niks et al. 2015). Studies have found several examples of both gene-for gene resistance 97 

(Kniskern & Rausher 2006; Bourras et al. 2016), and quantitative resistance (Quesada et al. 98 

2010), but little consensus on the factors that determine which will evolve in a particular system. 99 

Rather, it appears that the expression of host resistance as well as parasite virulence are 100 

environmentally-dependent traits, not stable phenotypes as has been traditionally assumed 101 

(Penczykowski et al. 2016). Since resistance mechanisms are generally investigated under either 102 

stable laboratory conditions or at a single field site, it is challenging to breed for durable 103 

resistance, resistance that prevents disease in many locations and for more than a few years 104 

(Mundt 2014). Addressing the environmental variation in the genetic architecture of plant 105 

disease resistance requires an experiment replicated over both time and space. 106 

The prairie grass switchgrass (Panicum virgatum) and its obligate fungal pathogen, 107 

switchgrass leaf rust (Puccinia novopanici), are an ideal system to study how loci contributing to 108 

pathogen resistance vary across space. Panicum virgatum L. is a long-lived, polyploid, C4, 109 

perennial grass native to North America east of the Rocky Mountains from northern Mexico to 110 

southern Canada (Gleason and Cronquist 1991). It is a common prairie and pasture grass and is 111 

grown as both a forage crop and as a bioenergy feedstock (Casler 2012; Parrish et al. 2012), and 112 

has become an important study system for ecological specialization. P. virgatum is split into two 113 

locally adapted ecotypes, upland and lowland (Morris et al. 2011; Lowry et al. 2014; Milano et 114 

al. 2016). The upland ecotype is more common in northern North America, and exhibits small 115 

stature (up to 190 cm) and low pathogen resistance (Casler 2012; Uppalapati et al. 2013; Milano 116 

et al. 2016; Lovell et al. 2016). In contrast, the more southerly lowland ecotype is large (up to 117 

285 cm) and is more resistant to fungal pathogens (Casler 2012; Uppalapati et al. 2013; Milano 118 

et al. 2016; Lovell et al. 2016). While the lowland ecotype produces more biomass, it also has 119 

lower freezing tolerance (Lee et al. 2014; Peixoto & Sage 2016), possibly explaining the rarity of 120 

lowland ecotypes in more northern climates. 121 

Since P. virgatum ecotypes differ in their susceptibility to rust infection, this host-122 

pathogen system is useful for testing the role of local variation in the evolution of resistance. 123 

Switchgrass is infected with at least five species of rust (Puccinia spp.; Demers et al. 2017), but 124 
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Puccinia novopanici is thought to be dominant in the central US (Gary Bergstrom, pers. obs.). P. 125 

novopanici is a basidiomycete fungi that infects only living leaf tissue of P. virgatum. As such, 126 

these fungi are thought to be extirpated from northern populations every winter. In closely-127 

related and well-studied wheat rust (P. triticana), wind-borne spores blow from warm refugia in 128 

southern Texas across the Great Plains every summer in what is known as the “Puccinia 129 

pathway” (Eversmeyer & Kramer 2000). While this has not been directly examined for 130 

switchgrass rust, it is the dominant explanation for epidemiological patterns, and fits with our 131 

observations. Rust infection is virtually inevitable in switchgrass stands in North America by the 132 

late summer, though damage is less severe in varieties from the lowland ecotype.  133 

Over the range of switchgrass in North America, plant-pathogen interactions occur in a 134 

wide range of abiotic conditions. The environmental dependence of resistance can have 135 

important consequences for disease prediction and breeding for durable resistance (McDonald & 136 

Linde 2002; Michelmore et al. 2013). In Nicotiana, for instance, elevated temperature inhibits 137 

plant defense responses, prompting a need for development of heat-resistant R-genes (Zhu et al. 138 

2010). The reasons for altered pathogenicity in different climates can be due to failure of plant 139 

defenses as a result of multiple causes, including stress (Zhu et al. 2010), promotion of beneficial 140 

pathogen conditions (Doke 1983), and variation in pathogen ecology (Weller et al. 2002). While 141 

there have been few studies of the environmental niche of switchgrass rusts, closely related 142 

wheat rusts can offer some clues. In wheat stripe rust (P. striiformis), resistance genes are 143 

temperature-dependent (Fu et al. 2009). Further, it is well-established that variation in humidity 144 

can greatly impact the infection by foliar fungal pathogens (Magarey et al. 2005), and may 145 

therefore play a role in plant resistance. Thus, over the geographic range of the switchgrass-rust 146 

interactions, variation in the abiotic environment may play an important role in influencing both 147 

plant defenses and pathogen virulence.  148 

         The primary goal of our study was to characterize the genetic architecture of switchgrass 149 

resistance to rust pathogens to better understand the causes of pathogen-mediated local 150 

adaptation. To overcome past limitations due to environmental and temporal variation in host-151 

pathogen relationships, we measured fungal resistance over three years at a continental scale. We 152 

planted clonally replicated quantitative trait locus (QTL) mapping populations at eight sites 153 

across more than 7000 km of latitude to map QTLs for rust resistance. We first tested whether 154 

rust resistance is controlled by large-effect loci corresponding to specific pathogens in a gene-155 
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for-gene model or by small-effect loci in a polygenic resistance model. The geographic patterns 156 

of QTL presence and strength allowed us to fully summarize the spatial distribution of pathogen 157 

resistance. Therefore we were able to test the degree to which resistance exhibits a genotype-by-158 

environment interaction, or is homogeneously expressed. In addition, we assessed the 159 

quantitative impact of those QTLs on resistance and other morphological and fitness traits to 160 

determine the evolutionary impacts of pathogen resistance.  We hypothesized that resistance 161 

alleles would have evolved in lowland ecotypes and would be correlated with morphological 162 

differences between ecotypes, such as biomass and tiller count. 163 

   164 

Methods 165 

Development of mapping populations 166 

         To identify loci controlling variation in rust progression, we used a previously developed 167 

a four-way phase-known (pseudo-testcross) population (for full cross details, see Milano et al. 168 

2016). We clonally divided the outbred populations by manually splitting rhizomes at the 169 

Brackenridge Field Laboratory in Austin, TX. In May-July of 2015, the F0, F1, and F2 clones 170 

were potted, moved by truck, and transplanted at eight sites (Figure 1) in Kingsville, TX; Austin, 171 

TX; Temple, TX; Overton, TX; Columbia, MO; Manhattan, KS; Mead, NE; and Hickory 172 

Corners, MI. We assigned plants randomly to a honeycomb design, with 1.56 m between each 173 

plant. To reduce edge effects, we planted a border of lowland plants around the plot that were not 174 

measured experimentally. We watered plants by hand in 2015 to facilitate establishment. To 175 

develop a linkage map for QTL mapping we genotyped 431 second-generation genotypes by 176 

whole genome resequencing (for full details, see Lowry et al. 2019). 177 
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 178 

Figure 1: Locations of experimental sites in central North America. KING: Kingsville, TX; 179 

PKLE: Austin, TX; TMPL: Temple, TX; OVTN: Overton, TX; CLMB: Columbia, MO; MNHT: 180 

Manhattan, KS; LINC: Mead, NE; KBSM: Hickory Corners, MI.  181 

 182 

Phenotyping 183 

         At each site we scored the presence of leaf rust in 2016, 2017, and 2018. We used a 184 

method developed for rust on wheat (Triticum aestivum; McNeal et al. 1971; Roelfs et al. 1992), 185 

which translates well to switchgrass and has been used in previous studies (Uppalapati et al. 186 
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2013). At each site, we scored rust on a 0-10 scale based on the total proportion of the canopy 187 

covered in rust spores, a score which we have defined as ‘rust damage’ for this study (Figure 2).  188 

 189 

 190 
Figure 2: A. Heavily infected single leaf. B. Lightly infected small plant. 191 

 192 

In conjuction, we used a simple resistance definition as 1 – rust damage (Simms & Triplett 193 

1994). Other fungal pathogens such as anthracnose and Bipolaris were present in plots, but were 194 

generally less common than rust and were not reflected in our ratings.  195 

         The effort extended to phenotyping rust damage varied among sites and years due to 196 

logistical challenges. However, for the most part, sampling began three weeks after green-up (the 197 

point at which ~50% of plants had emerged from the soil) and continued weekly until damage 198 

stopped increasing (Figure 3). Over three years, this resulted in over 149,000 rust ratings, which 199 

were used for the QTL analyses. In addition, we measured other morphological and 200 

physiological traits at all sites, including the number of tillers, weekly plant height, date of first 201 

flowering, and end-of-season aboveground biomass (see Milano et al. 2016 and Lowry et al. 202 

2019 in review for details of this phenotyping effort).  203 
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 204 

Figure 3: Rust progression curves in 2016. Black lines show smoothed mean rust values for 205 

sampled dates, black dotted lines show fitted logistic curves to sampled data. Green and brown 206 
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vertical lines show green-up date and date of first flowering, respectively.  (2017 & 2018 in 207 

Supp.) 208 

 209 

Rust abundance and composition 210 

Visual pathogen scoring regimes are well known to be subject to statistical artifacts 211 

(Lesaffre et al. 2012) and our data were no exception. Pathogen scores followed a tail-inflated 212 

(“U”-shaped) distribution. Therefore, we used nonparametric Wilcoxon signed-rank and 213 

Kruskal-Wallis tests using the functions wilcox.test and kruskal.test in the stats package of R to 214 

test the differences in damage between lineages, years, and sites (R core team 2018). To test for 215 

cytoplasmic effects on rust prevalence, we compared rust scores between F2 individuals with 216 

maternal cytoplasm from upland and lowland F1s, also with the aforementioned nonparametric 217 

tests. 218 

  219 

Genomic architecture 220 

         We first mapped QTLs using traditional QTL mapping on pathogen ratings for each 221 

individual time point. Raw pathogen ratings were processed in R (v3.4; R core team 2018) using 222 

both packages qtl and funqtl (Broman et al. 2003; Kwak et al. 2016). To examine QTL effects 223 

over time, we scanned for QTLs using Haley-Knott regression for each site by year combination, 224 

with each time point as a separate trait using the functions scanone in qtl and geteffects in funqtl 225 

(Broman et al. 2003; Kwak et al. 2016). 226 

We additionally examined QTLs controlling the overall progression of rust by modeling 227 

damage as a function-valued trait (Kwak et al. 2014; 2016). For each individual, we fit a curve to 228 

rust damage ratings using the R package funqtl (Kwak et al. 2016). This method has the 229 

advantage of decreasing bias introduced by differences among raters at different sites by using 230 

the parameters of an damage curve as traits, rather than the absolute rating values. In addition, it 231 

overcomes several statistical challenges of QTL mapping of time-valued traits by replacing trait 232 

data with a smoothed approximation, then applying functional principal component analysis 233 

(FPCA) as a dimension-reduction technique (Kwak et al. 2016). QTLs are then mapped for a 234 

small number of principal components (PCs; Kwak et al. 2016). These PCs represent the shape 235 

of the pathogen damage curve of rust, and therefore include both the timing and rate of infection 236 

spread. Previous studies have used area under disease progress curve (AUDPC) measurements to 237 
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quantify resistance (Jeger & Viljanen-Rollinson 2001). AUDPC is robust and useful, but may 238 

show bias when infection timing differs among sites (Jeger & Viljanen-Rollinson 2001). FPCA 239 

generally shows the same results as AUDPC, but is less impacted by phenology differences. We 240 

used the first four PCs to map QTLs, and combined their effects by taking the mean LOD 241 

(logarithm of the odds) score, the SLOD score, at each genomic position (Kwak et al. 2016). 242 

Then we conducted 1000 permutations to calculate a penalty for the SLOD score that reduces the 243 

rate of inclusion of extra loci to 5% (Broman & Sen 2009). We examined geographic and 244 

temporal variation by mapping QTLs separately for each site and year, but we also generated a 245 

combined test that summarizes variation in this experiment. For this test, we summed SLOD 246 

scores across multiple sites and years, and concatenated permutations to generate a critical 247 

SLOD cutoff. We produced all plots using funqtl and ggplot2 (Kwak et al. 2016; Wickham & 248 

Wickham 2007). 249 

Finally, we estimated the allele-specific effects of the significant QTLs we discovered in 250 

our study. In the four-way cross design, second-generation offspring can express four possible 251 

allele combinations, L1_L2, U2_L1, U1_L2, or U1_U2. These represent alleles from each of the 252 

four parents (lowland AP13: L1; lowland WBC: L2; upland DAC: U1; and upland VS16: U2). 253 

For each locus, we compared the pathogen scores for the individuals with the “resistant” QTL 254 

alleles to those with the “susceptible” alleles. We additionally made this comparison for 255 

morphological traits including biomass, flowering time, tiller count, and green-up date. We 256 

tested for difference in means using nonparametric Wilcoxon signed-rank tests for pathogen 257 

ratings, and a two-sample t-test for all morphological traits. 258 

  259 

Results 260 

  261 

Rust abundance and composition 262 

Though infection timing varied, rust was present at all sites throughout the study period 263 

(Figure 3). The largest genetic source of variation was between upland and lowland F0 264 

(grandparental) plants, with upland plants experiencing 39.15% more rust damage (W = 1.15e7, 265 

p < 0.0001). Rust damage differed between generations in the cross (χ2 = 656.98, p < 0.0001), 266 

with F0 plants showing the least amount of rust, and F1 plants the greatest (Figure S1). Rust 267 

damage was negatively correlated with green-up date, biomass, flowering time, height, and tiller 268 
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count (Figure S2). Field sites differed significantly in mean rust damage across years (χ 2 = 269 

1.99e5, p < 0.0001), though this was confounded by differing sampling periods across sites. 270 

Mean rust damage declined in almost every site each year (Figure S3), decreasing by 19.75% in 271 

2017 and 30.74% in 2018. This change correlates with biomass increases of 85.64% in 2017 and 272 

46.89% in 2018. Our cross design allowed us to test the phenotypic effect of maternal cytoplasm, 273 

the difference between second-generation plants with an upland dam and those with a lowland 274 

dam. We compared rust scores between second-generation individuals with maternal cytoplasm 275 

from upland and lowland F1s. There was a cytoplasmic effect (W = 1.72e9, P = 0.0059), but rust 276 

scores were only 1.33% higher in plants with lowland cytoplasm (Figure S1). 277 

 278 

Genomic architecture 279 

Since we collected data on pathogens over several weeks at all sites, we were able to 280 

examine how the genomic architecture of resistance changed over a single season at each site by 281 

scanning for QTLs as if each time point were a distinct phenotype. We found extensive variation 282 

between sites, but some patterns were shared across several sites. We identified QTLs for 283 

resistance at multiple sites on chromosomes 9N and 3N, though they differed in effect direction 284 

(Milano et al. 2016). That is, the allele from a lowland grandparent decreased rust damage on 285 

chromosome 9N, but increased damage on chromosome 3N. These QTLs had significant effects 286 

for ~40-50 days, with the 9N QTL becoming detectable about one week after the 3N QTL 287 

(Figure 4 and Supp.). Overall patterns were similar across years, although the collection of fewer 288 

time points in 2017 resulted in lower-resolution data. 289 
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 290 

Figure 4: Time-series QTL effects for Columbia, MO in 2016 (remaining sites & years in 291 

Supp.). Blue indicates that the lowland allele decreases rust, red indicates that the upland allele 292 

decreases rust. Color intensity is proportional to LOD score, or the strength of the QTL.  293 

 294 

         We mapped 51 total QTLs using function-valued traits (Figure 5). Overall, we found the 295 

highest number of QTLs at the most northen site (KBSM), though there was not a clear 296 

geographic pattern in QTL number. Additionally, there was variation between years, with the 297 

greatest number of QTLs in 2016 (24 QTLs), and fewer in 2017 and 2018 (15 and 12, 298 

respectively). We found the same large-effect QTLs using function-valued traits to map overall 299 

QTLs (Figure 5). Across several sites and all years, QTLs on chromosomes 3N and 9N had the 300 

highest LOD scores (Figure 5), indicating close associations between loci and pathogen 301 

resistance, and each explained ~14% of the variation in rust damage.  302 
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Given their strength and consistency across sites and years, we considered these the most 304 

important QTLs. These large-effect QTLs differed greatly between northern sites and southern 305 

sites. LOD scores were significant at the large-effect sites in northern sites 17 times over the 306 

three years, but only four times in southern sites.  307 

  308 

Allelic effects 309 

         We calculated allele-specific effects for each QTL in our dataset to quantify the direction 310 

and strength of each QTL. To understand the alleles underlying each QTL, we categorized them 311 

into either “Ecotype-specific” or “Genotype-specific” based on the resistance of each 312 

grandparental allele (Figure 6bc; Milano et al. 2016). For instance, if both upland alleles showed 313 

higher rust damage, and both lowland alleles low rust damage, this QTL would be considered 314 

ecotype-specific. If only one of the grandparental genotypes was resistant or susceptible, we 315 

scored that as genotype-specific. We added an additional category, “Cross-specific,” for effects 316 

that were shown in particular upland/lowland combinations (Figure 6a). A majority of loci 317 

showed genotype-specific effects (31 out of 51). Relatively fewer showed ecotype-specific 318 

effects (16 out of 51) and cross-specific effects were rarest (4 out of 51). In addition, we counted 319 

the number of resistance QTLs for each grandparental allele (Figure 6d). Many loci were in the 320 

same direction as the parental divergence, with both lowland alleles causing a reduction in rust 321 

prevalence (23 out of 51), but the same number showed the lowest rust with an upland/lowland 322 

allele combination. A few (5 out of 51) showed opposite pattern, with the least rust with both 323 

upland alleles (Figure 6e). 324 
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 325 

 326 

 327 

Figure 6: Pattern of allele-specific effects for significant QTLs. A-C: Examples of three possible 328 

patterns of allele-specific effects, cross-specific, genotype-specific, and ecotype-specific. D: 329 

Frequency of all QTLs showing the lowest rust score. E: Frequency of each possible pattern of 330 

allele-specific effects for all QTLs.  331 

 332 

We then calculated the combined effects of the two large-effect QTLs we identified by 333 

examining only individuals containing either resistant or susceptible combinations of alleles at 334 

these loci. For instance, the allele from the upland VS16 grandparent was most resistant at the 335 

9N locus, but the allele from the lowland WBC3 grandparent was most resistant at the 3N, so the 336 

individuals with both of these alleles had the “resistant” combination of alleles. We also chose 337 

the individuals with alleles that increased rust, that had the “susceptible” combination of alleles. 338 

By comparing these individuals, we estimated the phenotypic impacts of our large-effect QTLs. 339 
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The effects of QTLs were most apparent early in the season, when the “resistant” combination 340 

resulted in 34.08% lower rust scores (W = 56156, P = 0.0003). Later in the summer, the 341 

difference between resistant and susceptible decreased to 6.22%, but variation also decreased (W 342 

= 41666, P < 0.0001). We repeated this comparison for several other morphological variables. 343 

The resistance alleles increased biomass by 44.3% (t = 5.44, P < 0.0001, Figure 5), tiller count 344 

by 7.59% (t = 2.58, P = 0.010), and height by 5.52% (t = 6.12, P < 0.0001), and contributed to a 345 

2.07% later flowering time (t = 2.04, P = 0.041; Table 1). 346 

 347 

Table 1: Allele-specific effects for the combination of the 3N and 9N QTLs for rust resistance. 348 

“Resistant” represents the mean values for individuals with alleles that decrease rust, 349 

“Susceptible” represents mean values for individuals with alleles that do not confer resistance. 350 

Bold values are significant at α = 0.05. 351 

  352 

 
Susceptible Resistant Δ Statistic P 

Rust score 2.161 1.425 34.08% W = 56156 0.0002 

Biomass (g) 480 607 26.48% t = 5.444 <0.0001 

Flowering 

time (Julian 

Day) 

177 180.6 2.07% t = 2.041 0.0415 

Tiller Count 130.9 140.9 7.59% t = 2.581 0.0100 
Height (cm) 154.4 163 5.52% t = 6.116 <0.0001 

 353 

 Discussion 354 

         Our results show that there is a marked difference between the genetic architecture of rust 355 

resistance between populations planted in northern and southern regions. In the north, resistance 356 

appears qualitative, and driven by two large-effect loci that explain ~14% of variation in rust 357 

damage, and clearly influence plant morphological traits.  These QTLs were largely stable across 358 

all three years of the study, indicating that they confer durable resistance. In the south, resistance 359 

is more quantitative, driven by many small-effect loci that vary year-to-year.  360 

 We found support for a gene-for-gene model in northern populations, but southern 361 

populations were representative of polygenic resistance. This geographic difference leads us to 362 

conclude that there is a strong genotype-by-environment interaction for rust resistance in 363 
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switchgrass. Our hypothesis that the majority of resistance QTLs evolved in the lowland 364 

ecotypes was supported, but at many loci, an upland-lowland allele combination produced the 365 

greatest rust resistance. We also found support for the hypothesis that resistance alleles are 366 

correlated with morphological differences, indicating that the two large-effect loci we mapped in 367 

the north may have contributed to ecotypic differentiation between upland and lowland P. 368 

virgatum. Overall, our results suggest an important role for two large-effect loci in northern 369 

populations, but primarily minor effect loci underlying variation in resistance at southern field 370 

sites.  371 

  372 

Genomic architecture 373 

         Locally adapted northern upland and southern lowland ecotypes of P. virgatum are 374 

divergent for many traits (Casler et al. 2004, 2007; Lowry et al. 2014; Milano et al. 2016; Lowry 375 

et al. 2018 in review), including cold tolerance, biomass, and leaf architecture (Casler 2012 376 

p.30). Ecotypic differences in fungal pathogen resistance have been well documented for P. 377 

virgatum and will play a key role in the success of switchgrass as a forage and biofuel crop 378 

(Cornelius & Johnston 1941; Uppalapati et al. 2012; Sykes et al. 2016). Both of the large-effect 379 

resistance QTLs colocalize with previously-identified large-effect QTLs for biomass, height, and 380 

tiller number using the same mapping populations (Lowry et al. 2019 in review).  381 

The most striking pattern in QTLs over time and space was between northern and 382 

southern sites. In the north, the two large-effect QTLs are consistently present over time and 383 

across four sites. This pattern would be expected for qualitative gene-for-gene resistance, in 384 

which the two QTL peaks are caused by resistance genes on chromosomes 3N and 9N. However, 385 

in the south, there are many more small-effect QTLs. This pattern is more indicative of 386 

quantitative resistance (Corwin & Kliebenstein 2017). It is possible that the large-effect QTLs in 387 

the northern sites obscured several small-effect QTLs that would have otherwise been above the 388 

critical LOD score, a phenomenon known as the Beavis effect (Beavis 1998; Xu 2003). The 389 

Beavis effect obscures small-effect QTLs and causes effect size overestimation of detected QTLs 390 

(Xu 2003). However, this bias is greatly decreased in sample sizes near to 500, so we expect that 391 

the impact on our study was minimal.  392 

Typically, resistance to a particular pathogen is either quantitative or qualitative, but this 393 

pattern is not generally thought of as being geographically dependent. Studies in wheat have 394 
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found that rust resistance can be geographically constrained because resistance is typically strain-395 

specific (Kolmer 2005). Since rust populations in the central US are dominated by a single 396 

species, P. novopanici (Gary Bergstrom pers. obs.), resistance differences are inconsistent with 397 

species differences. Rather, we expect that north-south resistance differences may either be 398 

driven by differences in rust strain diversity or a GxE interaction on the resistance loci. Broadly, 399 

we expect higher strain diversity in the south, since this pattern has been documented for wheat 400 

rust in Asia (Ali et al. 2014) and anther smut in Silene (Bueker et al. 2016). Southern populations 401 

may have responded to higher stain diversity with more resistance loci. Alternatively, resistance 402 

may be environment-dependent, as a study found for temperature-dependent resistance to wheat 403 

stripe rust (Puccinia striiformis f. sp. tritici; Fu et al. 2009). In wheat stripe rust and other 404 

systems, immunity-related proteins often exhibit temperature-dependent activity (Franklin & 405 

Wigge 2014), suggesting a potential mechanism for GxE in disease resistance. Further work in 406 

this system should focus on quantifying the population genetics of P. novopanici to better 407 

understand whether resistance is strain-specific. 408 

         Previous efforts to map QTLs for rust resistance in switchgrass yielded limited results. 409 

Milano et al. (2016) mapped one QTL on chromosome 8K for a rust prevalence in a population 410 

planted in Austin, Texas. We found small-effect QTLs on this chromosome at three field sites, 411 

but these loci were not consistently detected across years. The differences in QTLs may be due 412 

to temporal differences, but are more likely traceable to inconsistency in phenotyping by 413 

different field technicians. The previous study scored only five tillers per plant and used 414 

principal-component transformation of a 1-4 rating scale (Milano et al. 2016). Our study 415 

improved upon this method as we evaluated rust damage on a whole-plant basis and mapped 416 

QTLs to function-valued transformations of rust progression, allowing for less bias due to tiller 417 

selection and evaluation of the full rust progression curve. 418 

  419 

Allelic effects 420 

         For the two large-effect QTLs, one showed higher resistance with the upland allele, and 421 

the other with the lowland allele (Figure 5). This is surprising given that the lowland ecotypes 422 

typically display the highest rust resistance (Uppalaptati et al. 2013), so one might expect that all 423 

resistance alleles would come from lowland plants. The presence of upland resistance alleles 424 
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may provide further evidence that pathogens differ between the north and south, since upland 425 

plants are much more common in the north.  426 

Previous studies of switchgrass found many fixed differences between ecotypes (Milano 427 

et al. 2016), and considerable variability in effects of loci across geographic locations (Lowry et 428 

al. 2019, in press). Our pathogen resistance results were similar, although a surprising number of 429 

loci had genotype-specific effects. This may indicate divergent selection within ecotypes, and 430 

that mechanisms for pathogen resistance differ between populations of the same ecotype, as 431 

would be expected if pathogen strain differences are substantial. A similar pattern was found in 432 

melon (Cucumis melo), in which resistance QTLs vary between cultivars due to differences in 433 

Fusarium strains (Perchepied et al. 2005). Since the lowland grandparental genotypes were much 434 

more rust-resistant than the upland, it was surprising that the most rust-resistant plants expressed 435 

resulted from a combination of an upland and a lowland alleles across QTLs.   436 

         The two large-effect QTLs decreased rust substantially throughout the season, though the 437 

effect decreased over time. Leaf rust may show differing mechanisms of seedling and adult plant 438 

resistance, so this pattern is not unexpected (German & Kolmer 1992). Similarly, resistance 439 

alleles were associated with higher biomass and other overall morphological traits. This result 440 

runs contrary to the expectation of a growth-defense tradeoff, whereby resistant genotypes 441 

should be slower-growing due to limited resources (Herms & Mattson 1992). However, there 442 

may be many reasons why a negative correlation between growth and defense does not occur 443 

(Kliebenstein 2016; Hahn & Maron 2016). In switchgrass, we find that resistance QTLs 444 

colocalize with biomass and tiller count QTLs (Lowry et al. 2019 in review), suggesting either 445 

close linkage or a pleiotropic effect. Importantly for the emerging perennial bioenergy industry, 446 

the correlation between resistance and biomass indicates that breeding switchgrass will be able to 447 

combine positive traits without major trade-offs in biomass across most environmental 448 

conditions. However, both biomass and resistance may instead trade off with freezing tolerance, 449 

which is an important survival trait for switchgrass in high latitudes (Lowry et al. 2019 in 450 

review). The major barrier to high-yield lowland traits in northern climates is winter 451 

temperatures, so identifying the molecular basis of upland freezing tolerance in switchgrass is an 452 

important goal. If freezing tolerance is not linked to rust resistance, there is great potential for 453 

improvement of switchgrass for biofuel, especially in northern marginal areas. 454 

  455 
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Conclusion 456 

         Our results show the temporal and geographic variation in the genetic architecture of rust 457 

resistance in locally adapted switchgrass, including two large-effect loci that explain both 458 

pathogen defense and morphological differences between ecotypes, but show a limited 459 

effectiveness in the south. This pattern raises important questions about the drivers of genetic 460 

architecture of pathogen resistance and underscores the importance of assaying pathogen 461 

resistance across both time and space to capture the inherent variability in the interplay of biotic 462 

and abiotic drivers of genetic change. These loci may allow for more effective breeding 463 

strategies for rust resistance, if there are not trade-offs with other traits, such as cold tolerance. 464 

The role of rust in differentiating these ecotypes illustrates the synergistic role pathogens play in 465 

the evolution of different ecotypes and ultimately contributing to genetic variation within 466 

species.  467 

 468 

 469 

 470 

 471 
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 477 
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