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Abstract

The increasing throughput of DNA sequencing technologies creates a
need for faster algorithms. The fate of most reads is to be mapped to a ref-
erence sequence, typically a genome. Modern mappers rely on heuristics
to gain speed at a reasonable cost for accuracy. In the seeding heuristic,
short matches between the reads and the genome are used to narrow the
search to a set of candidate locations. Several seeding variants used in
modern mappers show good empirical performance but they are difficult
to calibrate or to optimize for lack of theoretical results. Here we develop
a theory to estimate the probability that the correct location of a read
is filtered out during seeding, resulting in mapping errors. We describe
the properties of simple exact seeds, skip-seeds and MEM seeds (Maximal
Exact Match seeds). The main innovation of this work is to use concepts
from analytic combinatorics to represent reads as abstract sequences, and
to specify their generative function to estimate the probabilities of interest.
We provide several algorithms, which combined together give a workable
solution for the problem of calibrating seeding heuristics for short reads.
We also provide a C implementation of these algorithms in a library called
Sesame. These results can improve current mapping algorithms and lay
the foundation of a general strategy to tackle sequence alignment prob-
lems. The Sesame library is open source and available for download at
https://github.com/guillaume/sesame.

1 Introduction

1.1 Mapping reads to genomes

Suppose that we use and imperfect instrument to sequence a DNA fragment
drawn at random from a known genome; how can we identify the location of
the fragment in the genome?
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We will refer to this question as the true location problem. It has applications
in countless domains, like discovering disease-causing mutations; diagnosing vi-
ral, bacterial or fungal infections; diagnosing cancer and choosing appropriate
therapies; selecting breeds of interest in agriculture; tracing human migrations
from ancient bones; diagnosing genetic diseases at birth; finding compatible
graft donors etc.

At first sight, whether a read can be mapped to its correct location seems
to depend only on its length and on the error rate of the sequencer. However,
there is another important factor to consider: most genomes contain repeated
sequences, i.e. relatively large subsequences that are present at more than one
location. For instance, we cannot map the fragment with certainty if there exists
an exact copy of the sequence somewhere else in the genome, because we cannot
know which of the two copies was sequenced.

This case is rare though. Repeated sequences are in general not identical
but merely homologous — meaning that their similarity is unlikely to occur by
chance. So when the DNA fragment has one or more duplicates in the genome,
we can still map it, as long as we can distinguish the duplicates. This in turn
depends on their similarity with the target fragment and on the error rate of
the sequencer.

Since repeats play a central role in the problem at hand, we give the terms
“targets” and “duplicates” a meaning that will facilitate the exposition of the
theory.

Definition 1. The target is the DNA fragment that was sequenced. Duplicates
are sequences of the genome that are homologous to the target.

Because sequencing errors can convert the sequence of the target into one
of its duplicates, the true location of a DNA fragment is not always the best
candidate (as measured by the identity between the sequence and the candidate
location). This leads to the following question: how can we identify the best
location of the fragment in the genome?

We will refer to this task as the best location problem. It amounts to finding
the optimal alignment between two sequences, and for this reason has received
substantial attention in bioinformatics. For simplicity we will assume that the
true location is always the best, and we will often confound these two ideas.

1.2 Seeding heuristics

There exist algorithms to solve the best location problem [1,2], but they are
too slow to process the large amount of data generated by modern sequencers.
Instead, one uses heuristic methods, i.e. algorithms that run faster, but that
may return an incorrect result [3].

The most popular heuristic for the best location problem is a filtration
method called “seeding”. The principle is to first identify short regions of high
similiarity between the read and the genome, and then run an exact alignment
algorithm at the candidate locations. This is for instance the general strategy
of the popular alignment algorithm BLAST [4].
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If seeding is fast, we can quickly zoom in on a small set of candidate locations
and reduce the input size of the (slow) alignment algorithm. The disadvantage is
that the target location is not always detected and included in the candidate set.
When that happens, the read cannot be mapped to the true location because it
has been filtered out at the seeding step.

The slowness of exact alignment algorithms imposes a trade-off between
speed and accuracy: If the seeding step is set to produce many candidates, it
is likely to retrieve the true location. The downside is that processing all the
candidates would take long. Conversely, if the seeding step is set to produce
few candidates, the process would run faster but the target is less likely to be
in the candidate set.

Importantly, the trade-off depends on the seeding method. This means that
we can develop faster mapping algorithms at no cost for accuracy, as long as we
can find better seeding strategies. Progress on this line of research has largely
benefited from the improvement of computer hardware and from the develop-
ment of indexing algorithms. Literature on this topic is already abundant. Some
examples of seeding algorithms are given in references [5-11]. References [12]
and [13] present high-level comparisons of different designs, and reference [14]
gives a global overview of filtration methods in pattern matching.

1.3 The two types of seeding failure

Filtering methods are considered to fail whenever the target is not in the can-
didate set. For seeding heuristics, we need to distinguish two different kinds of
failure. In the first kind, the candidate set contains a duplicate of the target but
does not contain the target itself; in the second kind, the candidate set contains
neither.

The distinction is important because duplicates of the target are similar to
the read (due to their similarity to the target), so a failure of the first kind is
difficult to distinguish from a success. A failure of the second kind is easier to
recognize because in this case the best hit is not similar to the read, as we will
highlight in section 7.

Before going further, we introduce some nomenclature that will be useful to
simplify the exposition of the theory.

Definition 2. The seeding process is said to be

i) “on target” if the candidate set contains the target,

ii) “off target” if the candidate set contains a duplicate but not the target,
1) “null” if the candidate set contains neither.

If a seed-based mapping algorithm returns an incorrect location, then it must
be the case that the best location was never tested in the post-filtration phase
(otherwise it would have been found by the exact alignment algorithm).

This observation is fundamental: in order to estimate the error rate of a
mapping algorithm, we must know how often the associated seeding heuristic
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is off target. For lack of theoretical framework, this information is missing,
meaning that current mappers are not properly calibrated.

Our focus here is to develop a theory to estimate the probability that seeding
is off target, when using the most popular seeding heuristics for short reads.
Previous work pioneered a method to compute seeding probabilities but it did
not distinguish off-target from null seeding [15,16], and therefore did not provide
a way to estimate the frequency of mapping errors. Other authors investigated
the reliability of mapping algorithms [17], but they focused on the probability
that random sequences have a single hit, recognizing that solving the problem
requires taking into consideration the repeat structure of the genome. Here we
address this problem in general terms and we provide a practical way to estimate
the mismapping rate in complex genomes.

The rest of this document is not organized by logical units but by increasing
level of difficulty. The order of the examples is meant to ease the acquisition of
the main concepts, meaning that we sometimes go back and forth between dif-
ferent types of seeding strategies. We first give some background on the different
types of seeding methods considered here; we then introduce the computational
strategy based on transfer matrices; finally we delve into each specific seeding
method.

2 Seeds

The term “seed” changes meaning with different authors. It can designate
a part of the read, a part of the genome, a particular sequence motif or a
structured pattern of matches. Also, the term does not always imply an exact
match. For instance, the algorithm PatternHunter [6] uses “spaced seeds” that
tolerate mismatches. To avoid potential confusion, we will adopt the following
convention:

Definition 3. A seed is a subsequence of the read that has size at least v (defined
by the context of the problem) and that has at least one perfect match in the
reference genome.

When a seed matches a particular location of the genome, we say that it is a
“seed for that location”. For instance, we often use expressions such as “a seed
for the target” or “a seed for a duplicate”.

This definition presents a computational challenge: to know if a given sub-
sequence is a seed we need to know if it exists somewhere in the genome. This
is a non trivial problem in itself, but fortunately we can use practical methods
to solve it, even when the reference genome is very large.

These algorithms are crucial for the present theory, but describing them in
depth is outside the scope of this document. Let us just mention that all the
methods belong to a family known as exact offline string matching algorithms,
where “offline” means that sequences are looked up in an index instead of the
genome itself. Online methods can be used when the reference genome is not
indexed [18], but this case is of little relevance in the present context.
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The index is usually a hash table or a variant of the so-called FM-index [20,
21]. Hash tables are typically used to index k-mers, which makes them useful
to search seeds of fixed size k (see [19] for a recent benchmark of k-mer hashing
algorithms). In contrast, some text-indexing structures have no set size so they
can be used to search seeds of different lengths. For instance, the FM-index is
a compact data structure based on the suffix array [22] and on the Burrows-
Wheeler transform [23], emulating a suffix trie with a much smaller memory
footprint [20,21].

Other methods can be efficient (e.g., running a bisection on the suffix ar-
ray [24]) but the FM-index is currently the most popular choice for seeding
methods. For MEM seeds, it is even the only practical option [25-28]. How-
ever, the detail is of little interest here: we simply assume that seeds are known
at all times without ambiguity because this problem has several practical solu-
tions.

2.1 Exact seeds

Exact seeds have a fixed size v. When using exact seeds, all the perfect matches
of size v are collected to constitute the candidate set. This seeding heuristic
was used in the first version of BLASTN [4], but is no longer used because it
produces many overlapping matches within the same regions.

Fig. 1 shows a read produced by an imperfect sequencer. The sequenced
DNA fragment comes from a region of the genome that has three duplicates
and the read has three miscalled nucleotides (indicated by stars).

Exact seeds (size 7)

* * *
ATGGGCATGCTACGGAGCTTGGACCTT Read

ATGGGCAAGCAACGGAGCTAGGACCTT Target
ATCGGCATGCGATGGAGCTAGGCCCTT| .
ATGGACATGCGACGGACCTAGGACCTT| 1P =
ATGAGCATGCGATGGAGCTTGGCCCTT

Figure 1: Example of exact seeds. A sequenced DNA fragment (Read) is shown
above the actual molecule (Target), and above homologous sequences also present in
the genome (Duplicates). Sequencing errors are indicated by a star (each marked T
was actually an A that was misread). The mismatches between the genomic sequences
and the read are indicated in bold. The exact seeds of size v =7 are indicated as
horizontal grey lines above the read. The matching regions in the genomic sequences
are shadowed in grey. Several overlapping seeds accumulate at the center of the read,
which is typical for this seeding method.

Observe that erroneous nucleotides can belong to exact seeds because they
sometimes match one of the duplicates. For instance, the first sequencing error
matches all the duplicates and belongs to an off-target seed. However, sequenc-
ing errors that are mismatches for all the sequences cannot belong to a seed.
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This is the case of the second sequencing error in this example, where there is
a local deficit of seeds.

The middle of the read shows some clutter where consecutive seeds match
consecutive sequences at the same location. This is typical for exact seeds and
constitutes a nuisance for the implementation. Indeed, it is a waste of computer
resources to discover matches in sequences that are already in the candidate
set. In addition, this seeding method is not particularly sensitive compared to
spaced seeds [6] so it is used only in few specific applications. Nevertheless, it
will be extremely useful for the development of the present theory.

2.2 Skip seeds

Skip seeds have a fixed size 7, but unlike exact seeds they cannot start at every
nucleotide. Instead, a certain amount of nucleotides is skipped between every
seed. This is a way to reduce the overlapping matches at the same location,
at the cost of sensitivity. This seeding heuristic is the core of Bowtie2 [29],
where seeds have size 7=16 and are separated by 10 nucleotides (9 positions
are skipped). We will refer to seeds where n nucleotides are skipped as “skip-n
seeds”. For instance, Bowtie2 uses skip-9 seeds.

Skip seeds (size 7, skip 1)

* * *
ATGGGCATGCTACGGAGCTTGGACCTT Read

ATGGGCAAGCAACGGAGCTAGGACCTT Target
ATCGGCATGCGATGGAGCTAGGCCCTT|
ATGGACATGCGACGGACCTAGGACCTT(ﬁgﬁi
ATGAGCATGCGATGGAGCTTGGCCCTT 9

Figure 2: Example of skip seeds. The sequences and the annotations are the same
as in Fig. 1, but here we use skip-1 seeds. In other words, seeds can never start at
nucleotides 2, 4, 6 etc. To highlight the difference with Fig. 1, the missing seeds are
represented by dotted lines.

Fig. 2 shows what happens when exact seeds are replaced by skip-1 seeds on
the read of Fig. 1. Here the size is still y=7 but 1 nucleotide is skipped between
seeds. This amounts to removing every second seed. The consequence is that
there are fewer overlapping matches at the center of the read, but the only seed
for the second duplicate is lost. This is a rather positive outcome because there
is one off-target location fewer in the candidate set, but the same might happen
to the target.

It is clear that skipping nucleotides reduces the sensitivity of the seeding step,
but to what extent? One could test this empirically, but the answer depends
on the seed length, the number of nucleotides that are skipped, the error rate
of the sequencer and the size of the reads. The present theory will allow us
to make general statements about the performance of skip seeds against exact
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seeds in different contexts.

2.3 MEM seeds

MEM seeds (where MEM stands for Maximal Exact Match) are somewhat
harder to define. Unlike exact seeds and skip seeds, their size is variable. They
are used in BWA-MEM [30] where they give good empirical results. To describe
MEM seeds, let us first clarify the meaning of “Maximal Exact Match”.

Definition 4. A Mazimal Exact Match (MEM) is a subsequence of the read
that is present in the reference genome and that cannot be extended — either
because the read ends or because the extended subsequence is not in the genome.

A MEM seed is simply a MEM of size size 7 or greater. Fig. 3 shows what
happens when using MEM seeds on the read of Fig. 1. Observe that the clutter
at the center of the read has disappeared because consecutive matches are fused
into a few MEM seeds.

MEM seeds (min. size 7)

* * *
ATGGGCATGCTACGGAGCTTGGACCTT Read

ATGGGCAAGCAACGGAGCTAGGACCTT Target
ATCGGCATGCGATGGAGCTAGGCCCTT| .
ATGGACATGCGACGGACCTAGGACCTT| 1P "
ATGAGCATGCGATGGAGCTTGGCCCTT

Figure 3: Example of MEM seeds. The sequences and the annotations are the
same as in Fig. 1, but here we use MEM seeds of minimum size v=7. The clutter at
the center of the read has disappeared and there is at least one seed for each sequence.

Two consecutive MEM seeds can overlap, in which case they always match
distinct sequences of the genome (otherwise neither of them would be a MEM
seed). There does not have to be any overlap though, because a nucleotide can
be a mismatch against all the sequences, like the second read error for instance.

Note that a MEM does not always match a single sequence of the genome.
For instance, the rightmost MEM seed matches two distinct genomic sequences.
This case motivates the following definition, which will play an important role
later.

Definition 5. A strict MEM seed has a single match in the genome. A shared
MEM seed has several matches in the genome.

Compared to seeds of fixed size, MEM seeds have two counter-intuitive prop-
erties. The first is that there are cases where there cannot be any on-target seed,
even when changing the sensitivity parameter v. Fig. 4 shows such an example.
Even though there is a single sequencing error, the read has no MEM seed for
the target. Lowering v does not change this, so there is no way to discover the
true location using MEM seeds (even though it is the best location).
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*
ATGGGCATGCTACGGAGCTACGACC  Read

ATGGGCATGCAACGGAGCTACGACC Target
AGGGTCATTCTACGGAGCTACGACC|Duplicates
ATGGGCATGCTACGTCCCTGCGCCC| (offtarget)

Figure 4: Issues with MEM seeds: inaccessible targets. The read, the MEM
seeds and the sequences are represented as in Fig. 3. The MEM seeds matching the
two duplicates at the bottom effectively hide the target, so it cannot be discovered.
This can occur even when the true location is the best candidate and when there is a
single error on the read.

The second counter-intuitive property is that shortening a read can some-
times generate a MEM seed for the target. Fig. 5 shows an example of this
case. There is no MEM seed for the target, but there would be if the read were
two nucleotides shorter on the right side. Indeed, in this case there would be
a shared MEM seed matching the the target and the first duplicate (provided
v<12).

* *
ATGGGCATGCTACGGAGCTACGATC  Read

ATCGGCATGCAACGGAGCTACGACC Target
AGGGTCATGGAACGGAGCTACGATC]|Duplicates
ATGGGCATGCAACGTCCCTGCGCCC| (offtarget)

Figure 5: Issues with MEM seeds: too long reads. The read, the MEM seeds
and the sequences are represented as in Fig. 3. There would be a good seed (shared)
if the read were two nucleotides shorter. The true location is hidden by the last two
nucleotides.

These examples show that MEM seeds can perform worse than seeds of fixed
size. MEM seeds yield fewer candidates and therefore speed up the mapping
process, but the question is at what cost? The theory developed here will allow
us to compute the probability that a read has no MEM seed for the target and
thus that the true location is missed at the seeding stage.

3 Model and strategy

3.1 Sequencing errors and divergence of the duplicates

We now need to model the sequencing and duplication processes so that we
can compute the probabilities of the events of interest. We assume that the
sequencing instrument has a constant substitution rate p, and that insertions
and deletions never occur. When a substitution occurs, we assume that the
instrument is equally likely to output any one of the remaining three nucleotides.
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This corresponds more or less to the error spectrum of the Illumina sequencing
technology [31].

Next, we assume that the target sequence has N > 0 duplicates, so that
there are IV off-target sequences. We further assume that duplication happened
instantaneously at some point in the past and that all N+1 sequences diverge
independently of each other at a constant rate. In other words, we ignore the
complications due to the genealogy of the duplication events. Instead, we simply
assume that at each nucleotide position, any given duplicate is identical to the
target with probability 1—p. If it is not, we assume that the duplicate sequence
can be any of one the three remaining nucleotides (i.e. each is found with
probability 1/3).

Note that read errors are always mismatches against the target (because we
assume that the target is the true sequence), and they match each duplicate
with probability p/3. Correct nucleotides are always matches for the target,
and they match each duplicate with probability 1—pu.

Before going further, we also need to move a practical consideration out of
the way. Seeds can match any sequence of the genome, not just the target or the
duplicates. However, we will ignore matches in the rest of the genome because
such random matches are unlikely to cause a mapping error when seeding is
off target, contrary to matches in duplicates. Neglecting those will greatly
simplify the exposition of the theory without loss of generality. We will explain
in section 7 how to deal with this practical case and and how to identify those
matches as off target. Until then, we will consider that the target and the
duplicates are the only sequences in the reference genome.

3.2 Weighted generating functions

The central object of analytic combinatorics is the generating function, and for
our purpose we will use a special kind known as weighted generating function.

Definition 6. Let A be a set of combinatorial objects such that a € A has a
size |a| €N and a weight w(a) €RT. The weighted generating function of A is
defined as

Alz)= " w(a)zl] (1)

acA

Ezxpression (1) also defines a sequence (ak)r>o such that

A(z) :Z apz”.
k=0

By definition ax =7}, », w(a), where Ay is the class of objects of size k in
A. The number ay, is the total weight of objects of size k.

To give an example, assume that a particular symbol, say |}, has a probability
of occurence equal to p. The weighted generating function words containing only


https://doi.org/10.1101/619155

bioRxiv preprint doi: https://doi.org/10.1101/619155; this version posted December 12, 2019. The copyright holder has placed this preprint
(which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or
adapt this material for any purpose without crediting the original authors.

this symbol is pz. The weight of the word is its probability (here equal to p)
and the size is its length in number of symbols (here 1).

In this document we will focus on the weighted generating function A(z)
of the set A of reads that do not have on-target seeds (i.e. reads for which
seeding is either null or off target). The weight of a read is its probability of
occurrence and the size k is its number of nucleotides. The coefficient a, is thus
the proportion of reads of size k that do not have an on-target seed, which is
the quantity of interest.

The motivation for introducing weighted generating functions is that op-
erations on combinatorial objects translate into operations on their weighted
generating functions. If A(z) and B(z) are the weighted generating functions of
two mutually exclusive sets A and B, the weighted generating function of AUB
is A(z)+B(z), as evident from expression (1). Size and weight can be defined
for pairs of objects in Ax B as |(a,b)|=|a|+|b| and w(a,b)=w(a)w(b). In other
words the sizes are added and the weights are multiplied. With this convention,
the weighted generating function of the Cartesian product A x B is A(z)B(z).
This simply follows from expression (1) and from

A(Z)B(z)zz w(a)z‘“‘ Z’w(b)zlblz Z w(a)w(b)zlal""b',

acA beB (a,b)eAxB

These two operations are all we need in order to compute the weighted
generating functions of the reads of interest. Addition corresponds to creating a
new family by merging reads from families A and B. Multiplication corresponds
to creating a new family by concatenating reads from families .4 and B.

3.3 Analytic representation

The analytic combinatorics framework relies on a strategy referred to as the
symbolic method [33]. The idea is to combine simple objects into more complex
objects. Each combinatorial operation on the objects corresponds to a mathe-
matical operation on their weighted generating functions. One can thus obtain
the weighted generating function of complex objects, whose coeflicients aj are
the probabilities of interest.

As explained in [15] and [16], we recode the reads in alphabets of custom
symbols and we specify a construction plan of the reads using a transfer matrix
M(z). The transfer matrix specifies which types of segments can follow each
other in the reads of interest: the entry at coordinates (i,j) is the weighted
generating function of segments of type j that can be appended to segments of
type 1.

M (z) contains the weighted generating functions of all the reads that consist
of a single fragment. From the basic operations on weighted generating func-
tions, M(z)® contains the weighted generating functions of all the reads that
consist of s segments. Therefore, the entry at coordinates (i,7) of the matrix
M(z)+M(2)?+M(2)3+...=M(z)-(I—M(z))"! is the weighted generating

10
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function of the reads of any size and any number of segments, that end with
a segment of type j and that can be appended to a segment of type i. The
examples below will clarify the key steps of this strategy.

A complete description of how to compute seeding probabilities with the
symbolic method can be found in [15,16]. The interested readers can also find
more about analytic combinatorics in the popular textbooks [32,33].

3.4 Example 1: on-target exact seeds

We highlight the strategy above with an example that will turn out to be central
for the development of the theory. In addition, it is simple enough to provide a
gentle introduction to the general methodology. This example was described in
detail in [15] and in [16], but we repeat it here with a different formalism to fit
the present manuscript.

The first step is to note that the nucleotide sequence of the read is irrelevant.
Indeed, the read has an on-target seed if and only if it contains a stretch of
nucleotides without error. For this reason, we recode reads as sequences of
correct or erroneous nucleotides.

We define the mismatch alphabet Ay={0, |, |}, where O represents a cor-
rect nucleotide, | represents an erroneous nucleotide and | is special symbol
appended after the last nucleotide to mark the end of the read. It is not asso-
ciated to a nucleotide and therefore has size 0.

This recoding allows us to partition the read in an important way.

Definition 7. Every symbol of the alphabet that is different from O is called a
terminator. A segment is a terminator preceded by 0 or more symbols 0. The
last segment of the read is terminated by the symbol | and is called the tail.

Since the decomposition of the read in segments is unique, we can view a
read as a sequence of segments with a tail, instead of a sequence of nucleotides.
Fig. 6 shows an example of decomposition in segments. On-target seeds cannot
contain sequencing errors, therefore they must be completely embedded inside
a segment. So the sizes of the segments indicate whether the read contains an
on-target seed or not.

CIEE T« T+ CIEEE T ¢ CIETE Read

8 3 10 3
Tail

OO00000OROO0ORO0O0O00O0000OmO00  Target

Segments

Figure 6: The mismatch encoding. An example read is represented in the mismatch
alphabet. The symbol |} represents a mismatch against the target (an erroneous nu-
cleotide) and the symbol O represents a match (a correct nucleotide). The symbol | is
appended to the end of the read. The symbolic sequence of the target is represented
below, where an open square stands for a match and a closed square stands for a
mismatch.

11
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The probability of occurrence of the symbol |} is p (the error rate of the
sequencer) and the probability of occurrence of the symbol O is thus 1—p=gq.
Both symbols have size 1, so their respective weighted generating function are
pz and gz. Using the rule for concatenation, we see that the weighted generating
function of a segment with i symbols [ is (¢z)*pz. The symbol | has size 0, so
the weighted generating function of a tail segment with i symbols O is (gz)*.

The key insight is that reads without on-target seed are exactly the reads that
are made of segments with fewer than v symbols [J. The weighted generating
function of such segments is pz-(1+gz+...+(gz)?""!), and that of the tail is
1+qz+...+(gz)?~1. This gives a construction plan that can be encoded in a
transfer matrix.

There are two kinds of objects: the || segments and the tails, so the dimension
of the transfer matrix is 2x2. A |} segment can be followed by another |} segment
or by the tail. The tail cannot be followed by anything. The expression of the
transfer matrix My(z) is thus

Y |
vo[pz-(M4gz+.. +(g2)"7")  T4gz+.. . 4(g2) 7]
\ 0 0

In the representation above, the different types of objects are identified by
their terminator. The terminators are written in the margins of the transfer
matrix for readability.

We can compute the matrix Mo(2)+Mo(2)%+...=My(2)-(I—My(z))~! and
extract the entry of interest, which is the top right term — associated with
terminators |} and |. To see why, observe that every read can be prepended
by | segments and only by those (not by a tail). Thus, reads are precisely the
sequences of segments that can follow the symbol |} and that are terminated by
a tail, whose weighted generating function is the top right entry of the matrix.
It is easy to check that this term is equal to

14+gz+...+(gz)" 1
1—pz(1+qz+. . .—|—(qz)7—1) '

(2)

This function can be expanded as a Taylor series ag+a1z+a22%+..., but
the coefficients ag, a1, as, ... are unknown. By construction, aj is the quantity
of interest, i.e. it is the probability that a read of size k does not contain an on-
target seed, so we now need to extract the coefficients from expression (2). There
are several methods to do so; the one we choose here is to build a recurrence
equation to compute ai from the previous terms of the series ag,a1,...,ax_1.
For this, we observe that for z#1/q, equation

14+qgz+...+(gz)7" 1

=apt+ai1z+a 22+...
1—pz(1+gz+...4+(gz)7 1) o 2

is equivalent to

(1—gqz) (1—pz(1+qz+.. .+(qz)771)) (ap+a1z4+a22*4...)=1—(q2)".
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Balancing the terms of same degree on both sides of the equation leads to the
following relationship between the coefficients of the series:

1 if k<,
ap=1< 1—¢q"7 if k=1, (3)
Ap—1—pq - Ap_~_1 otherwise.

These results are consistent: for k<, the read is too short so the probability
that it contains no seed is 1; for k=, the read contains a seed if and only if it
has no error, which occurs with probability q7.

The terms of interest can be computed recursively using expression (3).
This approach is very efficient because every iteration involves at most one
multiplication and one subtraction. Also, the default floating-point arithmetic
on modern computers gives sufficient precision to not worry about numeric
instability for the problems considered here (we rarely need to compute those
probabilities for reads above 500 nucleotides).

This example shows how the symbolic approach yields a non-trivial and yet
simple algorithm to compute the probability that a read of size k does not
contain an on-target exact seed.

3.5 Example 2: on-target skip seeds

We go through another essential example, namely we devise a method to com-
pute the probability that a read contains no on-target skip seed. Using the
same strategy as in the previous example, we start by recoding the reads using
a specialized alphabet to solve this problem.

As in the previous example, we need to know whether a nucleotide is a
sequencing error, but this time we also need to know its phase in the repeated
cycles of skipped positions. For this, we define the skip-n alphabet A, ={0, |, {0
A1, Un}. Again, the symbol O represents a correct nucleotide and the
symbol | is a terminator added at the end of the read. The symbols |}; (i €N)
represent sequencing errors and ¢ indicates the number of nucleotides till the
next non-skipped position (i.e. i=0 for nucleotides immediately before a non-
skipped position and i=n for nucleotides at a non-skipped position).

As per definition 7, segments in this alphabet are sequences of 0 or more
symbols O followed by any of the symbols {; or by the symbol |. Given that
this decomposition is unique, we can again view a read as a sequence of segments
with a tail. The example of Fig. 6 is shown again in Fig. 7, where segments in
the mismatch alphabet have been replaced by segments in the skip-3 alphabet.

The probability of occurrence of a sequencing error is p, so every symbol |};
has the same weighted generating function pz — implicitly assuming that the
next non-skipped position is at distance ¢, otherwise the weighted generating
function is 0. The weighted generating function of the symbol O is again ¢z, and
so the weighted generating function of a segment with i symbols [ is (gz)‘pz.
Likewise, the weighted generating function of a tail with i symbols [ is (gz)*.
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\ \ \ \ \ \
Y 2

8 3 10 3
Tail

OO00000OROUORO0O0O000000OmO0O00O  Target

Segments

Figure 7: The skip encoding. The read of Fig. 6 is represented in the skip-3
alphabet. The symbols |}; (=1, 2, 3) represent mismatches against the target (they are
erroneous nucleotides) and the symbol O represents a match (it is a correct nucleotide).
The vertical bars indicate non-skipped positions (the potential start of a seed). The
number ¢ in {}; indicates the number of nucleotides till the next non-skipped position.
For =0 the next nucleotide is not skipped. Other features are as in Fig. 6.

Reads that do not contain any on-target skip seed can contain segments with
~ or more symbols [, so this case is more complex than the previous one. For
instance, if there is a sequencing error i nucleotides before the next non-skipped
position, the status of the next i nucleotides does not have any influence on the
presence of an on-target seed. Indeed, there is no on-target seed upstream of
the error (by construction) and the next seed is scheduled to start ¢ nucleotides
downstream, so there can be up to v+¢—1 symbols [J in a row. In order to
enforce the absence of on-target seeds, we thus have to adjust the maximum
size of the segments depending on the preceding terminator.

In the skip-n alphabet, reads are composed of segments terminated by the
n+1 symbols {g, {1, - - -, In, plus the tail. The dimensions of the transfer matrix
are thus (n+2)x (n+2).

As mentioned above, after the terminator |;, we can append segments with
up to v+i—1 symbols 0. The terminators of those v+i possible segments
are distributed according to the laws of the arithmetic modulo n+1. When
1> 0, for instance, if the next segment has no symbol [J then it is terminated
by {;—1. But the same goes if the segment has n+1 symbols [0 (assuming
n+1<+~). Specifying the transfer matrix thus involves a substantial amount of
bookkeeping. One can check that the expression of the transfer matrix M, (z)
is

UO Ul LELEY Un |
Yo [Hoo(z) Hoai(z) ... Hon(z) Jo(2)
U1 Hl,o(z) H171(Z) - Hlm(z) Jl(z)
'Un Hn,O(Z) H’I’L71(Z) H"’L7TL(Z) Jn(Z)
| 0 0 0 0
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H;j(z) = pz-(qz)“-(l—l—(qz)”“—&—...+(qz)7”("+1)), (4)
-
where x=i—j—1 (mod n+1), and m= LWJ ,
n+1
Ji(2) = 14qz+(g2)*+.. . +(g2) 1 (5)

where |...| denotes the “floor” function.

The weighted generating function of interest is the top right entry of the
matrix M, (2)+ M, (2)*+...=M,(2)-(I—M,(z))~ . To see why, observe that,
at the start of every read, the next nucleotide is a non-skipped position, so
every read can be prepended by l}g segments and only by those. Thus, reads
are precisely the sequences of segments that can follow the symbol |}y and that
are terminated by a tail, whose weighted generating function is the entry of the
matrix associated with terminators {y and |.

M,,(z) is too complex to allow a closed expression of M, (2)-(I—M,(z))~*
to be computed. We return to the definition M,,(z)+ M, (z)?+... and observe
that the terms M, (2)*+2, M, (2)**+3, ... have no influence on the coefficients of
the weighted generating function ag, a1, ..., ak.

Indeed, a read of size k has at most k+1 segments (including the obligatory
tail). Since M (z)**! contains the weighted generating functions of reads with
exactly s+1 segments including the tail, az, cannot depend on M (z)*+2, M (2)k+3
More formally, we can prove by induction that all the entries of M (2)* are di-
visible by z#~! showing that the contribution of M (2)¥+24 M (2)*+34... to
agtarz+...+apzk is strictly 0.

So we can compute the matrix M, () + M, (2)%+...+ M, (2)**!, extract
the entry of interest and then compute the terms of the Taylor expansion up to
order k. But we can do better: since we are only interested in the coefficients up
to order k, we can perform all algebraic operations on truncated polynomials of
order k, i.e. we discard the coefficients of order k+1 or greater when multiplying
two polynomials.

But we can do even better: a read with s+1 segments contains s errors, so all
the entries of M, (2)**! are dominated by p* and they rapidly converge to 0 as
s increases. Instead of computing the matrix M, (2)+M, (2)%+...+M,(2)**!,
we can interrupt the summation after a certain power of M, (z) because the
terms become negligible.

The number of errors X in a read of size £ has a Binomial distribution
X ~ B(k,p). From [34] we can bound the probabilities of the tail with the
expression

P

k—s s
Pr(X>s)<exp ((s k)log . slog kp) . (6)
Using the formula above, we can thus bound the probability that a read has
s+1 segments or more. We compute M, (z)+ M, (2)?+...+ M, (2)*T where
the weighted generating functions have been replaced by truncated polynomials
and we extract the top right entry. When the bound is lower than a set fraction
¢ of the current value of ag, we stop the computations. Typically € =0.01 so
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this method ensures that the probabilities that a read of size k has no on-target
skip seed are accurate to within 1%.

Remark 1. Observe that when n=0 the matriz M, (z) is identical to the matriz Mo(z)
of section 3.4. This is consistent with the fact that exact seeds are skip-0 seeds.

4 Off-target exact seeds

We now turn our attention to the problem of computing the probability that the
seeding process is off target when using exact seeds — recall from section 1.3
that off-target seeding means that the candidate set contains a duplicate but
not the target.

If there is NV =0 duplicate, seeding cannot be off target, it can only be on
target or null. So from here we assume that the target has N >1 duplicates. Let
So denote the event that there is an on-target seed and let S; denote the event
that there is a seed for the j-th duplicate. We are thus interested in computing
P(SoN(S1U...USN)), where S; denotes the complement of the event S;. For
this, we first observe that

P(SoN(S51U...USN))=P(So)—P(SonSiN...NSy). (7)

Since the duplicates are assumed to evolve independently of each other and
through the same mutagenesis process, the events are conditionally independent
(we do not have full independence because Sy only depends on sequencing er-
rors whereas the events S; depend on sequencing errors and on the divergence
between duplicates). We can thus write

P(goﬂ...ﬂgjv) = P(go)'P(glﬂ...ﬂgN‘go)
— =\ N
< 5T = P(Soﬂsl)>
= P(Sy)-P(S1|So)N=P(So)- | —=2) . (8
(50)-P(E 5o} = P(S0)- (e ®)
Combinging the two equations above, we obtain
P(SonSy)\ "
P(Som(Slu...USN))P(SO)P(SO)~<01) . (9)
P(So)

Hence, the probability that seeding is off target is a function of two quanti-
tites. We have already seen how to compute P(Sp) in section 3.4 using recursive
expression (3). We now need to find a way to compute P(SoNS1).

4.1 The dual encoding

The event SoNS; is that the read contains no seed for either the target or for
the first duplicate — numbering is arbitrary here, we simply chose a duplicate
and stick to it. As illustrated in section 3, we first recode the reads using a
specialized alphabet to simplify the problem.
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It will be useful to consider a more general problem where we have two
sequences of interest labelled + and —. The 4 sequence stands for the target
and that the — sequence stands for its duplicate. We then define the dual
alphabet A= {0, |,¢/_1, ¢72, e ’Wv w'z, ...,4}. The symbols i/_l, signify that
the nucleotide is a mismatch against the — sequence only, the symbols ¢7¢ signify
that it is a mismatch against the + only, and the symbol |} signifies that it is
a mismatch against both. As before, every other nucleotide is replaced by the
symbol [J, and the terminator | is appended to the end of the read. We again
define reads as sequences of segments, except that now the terminators are the
symbols ¢7j, ijrj and |}. The tail, as usual, is terminated by the symbol |.

The number ¢ in the symbol i/_i indicates the match length of the + sequence.
Likewise, the number ¢ in the symbol ¢7i indicates the match length of the
— sequence. For instance, the symbol ¢77 indicates that the nucleotide is a
mismatch against the — sequence, that it is a match for the + sequence, and
that the six previous nucleotides were also a match for the + sequence. The
terminators thus encode the local state of the read.

Fig. 8 shows an example of read in the dual encoding. The + and — sequences
are represented below the read, with matches represented as open squares and
mismatches as closed squares. It is visible from this example that symbols i/_i
and ¢7i alternate whenever the mismatches hit different sequences . The symbol
| occurs only when a nucleotide is a double mismatch.

e g e I I - 4= Read

6 3

4 Segments

Tail

OO000000OROUOROOODO000 0 MOOO L +sequence
OROO0O0O000ORO0ROOORO000O0 -sequence

Figure 8: Example of dual encoding. An example of read is represented in the
dual alphabet. The symbols i/i‘ represent a mismatch against the — sequence, the
symbols i;ri represent a mismatch against the + sequence, and the symbol |} represent
a mismatch against both. The index 7 is the match length of the sequence that is not
mismatched. The symbolic + and — sequences are represented below, where an open
square stands for a match and a closed square stands for a mismatch.

We assume that for each nucleotide, a is the probability that the read
matches both sequences, b is the probability that it matches only the + se-
quence, c is the probability that it matches only the — sequence and d is the
probability that it matches none. Obviously a+b+c+d=1. These definitions
allow us to specify the weighted generating function of the symbols and of the
segments. To specify the transfer matrix, we only have to make sure that we
eliminate the combinations that create a match of size v or more for any of the
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two sequences. For notational convenience, we define

ri(z)=cz-(az),
ri (2)=bz-(az)",
Ri(2)=dz-(14az+...+(az)"),

Fi(z)=1+az+...+(a2)’,

and we can verify that the expression of the transfer matrix My(z) is

Y 1 e 13 n e - |
vOTR(®) () () () . () Faa(e)]
¢71 R'y—ngi F'Y_ngg
¢72 R’Y—3 z F’Y—3 z
: : A(2) By(2) :

¢'/"’771 Ro(Z) FO(Z) ,
¢71 R—Y_QE,Z; F7_122§
¢72 Rv_g z Fry_g z

: Co(z) D(z)
o | Ro(2) Fy(z)
| L 0 0 . 0 0 . 0 J

where A(z), By(z), Co(z) and D(z) are matrices of dimensions (y—1)x (y—1)
that are defined as

Vit dhe o b
05 DO Y (5 BN
i +h 0 0 . r;rff)(z) +74(z)
A(z)= : . . ’
W, |0 0 0 ra(2)
b, Lo 0 e 0 0
i71 J’72 £/7'772 i;W*l
‘L}»l To (Z) LS (Z) TZ_3 z Ty—2 Z)
) R 5 B ol 5 RO Sl 29 B
Bo(Z): : ,
o 1m0 (2) 1 (2) 0 0
R ro (2) 0 0 0

18


https://doi.org/10.1101/619155

bioRxiv preprint doi: https://doi.org/10.1101/619155; this version posted December 12, 2019. The copyright holder has placed this preprint
(which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or
adapt this material for any purpose without crediting the original authors.

‘L71 i;rz l'7’v—2 ‘L/+’v—1
vooraz) (2 T a(z) rTu(2)
) e |rd(x) rf(z) o ra(e) 0
Co(2)= : : : :
Yo o (2) ri(2) 0 0
U brg(2) 0 0 0
¢/1 i/z i/iw2 f/i/fl
n 0 ro(2) ... rv_4(z) 7“7_3(2)
i 47 0 0 v mg(2) ()
D(z)= : : . : :
b |0 0 e 0 Ty (2)
G oo 0 0

The term of interest is the top right entry of Mo (z)-(I—My(z))~'. To see
why, observe that every read can be prepended by | segments and only by
those (every other terminator would imply that one of the two sequences has
a nonzero match size at the start of the read). Thus reads are precisely the
sequences of segments that can follow the symbol |} and that are terminated by
a tail, whose weighted generating function is the top right entry of the matrix.

My(2) is too complex to allow a closed expression of My (z)-(I—My(z))~! to
be computed. It is actually easier to proceed as in section 3.5 and to compute
the powers of My (z) (using the arithmetic of truncated polynomials) up to a
given threshold value. Since each segment except the tail contains a mismatch
against at least one sequence, we define p as the upper bound on the probability
of a mismatch p=max{b,c,d}. The updated formula (6) now gives an upper
bound of the probability that a read of size k contains s or more mismatches as

k—s 5
>35)< - — = ).
Pr(X >s)<exp ((s k) log F0=7) slog kﬁ)

Now returning to the problem of computing P(SoNS1), the + sequence
is interpreted as the target and the — sequence as the duplicate. Based on
the assumptions of the error model presented in section 3.1, this implies that

a=(1-p)(1—p), b=(1—p)p, c=pu/3, and d=p(1—p/3).
With these values, we can fully specify the matrix My(z), and compute its
powers until the upper bound is lower than a set fraction ¢ of the current value

of aj,, which gives an accurate estimate of P(SoNS1).

Remark 2. Observe that expression (8) is the probability of null seeding. The method
described above thus allows us to compute this probability at no additional cost. This
probablity is less relevant than the probabilities that the seeding process is on target
or off target, but at times, it may be useful to know the probability that a read is not
mappable, especially when reads are relatively short.
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4.2 Tllustration

We illustrate the strategy delineated above for reads of size k=150 sequenced
with an instrument with error rate p=0.01, when using exact seeds of size y=17.
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Figure 9: Off target seeding probabilities (exact seeds). The curves show the
probability that seeding is off target for exact seeds of size y=17 in reads of size k=50
nucleotides sequenced with an error rate p=0.01. Each line shows a different number
of duplicate sequences N from 1 to 10 and the x-axis shows the divergence rate pu,
defined as the probability that a given duplicate differs from the target at any given
position.

Fig. 9 shows the result for a number of duplicates NV from 1 to 10 and for a
divergence rate p from 0 to 0.20. The first observation is that the probability
that seeding is off target increases with N. This is clearly visible from expres-
sion (9). This can also be understood intuitively because the probability of
null seeding decreases when there are more potential candidates, and since the
probability of on-target seeding does not change, the probability of off-target
seeding must increase.

The second observation is that there exists a “worst” value of p situated
around 0.08. When g is much smaller, the sequences of the duplicates are close
to that of the target so it is unlikely that the candidate set contains one but not
the other. When p is much larger, the sequences of the duplicates are far from
that of the target and they are unlikely to be in the candidate set. In expression
(9), the only term that depends on y is P(S¢NS1), and it is obvious that the
minimum of expression (9) corresponds to the maximum of P(SpNSy). This is
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why the worst value of u is the same for every N.

For comparison purposes, it is important to notice the order of magnitude
of the probabilities. Up to N =3 duplicates, off-target seeding has probability
lower than 10~* and for N =10 duplicates the upper bound is 3-10~4. This sets
a baseline to compare with more elaborate seeding methods.

5 Off-target skip seeds

To compute the probability that the seeding process is off target when using
skip seeds, we observe that the logic of section 4 can be transposed with few
modifications. In particular, the probability can be computed through expres-
sion (9), where S is the event that the read has a skip seed for the target and
S1 that it has a skip seed for the first duplicate.

We have already seen how to compute P(Sp) in section 3.5, we now need to
find a way to compute P(SoNS1) when using skip seeds.

5.1 The skip dual encoding

Once again, we start by recoding the reads in a specialized alphabet. We define
the skip-n dual alphabet A, ={0, |, {0, {1, {2, . . 7Un>¢717¢72, ... ,¢/+1, L/+2, .

The symbols O, |, i/_i and U'Z. have the same meaning as in the dual alphabet
of section 4.1. The symbols |}; indicate that both sequences have match length
0 and that the next non-skipped position is ¢ nucleotides downstream.

Fig. 10 shows the read from Fig. 8 represented in the skip-3 dual encoding. It
is important to note several differences with Fig. 8. The first is that the symbols
|; are not always associated with double mismatches. For instance, the symbol
llo on the right side of the read corresponds to a mismatch for the + sequence
only. This happens whenever the 4+ and the — sequences are mismatched in the
same interval between non-skipped positions (the mismatches do not need to be
on the same nucleotide).

\ \ \ \ \ \
7 N 2 2 I I 2 I 2 =
2 4 2

6 3 3 4

Segments
Tail

OO00000OROODOROO000000 OO0 + sequence
ORODOOD0O0D00O0OROOROOOEODODONON -sequence

Figure 10: Example skip dual encoding. The read of Fig. 8 is represented in the
skip dual alphabet. The vertical bars above the read indicate non-skipped positions.
The symbols i/i; and i,/t. have the same meaning as in the dual alphabet. The symbols
{i indicate that both sequences have match length 0 and that the next non-skipped
position is located i nucleotides downstream. Other features are as in Fig. 8.

As in the case of the skip encoding, a fair amount of bookkeeping is required
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to specify the weighted generating functions of interest. We reuse the quantities
a+b+c+d=1 and give them the same meaning as in section 4.1. For notational
convenience, we define

Ni(z) = l4z4...+2,
WJ(Z) = dz~(az)z-(1+(az)n+l+.”_’_(az)(nJrl)m)’
71i
where x=n—j (mod n+1), and m= {HJ '
n+1
b . x .f .
Uij(2) = de-(a2)® (1+(a2)" 4. 4 (a2) ™) 40 2 (a2) ifj<y,
0 otherwise
where z=—i—j—1 (mod n+1),y=n—i+1 (mod n+1),
and mzp—l—f—ch7
n+1
‘ T if 5 <
Viy(z) = de(az) (1 (az) . 4 (am)rom) g ) € (027 s,
0 otherwise
s y—1l—i—x
here x=—i—j—1 (mod n+1),m= | -——=|.
where 2=—i—j—1 (mod n+1),m L n+1 J

With these definitions, one can check that the expression of the transfer
matrix M, (z) is
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The matrices A(z) and C(z) in the expression of M, (z) are the same as in

section 4.1. The matrices B, (z) and Cy,(z) are defined as

b 172 L2 Yo
h 51,1(2) s1,2(2) s14-2(2)  S14-1(2)
i o] s21(2)  s22(2) §2,4-2(2) 0
Buls)= : : : :
s |$v=21(2)  sy—22(2) 0 0
\L;r,y_l 87_171(2’) 0 0 0
l'jl ¢72 ‘1’77—2 ~L7»y_1
i t1,1(2) t1,2(2) t1y-2(2)  t14-1(2)
) b | tea(z) t2,2(2) t2,y—2(2) 0
Calz)= : : . : S
R t7_271(z) t7_272(2’) - 0 0
¢7W71 ty,l’l(z) 0 . 0 0
with
cz-(az)* =t if it+j+a<y
o -
I 0 otherwise,
bz-(az)*H=t i it+j+a<y
ti,j = .
0 otherwise,

where x = —i (mod n+1), in both cases.

The computation is performed exactly as described in section 4.1. We com-
pute the successive powers of M, (z) in the arithmetic of truncated polynomials
and stop the iterations using the same criterion. So there is no change other
than the definition of the transfer matrix.

Remark 3. Observe that when n =0 the matriz M,L(z) is identical to the matriz
Mo(z) of section 4.1, again consistent with the fact that exact seeds are skip-0 seeds.
The same applies to By (z) and Cy(z).

5.2 Illustration

We illustrate the strategy delineated above Using the same settings as in sec-
tion 4.2 (k=50, p=0.01 and y=17), except that we use skip-9 seeds instead of
exact seeds.

Fig. 11 shows the result for a number of duplicates N from 1 to 10 and for
a divergence rate p from 0 to 0.20. The curves have the same general aspect
as those of Fig. 9. The probability that seeding is off target increases with N.
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Figure 11: Off target seeding probabilities (skip seeds). The curves show the
probability that seeding is off target for skip-9 seeds of size y=17. Read size and error
rate are the same as in Fig. 9, i.e. k=50 and p=0.01. Each line shows a different
number of duplicate sequences N from 1 to 10 and the x-axis shows the divergence
rate u, defined as the probability that a given duplicate differs from the target at any
given position.

There is again a worst value of y1, because the maximum of P(SpNS;) minimizes
expression (9) for every value of N. But the value is different from that of Fig. 9
because P(S¢NS1) is computed for skip-9 seeds instead of exact seeds (here the
worst value of p is approximately 0.07).

Importantly, Fig. 11 reveals that skipping 9 nucleotides increases the chances
that seeding is off target by a factor approximately 4 (compare with Fig. 9). It
is not obvious why this should be the case: skip seeds reduce the probability of
on-target seeding (skipping positions implies fewer on-target seeds) but increase
the probability of null seeding (skipping positions implies fewer seeds overall).
So the net effect on off-target seeding is not intuitive.

And indeed, there are cases that skip seeds are less prone to off-target seeding
than exact seeds. This is the case for instance when p=0.1, where the ranking
is inverted for the whole range of values considered in Fig. 11.

This information is critical for choosing the best seeding strategy. The ofi-
target seeding probability is not the only criterion, though. Equally important
considerations are the probability of on-target seeding and the computational
resources required to implement a particular seeding strategy. The benefit of a
theory to compute seeding probabilities is to have access to this knowledge.
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6 Off-target MEM seeds

MEM seeds are substantially more complex than exact seeds and skip seeds
because we need to take into account all the duplicates in the combinatorial
construction.

6.1 Hard and soft masking

We first introduce two important notions that will be the key of understanding
the behavior of MEM seeds.

Definition 8. At a given position of the read, a duplicate is a hard mask if
its match length on the left side is strictly longer than the match length of the
target. A duplicate is a soft mask if it has the same match length as the target.

Fig. 12 gives a graphical intuition of hard and soft masks. It is important
to bear in mind that hard and soft masks depend on the position of interest: a
sequence can be a mask at the left end of the read and not at the right end, or
the opposite.

Focus position
\

(1

OOO000O0OOmOO00O0O0O0O004d0  Target
Hadmask IO OO0 OO0OO0OO0OO0O0000O0O
Softmask [] ][] I CJ )OO 00 OO C] L MU | Duplicates

OOomRfoopoooooooRco0ogggg

Figure 12: Example of hard and soft masks. Genomic sequences are shown below
a read where open squares represent nucleotides. In the sequences, the open squares
represent matches and the closed squares represent mismatches. The nucleotides con-
tributing to the match length are represented as grey boxes. At the focus position, the
match length of the target is 7. The first duplicate is a hard mask because its match
length is 13>7. The second duplicate is a soft mask because its match length is 7, as
the target. The third duplicate is not a mask because its match length is 2<7.

Hard and soft masks explain the counter-intuitive properties of MEM seeds.
For instance, in Fig. 4 the target cannot be discovered because every nucleotide
of the read has a hard mask. In Fig. 5, the target could be discovered if the
read were shorter because a hard mask would turn into a soft one.

From the definition, we see that the last nucleotide of every strict on-target
MEM seed is always unmasked. Conversely, an unmasked nucleotide always
belongs to exactly one strict on-target MEM (not necessarily a seed because the
size of the MEM can be less than 7). Also, the last nucleotide of every shared
on-target MEM seed is always soft-masked, but a soft-masked nucleotide does
not always belong to a shared on-target MEM.
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Since hard and soft masks inform us about the positions of on-target MEM
seeds, we construct an alphabet that encodes the masking status of the nu-
cleotides.

6.2 The MEM alphabet

As before, we recode the reads as sequences of letters from a specialized alphabet
called the MEM alphabet A={0J, [, 1,1, T/2,T/3---54/0,4/1, 4725}

The symbols |, indicate that the nucleotide is a sequencing error and
m >0 is the number of duplicates that match the nucleotide. Since a sequencing
error is always a mismatch against the target, the symbol | o indicates that the
nucleotide is a mismatch against every sequence. The symbols 1,; indicate a
change in masking status: the nucleotide is not masked but the previous is —
this happens when all the duplicates fail to extend beyond this position. The
index 7 >1 is the number of nucleotides since the last mismatch or since the
beginning of the read. All the other nucleotides are represented by the symbol
O and the symbol | is appended to the end of the read as usual.

Note that in the symbols |, and 1/;, the numbers m and i have different
meanings. In the symbol | /,,, the index m is a number of sequences (0<m <N
where IV is the number of duplicates); in the symbol 1;, the index 7 is a number
of nucleotides. Fig. 13 shows the encoding of a read in the MEM alphabet.

LL I I s L e LI LI L L L] Read
— —
O000000m0O0ONROO0O0O0O00O0O0C0ONOO000  Target
OROOOO0O0O0O00ORORCOOOOO00OROO00
OO0OROOOOO0RO0O00 OO OO WO O] Duplicates
OOROO0OO00OO00ONOROO0O000O00OROO

Figure 13: The MEM encoding. The read of Fig. 3 is represented in the MEM
alphabet. The arrows departing from the numbers help understand their meaning.
The symbol |/, is indexed by the number m of locations that match the nucleotide.
The symbol 1/; is indexed by the number ¢ of nucleotides from the last error or from
the beginning of the read. The grey squares in the symbolic sequences represent MEM
seed matches. Other features are as in Fig. 8.

The MEM alphabet captures the masking status of the nucleotide: the sym-
bol | /,,, indicates that the nucleotide has m hard masks and N —m soft masks.
The symbols 1/; indicate that the nucleotide is unmasked and that the previous
nucleotide is masked.

In the MEM alphabet, strict on-target MEM seeds are the longest stretches
of symbols containing some symbol 1,; and not containing any symbol | ,,.
Indeed, such a stretch is a match for the target because it does not contain any
symbol | /,,, it only matches the target because it contains at least one unmasked
nucleotide (marked by 1/,;), and it cannot be extended because it is flanked by
sequencing errors (symbols | /,,) or by the ends of the reads. Note that there
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is exactly one symbol 1/; per strict on-target MEM seed, and therefore two
symbols 1,; must be separated by at least one symbol | .

Shared on-target MEM seeds are the longest stretches of symbols [ flanked
by | /0, or by the ends of the read. Indeed, such a stretch is a MEM seed because
it matches the target and it cannot be extended (| /o is a mismatch against every
sequence). Also, it cannot be a strict on-target MEM seed because it does not
contain any 1,; symbol, so it must be a shared on-target MEM seed.

As before, the read is converted from a sequence of symbols to a sequence of
segments that consist of 0 or more symbols [ followed by a terminator. We then
specify the weighted generating functions of those segments and fill the transfer
matrix My (z) of the reads that do not contain an on-target MEM seed. We
introduce the terms of the matrix by increasing order of complexity.

6.3 Segments following 1/

A segment terminated by 1/; is the beginning of a strict on-target MEM of size
at least i. The MEM reaches the next sequencing error or the end of the read,
so the number of symbols [J in the next segment must be at most y—i—1 and
it must be terminated by a |, symbol or by the tail terminator |.

The following definition will simplify the notations.

Definition 9. The probability that a symbol is |, given that the nucleotide is
a read error is

om = (z) (1=p/3) " (/3)™ (10)

The expression for w,, is exact: if the nucleotide is an error, the symbol is
4/m for some m between 0 and N. Each duplicate is a match with probability
w/3, so m has a Binomial distribution with parameters (N, 1/3).

On this segment, the matches between the read and the duplicates are ir-
relevant, so the weighted generating function of a symbol [J is simply gz (recall
that p=1—g¢q is the probability of a sequencing error). The weighted generating
function of the terminator |/, is wmpz, so the weighted generating function of
the |/, segments following 1 /; is

y—i—1

Diﬂn(z):wmpz Z (qz)J (11)

j=0
And the weighted generating function of the tail segments following 1 /; is
y—i—1
Ei(z)= ) (¢2)’. (12)

=0

6.4 Segments following |/,

The symbol |, signifies that the nucleotide has m hard masks and N —m soft
masks. If all the masks vanish before the first read error, the next terminator
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will be a symbol 1/;, otherwise it will be the symbol | or a symbol |,,,. We
separate the cases based on the terminator of the segment.

Case 1: the terminator is 1;

Definition 10. The probability that a given duplicate contains a mismatch in
a sequence of j error-free nucleotides is

&=1-(1-p). (13)

This is the probability that a hard or soft mask vanishes within j correct nu-
cleotides.

The expression for §; is exact: every nucleotide of the duplicate differs from
the target with probability u. In the absence of sequencing errors, this is also
the probability that a nucleotide of the duplicate differs from the read. Given
that there is no error, the probability that j nucleotides in a row are identical to
the read is thus (1—p)7 and the probability that at least one of them is different
is the complement 1—(1—p)7.

With this notation, the probability that at least one of N masks survives a
sequence of j error-free nucleotides is thus 1— (§j)N , and the probability that
there remains a mask at the j—1-th but not at the j-th error-free nucleotide is
(&) —(&-1)"N. From this we conclude that the weighted generating function
of the segments terminated by 1,; following a segment terminated by |, is

B;(2)= (&)™ = (&-0)") (@2). (14)

The fact that the reads have no on-target seeds imposes j <. Also note
that this expression is the same for all symbols |/, (it does not depend on m).

Case 2a: the terminator | comes before the y-th nucleotide

In this case there can be no on-target seed because the read finishes too early.
However, we must enforce the condition that at least one of the N masks survives
until the end, otherwise the segment would be terminated by one of the symbols
1/;. The weighted generating function is

|
—

2l

(1-&)™)(g2)"

I
=)

i
Case 2b: the terminator | comes after the vy-th nucleotide

In this case, the soft masks do not hide the target. Even if a duplicate survives
until the end of the read, there will be an on-target seed (shared in this case).
To exclude on-target seeds, we must enforce the condition that at least one hard
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mask survives until the end of the segment (which is impossible if m=0). The
weighted generating function is

oo

> (1= (@2

1=

Summing the expressions from cases 2a and 2b, we find that the weighted
generating function of the tail following |/, is

cm<z>§(1 (6)V)(q2) +Z( &)™) (a2)" (15)
=0

Case 3a: the terminator |,, comes before the 7-th nucleotide

In this case, there can be no on-target seed and we must only exclude the
terminators 1/;. As we have seen above, this implies that at least one of the N
masks survives until the terminator. For a read of size j+1, this occurs with
probability 1—(&;)". Including the terminator and summing over j+1<7, we
see that the weighted generating function is

onp? Z (1-)™) @) (16)

Case 3b: the terminator |,, comes after the y-th nucleotide

This case is by far the most convoluted. Since the segment contains at least
error-free nucleotides, we must enforce the condition that it does not contain
an on-target seed. This will be the case if any of the two following conditions is
validated: ¢) at least one hard mask covers all the error-free nucleotides, or %)
all the hard masks vanish but at least one soft mask covers the whole segment
(including the terminator).

The two conditions are mutually exclusive by construction. They are graph-
ically represented in the diagram below. The left panel corresponds to case )
and the right panel to case ii). The top row represents the target, and the
bottom rows represent duplicates (using the same symbols as in Fig. 13).

EOO00000O000Om RO00ogdodn

OO00000000kE OOz ElEiEz
W EEEEE BOOOOOO0OOO

Whenever a hard mask (here the first duplicate) covers the nucleotides as
shown by the grey squres in the left panel, there can be no on-target seed. The
positions marked with a question mark are irrelevant, they cannot change the
fact that there is no on-target MEM seed. If the hard masks vanish, as in the
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right panel, then we need to look at the soft masks. If a soft mask covers the
whole segment as indicated by the grey squares, then there can be no on-target
seed. In all other cases there is an on-target MEM seed.

For a segment of size j+1, condition ¢) has probability (17(§j)m). Summing
over j+1>+ and including the terminator, we see that the associated weighted
generating function is

wap2 Y (126" )@=

Condition %) is more convoluted, so we introduce some further notations to
solve this sub-case.

Definition 11. The probability that a given duplicate sequence contains a mis-
match in a sequence of j error-free nucleotides followed by an error is

nj=1—1—p) /3. (17)

This is the probability that a hard or soft mask vanishes within j correct nu-
cleotides followed by a sequencing error.

The expression for 7; is exact: the probability that there are j matches
between the duplicate and the target is (1—pu)?. If there are no sequencing
errors, this is also the probability that there are j matches between the duplicate
and the read. The probability that the duplicate matches the subsequent error
is 11/3, so the probability that there are j+1 matches including the sequencing
error is (1—p)7pu/3. Finally, the probability that there is a mismatch is the
complement 1—(1—pu)7u/3.

Let us for now consider a segment of fixed size j+1. From expressions (13)
and (17), the probability of condition #7) is

(&)™ (1= ) m),

but we need to break up this term among all the possible terminators |,
(0<n<N) in order to fill the different entries of the transfer matrix. For this,
we split this term in the number of soft masks that run until and including the
terminator. From expression (17), the probability that there are r >1 such soft

masks is
<N;m> (L—=m5)" ()N =" (18)

For now we consider r fixed; we will compute the marginal probability at the
final stage. By construction, each of those r soft masks matches the terminator,
so the total number of matches is r plus the number of sequences that also
match the terminator, among the remaining N —m —7r soft masks and the m
hard masks.

Let us start with the m hard masks. The probability that each of them
matches the terminator is simply p/3.
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The case of the N —m—r soft masks is more complicated because they can
vanish precisely on the terminator — recall that in case i) all the hard masks are
assumed to vanish before. If the soft mask failed within the first j nucleotides,
then the j+1-th nucleotide can be anything and it will match the terminator
with probability 1/3. But if the soft mask survived the first j nucleotides,
then it must fail on the j+ 1-th and it cannot match the terminator. From
expressions (13) and (17), the probability that a given soft mask fails within
the first j nucleotides is &;/n; — this is the conditional probability that it fails
within the first j nucleotides given that it fails within the segment. Finally the
probability that such a soft mask matches the terminator is p/3-&;/7;.

Summing the contributions of the hard masks (m in total, each matching
the terminator with probability 1/3) and of the soft masks (N —m—r in total,
each matching the terminator with probability ©/3-£;/n;), the probability that
the total number of matches is n—r appears as the convolution product

(u/3)" " (A—p/3)N " b,
(my)N=m=r e

N—m—
where wjﬂn,,n,r :Z <TZ) < n_:?l_q’r) (€j>n77‘7q'

q=0

Finally, we need to compute the marginal probability over the number r of
soft masks that survive until the end of the read. Multiplying by the probabil-
ity of r from expression (18) and summing over r > 1, the probability that n
duplicate sequences match the terminator appears as

S (M) 3 Y

r>1 r
n N-—n N—-m rj
= G Y (N ) A
r>1
= wn‘Cj,m,nv
where N N
Cj,m,n:Z < r m) (1_N)Tj¢j,m,n,r/ (’I’L) (]-9)

r>1

This is the probability that the terminator is the symbol |/, given that the
segment has size j+ 1>+, that the first sequencing error occurs on the last
nucleotide, that the preceding terminator was |, and that the m hard masks
fail before the end of the segment.

Summing the terms from case 3a and from case 3b, we find that the weighted
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generating function of the |/, segments following |, is

A —wnpzz ( ) (qz)’
3=0

+Wnpzz_: ( 1 ijn))(qz)j.

(20)

6.5 Expression of My(z)

Collecting and arranging the results above, we can verify that the final expres-
sion of the transfer matrix My (z) is

/0 cee N /1 ce T/v—1 \
/0 B ono(z) . AO,N(Z) Bl(Z) . B—y_l(Z) Co(Z) T
/N AN,()(Z) AN,N(Z) Bl(Z) B,Y_l(Z) CN(Z)
T Dl,o(z) Dl,N(z) 0 0 El(Z)
T/v—1 D7_170<Z) ce D’Y—LN(Z) 0 AN 0 Ery_l(Z)
| L 0 0 0 0 0

where

Apon(2)=wnpz Z ( ) (gz)

(20)
'HUnPZZ( 1 szn)>(qz)l

(2)= (&) = (&)™ ) (a2) (14)
Cn(2)=3 (1)) @2+ (1-(€)™ ) (a2’ (15)

=0 =

y—j—1
Dijm(2) =wmpz Y (a2) (11)

=0
Ei(x)= Y (a2)' (12)

=0
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and where

o= (0 ) (=nf3) " )" (10)

&=1-(1—p) (13)
nj=1-(1-p)n/3 (17)
=2 (7Y =0 5 /() (19)

A _ m\ (N—m—r \n—r—gq
o ()

Remark 4. In the special case N =0, the transfer matrix simplifies to the extent that
we can compute the weighted generating function of the reads without on-target MEM
seed in closed form. The result is

14qz+...+(gz)"!
l—pz(l—i—qz—i—A . .+(qz)“f*1) '

(2)

Expression (2) was shown in section 3.4 to be the weighted generating function
of reads without on-target exact seed. This shows that when there are no duplicates,
MEM seeds have exactly the same properties as exact seeds.

6.6 Computing MEM seeding probabilities

The matrix My (z)-(I—Mxy(z)) ! contains the weighted generating functions of
all the reads without on-target MEM seeds. The term of interest, as usual, is the
top right entry. Indeed, every read can be prepended by | /o segments and only
by those, otherwise the read would start with fewer than N soft masks. Thus,
reads without an on-target MEM seed are precisely the sequences of segments
that can be appended to the symbol | /o and that are terminated by a tail.

To compute this term, we proceed as in section 3.5, i.e., we compute the
powers of My (2) in the arithmetic of truncated polynomials and we stop the
iterations when the terms are negligible. We bound the probability that the
read contains more than e sequencing errors using the expression

Pr(X >e)<exp <(e—k) log k(kl_fi)) —elog kep) ; (6)

but here not every segment contains an error. There cannot be two symbols
1/; in a row, so a read with s+1 segments must contain a minimum number
of sequencing errors which is e=1[s/2]. As before, we compute the powers of
My (z) until the upper bound is less than a set fraction ¢ of the current value
of a.

If we call My the event that the read contains an on-target MEM seed, the
method above gives us P(Mj). Calling M; the event that the read contains a
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MEM seed for the j-th duplicate, we are interested in the probability
P(MoN(MU...UMy))=P(My)—P(MoNMiN...NMy). (7)

The key insight to compute P(MO NMN.. .QMN) is to realize that there
is some MEM seed, on-target or not, if and only if the read contains a match of
size v or more for any of the N+1 sequences. Therefore, this probability is the
same as the term P(go NnS;N.. .ﬁgN) computed in section 4.

In conclusion, the probability that the MEM seeding process is off target is

= = N
P(My)—P(So)- <P(If?;0”)%)) , (21)

where P(Mj) is computed using My (z) as explained in this section, P(Sy) is
computed using a recursive equation as explained in section 3.4, and P (SoNSy)
is computed using My(z) as explained in section 4.1.

6.7 Monte Carlo sampling

One potential difficulty in computing P(Mg) is that the matrix My(z) has
dimension (N+~+1)x (N+~+1). The problem can become computationally
intractable because N can be very large. For instance, the sequences called Alu
have more than one million duplicates in the human genome. There is no hope
to compute the powers of My (z) in these conditions and we need an alternative
method.

The symbolic representation as MEM segments can be used to design an
efficient method to sample reads. Instead of generating the nucleotides of the
N +1 sequences one by one, one can generate a single sequence of segments.
Since the number of segment does not depend on NN, we can obtain a fast
Monte Carlo method to sample millions of reads and count the proportion that
contain an on-target MEM seed.

The principle is to proceed in cycles of two steps. We first sample the position
of the next sequencing error, which gives the position of the next symbol | ,,,
where m will be determined at a later stage. The second step is to determine
whether there is a symbol 1,; before that. For this we sample the number of
masks that vanish before the symbol | /,,,. If they all vanish, the read contains
an on-target MEM seed, provided the next read error is at a distance greater
than . Otherwise, we sample the number m of hard masks at the sequencing
error, and the process is repeated until we generate an on-target MEM seed,
or until the read has size k or greater (in which case it has no on-target MEM
seed).

The method is summarized in algorithm 1 below. It requires efficient algo-
rithms to sample from the geometric and from the binomial distributions. Sam-
pling from a geometric distribution can be done by computing the logarithm of
a uniform (0, 1) random variable. Sampling from a binomial distribution can
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be done by the method of Kachitvichyanukul and Schmeiser [35]. Most impor-
tantly, the number of duplicates N has little influence on the running speed of
algorithm 1.
Parameter: k is the size of the reads.
Parameter: p is the error rate of the sequencer (substitutions only).
Parameter: N is the number of duplicates.
Parameter: p is the nucleotide-wise probability that duplicates differ.
Result: Sample a read at random. Return 1 if the read contains a
good MEM seed, otherwise return 0.
A0 ; > Current read size.
m+<+0 ; > Current number of hard masks.
while A<k do
i+geom(p)—1; > Error-free nucleotides.
if i>k— )\ then
if k=A<~ then
‘ return 0O;
else
h < binom(m, (1—p)k=2) ; > Surviving hard masks.
return 1 if A=0, otherwise return 0;
end
else
h<binom(m, (1—p)?) ; > Surviving hard masks.
s<binom(N—m, (1—pu)'n/3) ; > Surviving soft masks.
if i>v and h=0 and s=0 then
‘ return 1;
else
m<—s+binom(N —s, u/3);
A= A+i+1;
end

end
end

Algorithm 1 is an important result. It gives a compact solution to the
problem of estimating the probability that a read can be mapped when using
MEM seeds. The algorithm is also much faster than the naive approach of
sampling every nucleotide of every sequence, because it is equivalent to sampling
the nucleotide sequence of all the duplicates.

6.8 Illustration

We illustrate the strategy delineated above using the same settings as in sec-
tion 4.2 (k=50, p=0.01 and y=17), except that we replace exact seed by MEM
seeds.

Fig. 14 shows the result for a number of duplicates N from 1 to 10 and for
a divergence rate p from 0 to 0.20. The curves have the same general aspect as
those of Fig. 9. The probability that seeding is off target increases with IV, as
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Figure 14: Off target seeding probabilities (MEEM seeds). The curves show the
probability that seeding is off target for MEM seeds of minimum size v=17. Read
size and error rate are the same as in Fig. 9, i.e. k=50 and p=0.01. Each line shows
a different number of duplicate sequences N from 1 to 10 and the x-axis shows the
divergence rate u, defined as the probability that a given duplicate differs from the
target at any given position.

shown by expression (21).

There is again a worst value of p but it is much lower than the previous two
cases (here it is close to 0.026). In the case of MEM seeds, it is not obvious why
the same value of y maximizes (21) for all values of N because both P(M) and
P(S¢NS1) depend on p.

Fig. 14 reveals that in this concrete case, MEM seeds increase the chances
that seeding is off target by a factor up to 40 compared to exact seeds (see
Fig. 9). On this criterion, MEM seeds are always inferior to exact seeds with
the same specifications. The reason is that every read triggering an off-target
seeding with exact seeds will also trigger an off-target seeding with MEM seeds.
Knowing that, it is still important to realize how large the increase is in practice.
MEM seeds tremendously simplify the seeding process, but this comes at the
cost of an increase in the false positive rate. The methods presented here are
thus very useful to balance the risk when using MEM seeds.
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7 Random seeds

We have assumed throughout that seeds can match only the target or one of its
duplicates. In practice, seeds can match many random locations of the genome
and not just the target and the duplicates.

It is important for the validity of the theory that all the sequences that
have a seed are considered candidate locations (as long as the seed is above the
threshold «). If not, the final estimates are biased. The hope is that spurious
matches are shorter than « so that they are filtered out, but this is not always
the case. And if they qualify as a seed we need to verify the candidate location.

Such random hits can be problematic for two reasons: First, the time spent
verifying them is wasted. Second, they can cause false positives. Fortunately,
both issues can be addressed.

To save time during the alignment phase, we can prioritize the seeds so that
the best hit is likely to be discovered first, allowing us to bail out from other
alignments as early as possible. We can even bound the maximum quality of
some candidates so that the alignment can be skipped altogether. These con-
siderations depend on the implementation of the mapper so we will not develop
this further. What matters is that random hits do not impose a significant
burden on the time needed to verify the candidates.

The second issue is that random hits can generate false positives. Such cases
occur when seeding is null (meaning that there is no seed for the target nor for
its duplicates). Since the hits are not homologous to the read, the alignment
score is extreme, which makes it easy to detect.

Indeed, if the candidate location is random, mismatches occur with proba-
bility 3/4. If it is the true location, mismatches occur with probability p. We
discard the seed because it is an automatic match of size v (and possibly larger
in the case of MEM seeds). Say that there remain L nucleotides and that m
of them are mismatches for the candidate location. From Bayes formula, the
probability that the location is random given the number of mismatches is

1
1+4E(p/3)mgt—m(1-B)/B’

where g=1—p and f is the prior probability that the hit is random.

The value of 8 has little importance if p is small. Say that p=0.01 and
that a read generates a hit in the genome such that 33 nucleotides need to be
aligned after seeding. If the hit is random there is a 99.99% chance that at
least 15 are mismatches. The denominator of expression (22) is approximately
14+4.3-10718(1—3)/B. So unless 3< 10717, the support for the hypothesis that
the hit is random is overwhelming. Conversely, if the hit is not random, there
is a 99.99% chance that 4 or fewer nucleotides are mismathes. In this case, the
denominator is approximately 1+6.8-10%(1—3)/3, so unless 1—3<107?, the
support for the hypothesis that the hit is not random is overwhelming. If p is
small, we do not need to worry about the value of 5, one can choose for instance
B=1/2 so that the term (1—0)/8 disappears from expression (22).

(22)
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Since the probability that the best candidate is a random sequence is either
very small or very large, it has no influence in the first case, or it dominates
the probability of a false positive in the secondi case. For every read, we can
use as confidence score the maximum of this probability and of the estimated
probability that seeding is off target.

In summary, seeds in random sequences happen relatively frequently, but it
is possible to minimize their computational burden. Also, they are no cause
for concern regarding false positives because they can easily be detected using
Bayes formula, as shown in expression (22).

8 The Sesame library

We implemented the methods and algorithms presented here in an open-source
C library to compute seeding probabilities. The library is called Sesame and is
available at https://github.com/guillaume/sesame.

8.1 Main features of Sesame

Sesame contains functions to compute the seeding probabilities described here.
All the functions were tested against simulations to ensure that the implemen-
tation is accurate and the code was checked extensively by static analysis and
unit testing.

Computating seeding probabilities can take up to a few seconds, even when
replacing iterative methods by Monte Carlo simulations. This is incompatible
with the speed requirements of modern mappers, so Sesame has an interface
for computations that must be performed online. In this mode, Sesame uses a
type of lazy evaluation where the results are computed only the first time, and
stored in memory for reuse on subsequent calls.

Storing the results in memory is an efficient strategy because three parame-
ters are constant throughout the sequencing run: the minimum seed size -, the
read size k and the error rate of the sequencer p (and when using skip seeds,
the amount of skipping n is also constant). Only two parameters depend on the
read: the number of duplicates IV and their divergence rate p. In this mode,
Sesame automatically switches to Monte Carlo sampling when N is large to
save time. Also, the input parameters are “snapped” to a predefined grid of set
values for N and pu, so that few computations are performed and most of the
calls are actually memory lookups. Sesame can thus be integrated in short read
mappers without being a bottleneck.

Alternatively, the probabilities of interest can be computed offline, saved
to disk and loaded at run time. This is particularly useful if the sequencing
runs follow some standard conditions with a known error rate, because the
computations can be recycled between runs.

Finally, Sesame also has an offline interface, where seeding probabilities are
computed exactly as requested by the users, i.e. without modifying the algo-
rithm or the parameters, and also without storing the results in memory.

39


https://doi.org/10.1101/619155

bioRxiv preprint doi: https://doi.org/10.1101/619155; this version posted December 12, 2019. The copyright holder has placed this preprint
(which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or
adapt this material for any purpose without crediting the original authors.

MEM seeds Skip seeds

-4
1
-4
1

Probablity that seeding is off target (log10)

Probability that seeding is off target (log10)

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Read size (nt) Read size (nt)

Figure 15: Comparing seeding strategies with Sesame. Left: MEM seeds with
v=19 and p=0.06. Right: skip-9 seeds with y=16 and ¢ =0.06. The probabilities
that seeding is off target were computed using Sesame. Each curve represents the
probability for a given number of duplicates (N). Estimates using iterative methods
(skip seeds and MEM sees where N < 20) were computed to within 1% accuracy.
Estimates using Monte Carlo sampling (MEM seeds where N >20) were computed as
the average of 500 million simulations.

The Sesame manual, available from the repository, contains additional in-
formation and explains in detail how to use the library.

8.2 Using Sesame to compare seeding strategies

As a tool to compute seeding probabilities, Sesame can be used to compare the
merits of different strategies. The kind of insight that we can gain from such
calculations was already showcased in Fig. 9, Fig. 11 and Fig. 14, where the
numbers were computed using Sesame.

To further showcase the potential benefits of computing seeding probabilities,
we use Sesame to compare the default seeding strategies of BWA-MEM [30] and
Bowtie2 [29]. Note that both mappers use advanced techniques to refine the
seeds, so this comparison does not reflect the true performance of the mappers.
It is nevertheless useful to know the baseline of each strategy. The default of
BWA-MEM it to use MEM seeds of minimum size 19; that of Bowtie2 is to use
skip-9 seeds of size 16.

The probabilities that seeding is off target for different read sizes k and
different number of duplicates N are plotted in Fig. 15. The left panel shows the
results for MEM seeds and the right panel shows the results for skip seeds. Here
the error rate p is set to 1%, close to the specifications the Illumina platform,
and the divergence rate between duplicates p is set to an arbitrary value of 6%.
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The behaviors of the two types of seeds are dramatically different. Let us
start with MEM seeds. For every value of N, the probability initially increases
with the read size, and then drops exponentially. The initial increase is a hall-
mark of MEM seeds; it is due to the fact that duplicates can mask the target.
Note that the asymptotic decay depends on the number of duplicates N because
each duplicate can mask the target and thereby reduces the probability that it
is discovered. Overall, these results show that the performance of MEM seeds
is poor when the target has more than approximately 20 duplicates.

Turning to skip seeds, we see that the curves have a staircase look with
a drop every 10 nucleotides. This is so because seeding probabilities remain
unchanged until there is space for another seed of size 16 on the read. The curves
are otherwise decreasing with a steady exponential trend where the asymptotic
decay does not depend on the number of duplicates N. The reason is that
duplicates do not prevent the target from being discovered, they merely fool the
mapper when the target was not found. This property makes the asymptotic
decay of skip seeds substantially faster that of MEM seeds when N is large.

Those properties are self evident in retrospect, but they are not necessarily
obvious from the definitions of MEM seeds and skip seeds. The main limitations
of the MEM seeds are best understood by keeping in mind that their asymptotic
decay bepends on N.

Fig. 15 suggests that skip-9 seeds of size 16 are just better than MEM seeds
of size 19. However, the gain in sensitivity comes at the cost of a larger candidate
set, slowing down the mapping process. To remain competitive, Bowtie2 further
filters the candidate set using a priority policy. But since some candidates are
not checked, the probability that seeding is off target is larger than shown in
Figure 15.

8.3 Key insights about MEM seeds

At least two key insights about MEM seeds can be gained from Fig. 15. The
first is that it is probably not worth for a MEM-based mapper to check all the
candidate loci when there are more than approximately 20 them. The mapper
may find the correct location, but even if this is the case, the mapping quality
will remain low because the prior chances of failure were high. A better strategy
is to either bail out ot not waste time or to switch to a more sensitive seeding
method (BWA opts for the second and uses a re-seeding policy). It is also
important to note that this decision should be based on an estimated value of
N and not, for instance, on the size of the seed or some other variable.

A second insight is that for MEM seeds, the off-target rate is always above
1073 for reads of 50 nucleotides or fewer. Here it is important to mention that
the value 1 =0.06 is not even the worst for reads of this size when p=0.01
(according to Fig. 14, the worst value is around 0.02). So if p is unknown and
one wishes to be conservative, it seems that reads of 50 nucleotides cannot be
mapped with confidence better than 1/1000.

However, this is not true for the reason that it is practically impossible to
map an Illumina read of size 50 to the wrong location when N =0 (see section 7).
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This means that tweaking the seeding method to improve the mapping quality
score will have less impact than checking whether NV is 0 (in other words, whether
the target is a unique sequence).

These insights suggest that there is a way to make MEM seeds more useful
for short read mappers. We are currently working on a prototype based on these
two ideas to increase the speed and the accuracy of short read mapping. This
requires estimating N and p for every read and will be described in a separate
work.

9 Discussion

We have devised a set of methods to compute the probability that seeding
heuristics fail and commit the mapping process to an error. We have also
implemented the solution as an open source C library to perform the computa-
tions. This fills a knowledge gap to understand and calibrate the performance
of the seeding heuristics. The pillars of our strategy are borrowed from analytic
combinatorics [32,33], even though we do not follow the complete programme.
Constructing generating functions usually serves the purpose of finding their
singularities in order to approximate the solution. In our case, however, the
weighted generating functions cannot be computed so this strategy is not appli-
cable.

To find the probabilities of interest in the absence of a fully specified weighted
generating function, we compute only the first terms using iterative methods
as explained in section 3.5, or using Monte Carlo sampling as explained in
section 6.7. In this regard, the breakthrough is the encoding of reads as segments
in different alphabets, which is an implicit form of Markov imbedding [36].

The methods rely on the knowledge of two essential parameters: the number
of duplicates N and their divergence rate u. These quantities can be estimated
efficiently using the FM-index [21] and we will publish the detail of this method
elsewhere, together with a more complete overview of how to use the results
presented here to implement practical mapping algorithms.

The method is general, but it is important to clearly state the assumptions
it depends on. First and most importantly, we have ignored insertions and
deletions. We assume that the sequencing errors are substitutions only, which
makes the method adapted to the Illumina technology, but not to deletion-
prone instruments such as the Oxford Nanopore technology. We also assume
that insertions and deletions never occur among duplicated sequences. This is
obviously incorrect, but our initial tests with real data suggest that this is a
minor impediment (most likely because this is only one of several simplifying
assumptions). Incorporating insertions and deletions would make the theory
intractable, so it is presently unclear how to deal with this type of error.

The second assumption is that all the candidate locations with a seed are
tested with an exact sequence alignment algorithm, so that the best location is
always discovered if it is present in the candidate set. This is not completely
unrealistic, but it is important to note that for plant and animal genomes, a
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single seed may have tens of thousands of hits. Therefore, most mappers impose
a limit on the number of alignments per read, opening the possibility that the
best hit is seeded but not aligned. This is again a minor impediment, since
we can replace the probability that the location is false by the proportion of
candidates that were not aligned.

The third assumption is that all the duplicate sequences evolve indepen-
dently of each other and at the same rate. This is again incorrect, because
duplication events can happen continuously, creating complex ancestry relation-
ships. It is possible to infer the ancestry using tree reconstruction techniques,
but it would be challenging to incorporate this information in the present the-
ory. The symbols of the alphabets developed above implicitly assume that the
sequences are exchangeable and the complexity of the calculations explodes if
it is not the case.

The last assumption is that seeds can match only the target or one of its
duplicates. This does not hold in general but we have shown how to deal with
this possibility a posterior:i in section 7.

Being able to compute seeding probabilities revealed some interesting facts
(sections 4.2, 5.2 and 6.8). The first is that the seeding schemes considered
here have a worst case scenario for a particular value of the divergence between
duplicates p. Importantly, the worst value varies between different seeding
methods, so it is possible in theory to construct opportunistic seeding strategies
that pick the best method for every read.

Another interesting fact is that skip seeds can have better performance than
exact seeds in the sense that they can yield lower off-seeding probabilities. How-
ever, this always comes at the cost of accuracy because skipping nulceotides
reduces the probability of on-target seeding.

Finally, we also observed that MEM seeds cause a very serious increase in
off-target seeding compared to exact seeds and skip seeds. This does not mean
that MEM seeding is a bad strategy (it is usually faster than the other methods),
but it is a good idea to keep an eye on performance and switch method or even
skip the read altogether if the chances of discovering the target are too low.

Regarding the methodology, the Monte Carlo approach of algorithm 1 is
relatively straightforward, so one may wonder why the approach with weighted
generating functions is necessary for MEM seeds. The only reason is precision.
To estimate the frequency of an event by Monte Carlo sampling, it must occur
at least a few times in the simulation. For instance, with 1 million rounds of
sampling, frequencies around 1/100, 000 or lower cannot be measured accurately.
When one is interested only in frequent events, it is thus a reasonable strategy.
On the other hand, for N < 20, the probability that MEM seeding is null or
off-target is relatively small, so we need a method that is accurate in this range.
Fortunately, the transfer matrix method is fast because the dimension of the
matrix My (2) is small and the computations are not prohibitive.

The proposed methods meet the demand for speed. One needs to compute
the probabilities only once for a given value of N and p (the error rate p is
known and constant). For N > 20, the iterative method is usually too slow and
we need to use Monte Carlo sampling instead. The running time depends on
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p, on the size of the reads k, and on the desired number of iterations. Since
those are constant throughout the sequencing run, the method always takes the
same time (around 1-10 seconds for reads of size 100-200 nucleotides on modern
hardware). The values of N and p can be binned in intervals so that there are
only around 100 pairs for a total cost of a few minutes per run. Considering
that mappers can process at most 10,000 reads per second per core, the time
of mapping a sequencing run of 250 million reads is over 7 hours per core, two
orders of magnitude larger than the time required to estimate the probabilities
of error.

Finally, one may wonder if our approach has any advantage over methods
based on machine learning. Such algorithms have already proved useful [37] and
the rapid progress in the field of deep learning suggests that it is possible to train
algorithms to accurately estimate mapping quality. In time, such algorithms
may prove faster and/or more robust because they could learn intrinsic biases
of the mapping algorithms. Yet, the main benefit of our approach will remain:
the combinatorial constructions are a direct access to the nature of the problem.
For instance, viewing MEM seeds through the lens of hard and soft masks turns
a seemingly intractable process into a relatively simple one (see algorithm 1).
The combinatorial stance is that there is value in clarity.

In conclusion, we presented a practical solution to the problem of estimating
the probability of false positives when using seeding heuristics. This solution
is adapted for mapping short reads sequenced with the Illumina technology.
Being able to calibrate the seeding heuristic not only allows the user to choose
how to balance speed versus accuracy, but also opens new applications. For
instance, one can map reads from contaminated samples in pools of closely
related genomes (e.g., modern human and Neanderthal) in order to assign the
reads to the organism they belong to. In this case, the probabilities of false
positives give the right level of confidence in the assignment.

More generally, the analytic combinatorics programme is a very powerful
tool to address problems in bioinformatics. Here we have seen how this strategy
can be useful even when the generating functions cannot be computed. Using
the same ideas, one could calibrate heuristics used in other alignment methods,
especially in the expanding field of long-read technologies.
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