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Abstract 

Human well-being can be affected by exposure to several chemicals in the environment.  

One such group is endocrine disrupting chemicals (EDCs) that can perturb the hormonal 

homeostasis leading to adverse health effects. In this work, we have developed a detailed 

workflow to identify EDCs with supporting evidence of endocrine disruption in published 

experiments in humans or rodents. Thereafter, this workflow was used to manually 

evaluate more than 16000 published research articles and identify 686 potential EDCs with 

published evidence in humans or rodents. Importantly, we have compiled the observed 

adverse effects or endocrine-specific perturbations along with the dosage information for 

the potential EDCs from their supporting published experiments. Subsequently, the 

potential EDCs were classified based on the type of supporting evidence, their 

environmental source and their chemical properties. Additional compiled information for 

potential EDCs include their chemical structure, physicochemical properties, predicted 

ADMET properties and target genes. In order to enable future research based on this 

compiled information on potential EDCs, we have built an online knowledgebase, Database 

of Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT), accessible at: 

https://cb.imsc.res.in/deduct/. After building this comprehensive resource, we employed 

a network biology approach to study the chemical space of EDCs and its potential link to 

the biological space of target genes of EDCs. Specifically, we have constructed two 

networks of EDCs using our resource based on similarity of chemical structures or target 

genes. Ensuing analysis of these two networks revealed that EDCs can differ both in their 

chemical structure and set of target genes. Though our detailed results highlight potential 

challenges in developing predictive models for EDCs, the compiled information in our 

resource will undoubtedly enable future research in the field, especially, those focussed 

towards mechanistic understanding of the systems-level perturbations caused by EDCs. 

Keywords 

Endocrine disrupting chemicals (EDCs); Endocrine-mediated endpoints; Systems-

level perturbations; Database; Network analysis 
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1. Introduction 

In the last century, industrial advances has led to the rapid synthesis and commercialization 

of more than 80000 chemicals, however, only a small fraction of these chemicals have been 

tested for their safety or toxicity concern (Futran Fuhrman et al., 2015; Schug et al., 2013). 

Humans are exposed to these chemicals in their daily life in the form of consumer products 

including personal care products, pharmaceuticals, food additives, pesticides and 

insecticides (Meeker, 2010; Mezcua et al., 2012; Muncke, 2011; WHO/UNEP, 2013). In 

recent times, certain groups of these chemicals have received serious attention from 

scientists, regulatory agencies and public due to their potential safety concern. Endocrine 

disrupting chemicals (EDCs) is one such group listed under the chemicals of emerging 

concern (Futran Fuhrman et al., 2015). EDCs interfere with the normal functioning of the 

human endocrine system and can lead to adverse effects related to reproduction, 

development, metabolism, immune system, neurological system, liver or hormone-related 

cancers (Solecki et al., 2017; Swedenborg et al., 2009; WHO/UNEP, 2013). EDC exposure 

can alter hormonal imbalance in humans through different mechanisms. For example, 

EDCs can mimic the natural hormones and bind to their respective nuclear receptors either 

as an agonist or an antagonist (Schug et al., 2013; Zoeller et al., 2012). So far there is a lack 

of biological systems or pathway level understanding of the different mechanisms via 

which specific EDCs alter the hormonal homeostasis. 

 For the risk assessment of EDCs, an important limitation is the lack of availability of 

validated test systems for their identification (Solecki et al., 2017; Zoeller et al., 2012). 

This has hampered both researchers and policymakers to reach a consensus agreement on 

identification of EDCs and the characterization of their endocrine disruption mechanisms 

(Solecki et al., 2017; Zoeller et al., 2012). In this direction, Solecki et al. (Solecki et al., 

2017) have outlined a detailed consensus statement on the scientific principles that can 

form a basis for the identification of EDCs and their disruption mechanism. Furthermore, 

the scientific statements by the endocrine society (Diamanti-Kandarakis et al., 2009; Gore 

et al., 2015; Zoeller et al., 2012) provide endocrine principles for better understanding of 

disruption mechanisms by EDCs. 
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Given the potential risk from EDCs in our environment, there have been multiple efforts 

towards their compilation which include the World Health Organization (WHO) report 

(WHO/UNEP, 2013), The Endocrine Disruption Exchange (TEDX; 

https://endocrinedisruption.org/), EDCs Databank (Montes-Grajales and Olivero-Verbel, 

2015) and Endocrine Disruptor Knowledge Base (EDKB) (Ding et al., 2010). However, 

these existing resources on potential EDCs consider evidence for endocrine disruption upon 

exposure from disparate types of published studies including in vivo, in vitro, in silico, 

environmental monitoring and epidemiological studies. Moreover, these existing resources 

on potential EDCs do not systematically compile the observed adverse effects specific to 

endocrine disruption in supporting published experiments.  

In this direction, we have developed a detailed workflow (Figure 1) to identify potential 

EDCs from published research articles containing supporting experimental evidence for 

endocrine-specific perturbations in humans or rodents. Using this workflow, we processed 

more than 16000 published research articles to manually compile 686 potential EDCs with 

supporting evidence of endocrine-specific perturbations from published experiments in 

humans or rodents. Importantly, the compiled list of observed adverse effects or endocrine-

specific perturbations in supporting published experiments for the 686 EDCs were 

manually curated, unified and standardized into a list of 514 endocrine-mediated endpoints 

spanning 7 systems-level perturbations (Methods; Figure 2). In contrast to existing 

resources, another unique feature of our work is the compilation and standardization of the 

dosage information at which endocrine-mediated effects were observed upon individual 

EDC exposure in published experiments (Methods). Moreover, the 686 EDCs were 

classified based on the type of supporting evidence in published experiments, their 

environmental source and their chemical classification (Methods; Figures 3 and 4). Lastly, 

we have also compiled additional detailed information for each EDC such as its two-

dimensional (2D) and three-dimensional (3D) structure, physicochemical properties, 

molecular descriptors, predicted ADMET properties and experimentally inferred target 

genes. In order to widely share the compiled information on 686 potential EDCs and enable 

basic research towards elucidation of systems-level perturbations caused by them, we have 

also created a webserver, Database of Endocrine Disrupting Chemicals and their Toxicity 

profiles (DEDuCT), which is accessible at: https://cb.imsc.res.in/deduct/.  
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An important motivation for creating this large-scale resource on potential EDCs was to 

enable network biology approaches (Barabasi et al., 2011; Barabasi and Oltvai, 2004; Zhou 

et al., 2014) towards a better understanding of the link between the underlying chemical 

space of EDCs and biological space of target genes or perturbed pathways (Dobson, 2004; 

Lipinski and Hopkins, 2004). In this direction, we have used our resource to construct two 

different networks for EDCs, namely, the chemical similarity network and the target 

similarity network (Methods; Figure 5). Subsequent analysis of these networks revealed the 

diversity of the chemical space of EDCs and its associated space of target genes. Our 

results expose future challenges in developing predictive computational systems toxicology 

models (Kavlock et al., 2008; Merlot, 2010) for EDCs. Altogether, DEDuCT is a large-

scale resource on 686 potential EDCs with supporting evidence of endocrine-mediated 

perturbations and dosage information from published experiments in humans or rodents, 

and the compiled information will contribute to the future research in the field of 

computational systems toxicology. 

2. Methods 

2.1 Workflow for the identification of EDCs 

Based on the consensus statement by Solecki et al. (Solecki et al., 2017) and the scientific 

statement by the endocrine society (Diamanti-Kandarakis et al., 2009; Gore et al., 2015; 

Zoeller et al., 2012), we have developed a detailed flowchart to identify EDCs from 

published research articles containing supporting experimental evidence of systems-level 

endocrine-mediated perturbations in humans or rodents (Figure 1). Our workflow for the 

identification of EDCs can be further subdivided into four stages which are described 

below.  

2.1.1 Literature mining 

In stage 1, we performed an extensive literature search to compile 14297 published 

research articles which are likely to contain information on EDCs (Figure 1).  

Firstly, we mined PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) using the following 

keyword search:  
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“EDCs” OR “EDC” OR (“endocrine” AND “disrupt”) OR (“disrupt” AND 

“endocrine”) OR “endocrine disruptors” OR “endocrine-disruptors” OR 

“endocrine disruptor” OR “endocrine-disruptor” OR “endocrine disrupters” OR 

“endocrine-disrupters” OR “endocrine disruption” OR “endocrine-disruption” OR 

“endocrine disruptive” OR “endocrine-disruptive” OR “endocrine disrupting” OR 

“endocrine-disrupting” OR “endocrine disrupter” 

The above query was designed to filter abstracts on EDCs from PubMed, and this keyword 

search in February 2018 led to 16407 research articles. Secondly, we compiled research 

articles from three existing resources on EDCs, namely, the WHO report (WHO/UNEP, 

2013), TEDX (https://endocrinedisruption.org/) and EDCs Databank (Montes-Grajales and 

Olivero-Verbel, 2015) (http://edcs.unicartagena.edu.co/).  Specifically, the WHO report, 

TEDX and EDCs Databank captured information from 337, 1087 and 456 research articles, 

respectively. Subsequently, we manually filtered the compiled abstracts from PubMed 

query, WHO report, TEDX and EDCs Databank for the presence of keywords related to 

EDCs, and this filtration led to 14297 research articles at the end the stage 1 

(Supplementary Table S1).    

2.1.2 Literature filter based on study type and test organism 

In stage 2, we screened the 14297 research articles from stage 1 to select studies based on 

in vivo or in vitro experiments in humans or rodents (Figure 1). Here, we have excluded 

published studies where receptor-based binding assays or in silico methods are employed to 

infer the potential endocrine disruption by a chemical using binding affinity or bioactivity 

information. Such binding affinity or bioactivity values do not provide sufficient 

information on whether chemical exposure can actually lead to adverse effects due to 

endocrine disruption (Baker, 2001). We have also excluded human epidemiological studies 

due to insufficient mechanistic evidence linking observed adverse effects to potential 

endocrine disruption upon chemical exposure (Bliatka et al., 2017; Hernandez and 

Tsatsakis, 2017). The filtration based on study type and test organism led to a subset of 

3300 research articles at the end of stage 2 (Supplementary Table S2).   

2.1.3 Compilation of tested chemicals from the filtered research articles  
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In stage 3, we gathered the set of chemicals tested for potential endocrine disruption in any 

of the 3300 research articles from stage 2. Moreover, we also gathered information on the 

2D structure of each tested chemical using PubChem (Kim et al., 2016) and Chemical 

Abstracts Service (CAS; https://www.cas.org/) databases (Figure 1). Note that we have 

omitted any tested chemical in the 3300 research articles which could not be mapped to its 

2D structure using standard chemical databases. At the end of stage 3, we compiled 1626 

chemicals along with their 2D structures that were tested for endocrine disruption in 

humans or rodents in at least one of the filtered research articles from stage 2 

(Supplementary Table S3). 

2.1.4 Identification of potential EDCs with supporting evidence for systems-level 

endocrine-mediated perturbations  

In stage 4, we identify potential EDCs among the 1626 chemicals compiled in stage 3 by 

assessing the significance of observed effects for endocrine disruption upon exposure in 

published experiments in humans or rodents (Figure 1).  

Prior to this assessment of supporting evidence for endocrine disruption upon chemical 

exposure, we excluded a tested chemical or its published experiment based on the 

following criteria (Figure 1): 

(a) Chemical is a natural hormone. 

(b) Chemical was tested as part of a mixture in the published experiment. This criterion 

reflects our choice to include chemicals which as single entities can cause endocrine 

disruption upon exposure. 

(c) Chemical was tested for therapeutic relevance in the published experiment. 

Moreover, we excluded published experiments which contain evidence for endocrine 

disruption upon chemical exposure in an in vitro rodent system. Since the observed effects 

in an in vitro rodent system do not adequately reflect the complexities observed in humans, 

the last criterion omits such evidence in the published literature (Figure 1). For the next 

phase of the workflow, we filtered chemicals and their associated literature which pass the 

above-mentioned criteria.  
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For each chemical which passed the above-mentioned criteria, we next evaluated the 

level of supporting evidence for endocrine disruption in humans or rodents upon exposure 

based on published experiments contained in the filtered research articles. For this 

evaluation, we manually compiled the observed effects upon exposure of each chemical in 

associated published experiments in humans or rodents. A published experiment in humans 

or rodents is considered as strong supporting evidence for endocrine disruption by a 

chemical if the chemical upon exposure leads to observed effects or endpoints related to 

endocrine-specific perturbations such as changes in morphology, physiology, growth, 

reproduction, development and lifespan (WHO/UNEP, 2013). Thereafter, if a chemical has 

at least one published experiment with strong supporting evidence for endocrine disruption 

upon exposure, then it is identified as a potential EDC in stage 4 of the workflow. At the 

end of stage 4, we identified 686 potential EDCs with supporting evidence of endocrine-

mediated perturbations in published literature spanning 1796 research articles 

(Supplementary Table S4). 

2.2 Compilation of endocrine-mediated endpoints and their classification into 

systems-level perturbations 

For the identification of EDCs, we have manually compiled the observed effects or 

endpoints related to endocrine-specific perturbations reported in published experiments on 

chemical exposure in humans or rodents (Figure 1). This compiled list of observed effects 

or endpoints was then used to assess the level of supporting evidence for endocrine 

disruption upon chemical exposure. In order to standardize the reported evidence for an 

EDC, we undertook an extensive manual effort to unify the biological terms used to 

describe the observed effects or endpoints related to endocrine-specific perturbations in 

published experiments upon chemical exposure. This standardization effort led to a 

comprehensive list of 514 endocrine-mediated endpoints which refer to the adverse effects 

such as changes in morphology, physiology, growth, reproduction, development and 

lifespan that may be observed in experiments after the administration or ingestion of a 

tested chemical (Supplementary Table S5). For the 686 EDCs, we have also compiled the 

observed adverse effects in terms of these 514 endocrine-mediated endpoints from 

published experiments in supporting literature.  
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EDCs perturb the normal functioning of the human endocrine system which consists of 

several glands that secrete hormones which in turn regulate diverse biological functions 

such as development, growth, reproduction, metabolism, immunity and behaviour. Hence, 

exposure to EDCs can have adverse effects in several biological processes regulated by the 

human endocrine system (Figure 2). In addition, the endocrine-related processes perturbed 

by EDCs can also induce cancer in humans (Diamanti-Kandarakis et al., 2009; Gore et al., 

2015; WHO/UNEP, 2013). Motivated by the major biological processes controlled by the 

human endocrine system, we have classified the 514 endocrine-mediated endpoints into 7 

systems-level perturbations, namely,  

(a) Reproductive endocrine-mediated perturbations (RT),  

(b) Developmental endocrine-mediated perturbations (DT), 

(c) Metabolic endocrine-mediated perturbations (MT),  

(d) Immunological endocrine-mediated perturbations (IT), 

(e) Neurological endocrine-mediated perturbations (NT),  

(f) Hepatic endocrine-mediated perturbations (HT), and  

(g) Endocrine-mediated cancer (CT). 

In Supplementary Table S5, we list the 514 endocrine-mediated endpoints and their 

categorization into 7 systems-level endocrine-mediated perturbations.  

 We highlight that future studies and toxicological databases can leverage our 

comprehensive list of 514 endocrine-mediated endpoints and their categorization into 7 

systems-level perturbations while reporting or documenting the adverse effects related to 

endocrine disruption from experiments related to chemical exposure. Hence, this work also 

contributes towards development of a unified biological vocabulary to describe toxicity 

profiles of chemicals. 

2.3 Compilation of dosage information for observed endocrine-mediated 

endpoints 

In stage 4 of the workflow, we have also compiled the dosage values for each EDC 

at which the endocrine-mediated endpoints are observed in the published 

experiments (Figure 1).  
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Firstly, we have gathered the test dosage values for each EDC in appropriate units from 

the published experiments. Secondly, we have identified the effective dosage value among 

the test dosage values at which a particular endocrine-mediated endpoint is observed upon 

EDC exposure in the published experiment. Thirdly, the published experiments with 

supporting evidence for endocrine disruption by EDCs employ different units to report the 

test and effective dosage values. Thus, we undertook a significant effort to convert and 

express the test and effective dosage values taken from published experiments on EDCs in 

a uniform format wherever possible. Based on this effort, we realized that the different 

units used to report the test and effective dosage values of EDCs in published experiments 

can be classified into two broad categories:   

(a) Dose which gives the amount of chemical that is administered directly to the test 

organism in the experiment. 

(b) Concentration which gives the amount of chemical present in another substance such 

as food, soil or water that is administered to the test organism in the experiment. 

Moreover, only a fraction of the published experiments on EDCs report dosage values 

normalized by the body weight of the individual test organism and duration of exposure . 

For example, if a published experiment on EDC reports the dosage value in the unit 

mg/kg/day then this gives the amount of chemical administered per kg of the body weight 

of the test organism per day. Due to the above-mentioned limitations, we were able to 

convert the different units used in published experiments to report the dosage values of 

EDCs into 19 standardized units. Supplementary Table S6 lists these 19 standardized units 

which were used to compile the dosage values of EDCs specific to endocrine-mediated 

endpoints from published experiments. For each EDC, we have compiled the test and 

effective dosage values specific to endocrine-mediated endpoints in standardized units, and 

this information is readily available via the DEDuCT webserver. 

2.4 NOAEL and LOAEL information for EDCs 

Natural hormones in human body can carry out their physiological functions at very 

low concentration. EDCs are known to interfere with the endocrine system by 

mimicking the natural hormones. Thus, it is important for risk assessment of EDCs 

to understand the adverse effects caused by their low dose exposure (Vandenberg, 
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2014; Vandenberg et al., 2012; Welshons et al., 2003). In this direction, our 

compilation of the test and effective dosage values for EDCs from published 

experiments can be leveraged to elucidate such low dose effects.  

Specifically, we have used the test and effective dosage values for EDCs in DEDuCT to 

determine the following dose-response measures :  

(a) No Observed Adverse Effect Level (NOAEL) gives the highest dose of an EDC at 

which no observed effects or endocrine-mediated endpoints are seen in the published 

experiments.  

(b) Low Observed Adverse Effect Level (LOAEL) gives the lowest dose of an EDC at 

which any one of the observed effects or endocrine-mediated endpoints are seen in 

the published experiments.  

Note that the supporting evidence for the EDCs in DEDuCT has been compiled from 

three different types of published experiments, namely, in vivo or in vitro 

experiments in humans or in vivo experiments in rodents. In cases where the 

supporting evidence for an EDC comes from more than one type of published 

experiment, we determine the NOAEL and LOAEL values for the EDC separately 

for different types of published experiments (Supplementary Table S7). Moreover, 

the supporting evidence for an EDC in DEDuCT may come from published 

experiments employing different units to specify test and effective dosage values as 

discussed in the last section. In such cases, we determine the NOAEL and LOAEL 

values for the EDC separately for different standardized units across the published 

experiments (Supplementary Table S7). Note that we did not compile the 

information on the route and duration of EDC exposure from published experiments 

in DEDuCT. Supplementary Table S7 lists the NOAEL and LOAEL values for 

EDCs in DEDuCT. 

2.5 Classification of EDCs 

2.5.1 Based on the type of supporting evidence in published experiments  

We have classified the 686 EDCs in DEDuCT into 4 categories based on the type of 

supporting evidence in published experiments. EDCs in category I have supporting 
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evidence from in vivo human experiments, category II from in vivo rodent and in 

vitro human experiments but not from in vivo human experiments, category III from 

only in vivo rodent experiments, and category IV from only in vitro human 

experiments (Supplementary Table S8). Thus, potential EDCs in category I have the 

highest level of supporting evidence in published experiments followed by category 

II, III and IV, respectively.  

2.5.2 Based on the environmental source  

Based on the environmental source of EDCs, we have classified the 686 EDCs into 7 broad 

categories, namely, Agricultural and farming, Consumer products, Industry, Intermediates, 

Medicine and health care, Natural sources, and Pollutant (Figure 3). Furthermore, the 7 

broad categories of EDCs were further classified into 48 sub-categories (Figure 3). Note 

that this environmental source-based classification of EDCs is overlapping, that is, a given 

EDC may belong to multiple broad or sub-categories.         

2.5.3 Based on chemical structure  

We have employed the web-based application ClassyFire (Djoumbou Feunang et al., 

2016) (http://classyfire.wishartlab.com/) to obtain a chemical classification of the 

686 EDCs. Note that ClassyFire gives a non-overlapping hierarchical chemical 

classification based on the structure and composition of the molecule. Using 

ClassyFire, the 686 EDCs were classified into two chemical kingdoms, namely, 

organic and inorganic compounds, respectively (Figure 4). Moreover, the EDCs in 

the organic kingdom can be further classified into 19 super-classes while those in the 

inorganic kingdom fall into 3 super-classes (Figure 4).  

2.6 Physicochemical properties and molecular descriptors  

For the 686 EDCs, we obtained the 2D chemical structure from Pubchem and CAS 

databases. Thereafter, Balloon (Vainio and Johnson, 2007) 

(http://users.abo.fi/mivainio/balloon/) and Open Babel (O'Boyle et al., 2011) 

(http://openbabel.org/) with Merck Molecular Force Field (MMFF94) were used to 

generate the lowest energy 3D structure of the EDCs. RDKit 
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(https://www.rdkit.org/) was used to compute the basic physicochemical properties 

of the EDCs. In addition, we have also computed the one-dimensional (1D), 2D and 

3D molecular descriptors using PaDEL (Yap, 2011) 

(http://www.yapcwsoft.com/dd/padeldescriptor/), RDKit and Pybel (O'Boyle et al., 

2008). For each EDC, PaDEL, RDKit and Pybel gave 1875, 213 and 14 descriptors, 

respectively. For each EDC, we have made its 2D and 3D chemical structure, 

physicochemical properties and molecular descriptors readily available via the 

DEDuCT webserver, and this information can aid future efforts to develop 

computational toxicity models based on structure-activity relationships.  

2.7 Chemical similarity network  

We constructed the chemical similarity network (CSN) of the 686 EDCs as follows. In the 

CSN, nodes are EDCs and the edge weights reflect the extent of chemical similarity 

between pairs of EDCs. To assign the edge weight or to quantify the chemical similarity 

between two EDCs, we computed the Tanimoto coefficient (Bajusz et al., 2015; Tanimoto, 

1957) between two EDCs using the extended connectivity fingerprints (ECFP4) (Rogers 

and Hahn, 2010) by applying Morgan algorithm (Morgan, 1965) as implemented in RDKit. 

Since Tanimoto coefficient for any pair of chemicals is in the range 0 to 1, the edge 

weights in the CSN are in the same range.  

To visualize the high similarity backbone of the CSN, we decided to omit edges with 

weights below a chosen threshold value signifying poor chemical similarity. Rather than 

choosing an arbitrary threshold value to construct this high CSN, we have investigated the 

size of the largest connected component of the CSN as a function of the increasing 

threshold value for omitting edges (Supplementary Figure S1A). Note that the size of the 

largest connected component reflects the overall connectivity of the network. Based on this 

investigation, we find that there is a sharp decrease in the size of the largest connected 

component of the CSN obtained after omitting edges below the threshold value of 0.450 

(Supplementary Figure S1A). Subsequently, we used this threshold value of 0.450 to 

construct the high CSN of the 686 EDCs (Figure 5A; Supplementary Table S9).   

2.8 Target genes of EDCs based on ToxCast assays   
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Information on the target genes of EDCs can elucidate molecular initiating events 

leading to adverse effects upon chemical exposure. ToxCast (Dix et al., 2006) uses 

high-throughput assays designed to screen toxic chemicals based on perturbation of 

biological activities upon exposure. To date, ToxCast has screened more than 9000 

chemicals using more than 900 high-throughput assays. We used the ToxCast 

invitroDB3 dataset released in October 2018 (Toxicology, 2018) to obtain the list of 

perturbed genes upon EDC exposure.  

The assay summary information file (Assay_Summary_180918.csv) contains the detailed 

annotation of the ToxCast assays including assay type, assay component, assay component 

endpoint, assay target information, cell lines used for the assay, and assay citation. Using 

the assay component endpoint of a ToxCast assay, one can obtain the observed biological 

effect such as changes in gene expression upon chemical exposure. In practice, the assay 

component endpoint of a ToxCast assay may correspond to one or more target genes. The 

assay activity information file (hitc_Matrix_180918.csv) provides a list of active or 

inactive chemicals based on the potency of the chemical to produce a significant biological 

effect captured via 1504 assay component endpoints of different ToxCast assays. In this 

work, we restrict to ToxCast assays and their corresponding assay component endpoints 

that are specific to human. If a tested chemical is active for a particular assay component 

endpoint of a ToxCast assay, then the corresponding gene is assigned to be the target of the 

chemical.  

Of the 686 potential EDCs in DEDuCT, we found target genes for 383 EDCs based on 

1228 ToxCast assay component endpoints specific to human. Supplementary Table S10 

gives the target genes of these 383 EDCs based on ToxCast assay component endpoints 

specific to human. We remark that it is possible to expand this information on target genes 

of EDCs using toxicological databases such as CTD (Mattingly et al., 2003), however, 

CTD compiles target information from both experiments and computational predictions.   

2.9 Target similarity network 

For the 383 EDCs with information on target genes from ToxCast assays, we have 

constructed a target similarity network (TSN) based on shared target genes between 

pairs of EDCs. In the TSN, nodes are EDCs and edge weights signify the target 
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similarity between pairs of EDCs. To quantify the similarity between two sets of 

target genes corresponding to a pair of EDCs, we use the standard measure, Jaccard 

index (Jaccard, 1912), given by the ratio of the number of elements in the 

intersection over the number of elements in the union of the two sets of target genes. 

By construction, Jaccard index is in the range 0 to 1. Jaccard index between two 

EDCs is 0 if they have no target genes in common, and it is 1 if they have all target 

genes in common. 

To visualize the high similarity backbone of the TSN, we decided to omit edges with 

weights below a chosen Jaccard index value signifying poor target similarity between pairs 

of EDCs. Rather than choosing an arbitrary Jaccard index value to construct this high TSN, 

we have investigated the size of the largest connected component of the TSN as a function 

of the increasing Jaccard index value for omitting edges (Supplementary Figure S1B). 

Based on this investigation, we find that there is a sharp decrease in the size of the largest 

connected component of the TSN obtained after omitting edges below the Jaccard index of 

0.517 (Supplementary Figure S1B). Subsequently, we used this threshold Jaccard index of 

0.517 to construct the high TSN of the 383 EDCs (Figure 5B; Supplementary Table S11).   

2.10 Predicted ADMET properties  

Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties can be 

utilized for the toxicity assessment of chemicals. Thus, several computational tools have 

been developed to predict the ADMET properties of chemicals such as admetSAR 2.0 

(Yang et al., 2019), pkCSM (Pires et al., 2015), ProTox (Banerjee et al., 2018), 

SwissADME (Daina et al., 2017), Toxtree 2.6.1 (Patlewicz et al., 2008) and vNN server 

(Schyman et al., 2017). We have employed these tools to predict the ADMET properties of 

the 686 potential EDCs in DEDuCT.  

Absorption properties of a chemical reflect its ability to be absorbed from intestine to 

bloodstream. The predicted absorption properties for EDCs include Caco-2 permeability, 

human intestinal absorption (HIA), human oral bioavailability and skin permeability (log 

Kp). Distribution properties of a chemical shed light on its availability in other parts of the 

body after being absorbed into bloodstream. The predicted distribution properties for EDCs 

include blood-brain barrier (BBB), CNS permeability, fraction unbound in human, P-
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glycoprotein inhibitor, P-glycoprotein substrate, plasma protein binding, steady state 

volume of distribution (VDss) and subcellular localization. Metabolism properties of a 

chemical describe its conversion into metabolites through enzymatic breakdown prior to 

elimination from the human body. The predicted metabolism properties for EDCs include 

assessment to act as a substrate or inhibitor of CYP450 enzymes, human bile salt export 

pump (BSEP), human liver microsomal (HLM) stability assay, human multidrug and toxin 

extrusion (MATE) transporter, organic anion-transporting polypeptides (OATP) and UDP-

glucuronosyltransferases (UGT) catalysis. The predicted excretion properties for EDCs 

include total clearance rate and the ability to inhibit or act as a substrate for renal organic 

cation transporter 2 (OCT2). The predicted toxicological properties for EDCs include 

biodegradation capacity, carcinogenicity, Cramer's rule, cytotoxicity, hepatotoxicity, hERG 

inhibitors, maximum recommended tolerated dose (MRTD), mitochondrial membrane 

potential (MMP), rat oral toxicity and skin sensitization. Supplementary Table S12 lists the 

predicted ADMET properties by different tools used here. For each EDC, we have made 

the predicted ADMET properties readily available via the DEDuCT webserver. 

2.11 Web interface and database management system 

We have created an online resource, Database of Endocrine Disrupting Chemicals and 

their Toxicity profiles (DEDuCT), which contains detailed information on the 686 potential 

EDCs with supporting evidence compiled from 1796 published research articles. 

Importantly, DEDuCT compiles the above-mentioned information on the 686 EDCs such 

as the endocrine-mediated endpoints, systems-level endocrine-mediated perturbations, 

dosage value specific to endpoints, type of supporting evidence based classification, 

environmental source-based classification, 2D and 3D chemical structures, chemical 

classification, physicochemical properties, molecular descriptors, predicted ADMET 

properties and target genes. DEDuCT is accessible at: https://cb.imsc.res.in/deduct/.  

The web interface of DEDuCT was created using PHP (http://php.net/), HTML, CSS, 

Bootstrap 4, and jQuery (https://jquery.com/). To facilitate interactive visualization, we 

have used Google Charts (https://developers.google.com/chart/), D3.js 

(https://d3js.org/), Cytoscape.js (http://js.cytoscape.org/) and JSmol 

(http://jmol.sourceforge.net/) in the web interface. The compiled database on EDCs is 
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stored using MariaDB (https://mariadb.org/), and the information from the database is 

retrieved using Structured Query Language (SQL). DEDuCT website is hosted on Apache 

(https://httpd.apache.org/) webserver running on Debian 9.4 Linux Operating System. 

3. Results and Discussion 

3.1 DEDuCT – a curated knowledgebase on EDCs with supporting evidence 

from published experiments in humans or rodents   

Using the detailed workflow shown in Figure 1, we have compiled 686 potential EDCs 

with supporting evidence of endocrine disruption upon exposure in experiments on humans 

or rodents from 1796 published research articles (Methods). Our webserver, Database of 

Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT), contains the 

compiled information on these 686 potential EDCs (Methods).  

We have classified the 686 EDCs into 4 categories (I-IV) based on the type of supporting 

evidence in published experiments for endocrine disruption (Methods; Supplementary 

Table S8). Of the 686 EDCs, 7, 142, 367 and 170 are in category I, II, III and IV, 

respectively (Supplementary Table S8). These 142, 367 and 170 potential EDCs in 

categories II, III and IV, respectively, require additional experimentation and further risk 

assessment for their potential risk to humankind.  

We have also classified the 686 EDCs into 7 broad categories and 48 sub-categories 

based on their environmental source (Methods; Figure 3). Majority of EDCs in DEDuCT 

are used in consumer products (Figure 3). Moreover, we also provide a hierarchical 

classification of the 686 EDCs into chemical kingdoms and chemical super-classes based 

on their chemical structure (Methods; Figure 4). Of the 686 EDCs, 644 are organic and 42 

are inorganic (Figure 4). Among the 644 organic EDCs, the largest fraction belongs to the 

chemical super-class Benzenoids (Figure 4).  

As supporting evidence for the identification of EDCs, we have compiled the observed 

endocrine-specific effects upon chemical exposure from published experiments in the form 

of 514 endocrine-mediated endpoints (Methods; Figure 2). Moreover, the 514 endocrine-

mediated endpoints were further classified into 7 systems-level perturbations based on the 

affected biological processes controlled by the endocrine system (Methods; Figure 2). In 
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Figure 6A, we show the occurrence of these 7 systems-level perturbations in the supporting 

published experiments for the 686 EDCs. Among the 686 EDCs, it is seen that 535 have 

supporting evidence for reproductive perturbations and 315 for metabolic perturbations 

(Figure 6A). Thus, majority of EDCs in DEDuCT have supporting evidence for adverse 

effects on the reproductive system followed by metabolism. 

Using the Browse section in the web interface of DEDuCT, users can view the EDCs 

based on their type of supporting evidence or environmental source or chemical 

classification or systems-level perturbations (Supplementary Figure S2). Using the Simple 

search option in DEDuCT, users can search for individual EDCs using chemical name or 

standard identifier (Supplementary Figure S2). Using the Physicochemical filter option in 

DEDuCT, users can also filter EDCs based on their physicochemical properties such as 

molecular weight, number of hydrogen bond donors or acceptors, number of rotatable 

bonds (Supplementary Figure S2). By clicking the chemical name of any EDC in 

DEDuCT, users can view the entire compiled information including supporting evidence 

and dosage information (Methods). 

3.2 Comparison of DEDuCT with existing resources on EDCs 

Besides DEDuCT, there are at least five existing resources on EDCs including the WHO 

report (WHO/UNEP, 2013), TEDX, EDCs Databank (Montes-Grajales and Olivero-

Verbel, 2015), EDKB (Ding et al., 2010) and Endocrine Disruptor Screening Program 

(EDSP; https://www.epa.gov/endocrine-disruption) of United States Environmental 

Protection Agency (US EPA).  

Both the WHO report and TEDX contain manually curated information on EDCs based 

on published literature evidence including in vivo, in vitro, environmental monitoring and 

epidemiological studies. EDCs Databank compiles EDCs from the TEDX and the EU list 

of potential endocrine disruptors followed by PubMed search to associate literature 

evidence with EDCs. Also, EDCs Databank provides detailed information on compiled 

EDCs including their 2D and 3D structure, physicochemical properties, categorization 

based on exposure source and external links to other toxicological databases.  
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In addition to extensive PubMed mining to identify published experiments on EDCs, 

DEDuCT integrates information from the WHO report, TEDX and EDCs Databank. Since 

the WHO report, TEDX and EDCs Databank are not limited to in vivo or in vitro studies in 

humans and in vivo studies in rodents, we have filtered the compiled experimental evidence 

in the three resources using our workflow to identify potential EDCs with experimental 

evidence for endocrine disruption in humans or rodents (Methods; Figure 1). Importantly, 

unlike DEDuCT, the WHO report, TEDX and EDCs Databank do not compile the observed 

endocrine-mediated endpoints and systems-level perturbations upon EDC exposure (Table 

1). Table 1 presents a detailed comparison of DEDuCT with the WHO report, TEDX and 

EDCs Databank. We find that 198 out of the 686 potential EDCs (28.9%) in DEDuCT are 

not captured in any of the three existing resources (Figure 6B). Note that we were unable to 

find supporting evidence for endocrine disruption upon exposure in published experiments 

on humans or rodents for several chemicals in the WHO report or TEDX or EDCs 

Databank, and thus, such chemicals are not contained in DEDuCT (Figure 6B; Methods).   

In this work, we decided to not include information contained in two existing resources,  

EDKB (Ding et al., 2010) and EDSP due to the following reasons. EDKB compiles EDCs 

based on multiple receptor binding assays and in silico QSAR studies, and such evidence is 

ignored in our workflow to identify EDCs (Methods; Figure 1). Thus, we do not include 

information in EDKB as it does not contain supporting evidence for EDCs based on 

observed adverse effects in in vivo or in vitro experiments in humans or rodents. EDSP of 

US EPA is a regulatory framework to screen and prioritize chemicals with potential to 

interact with the endocrine system. EDSP has carried out several hormonal assays in test 

organisms such as human, rat, fish and amphibians to determine the potency of a chemical 

to interact with the endocrine system. EDSP identifies a chemical to be an EDC if the 

chemical displays consistent evidence of endocrine disruption across all hormonal assays 

carried out by them. As highlighted by Zoeller et al. (Zoeller et al., 2012), the weight of 

evidence used by EDSP to identify EDCs is too stringent which leads to omission of 

several chemicals with significant endocrine-specific effects. Specifically, in the EDSP 

Tier 1 screening of 52 chemicals, 18 were determined to have conclusive evidence for 

endocrine disruption while 34 have inconclusive evidence according to EDSP. However, a 

closer inspection of the 34 chemicals determined by EDSP to have inconclusive evidence 
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finds well known EDCs such as Chlorpyrifos and 2,4-Dichlorophenoxyacetic acid 

highlighted by the WHO report and the Endocrine society 

(https://www.endocrine.org/topics/edc). Thus, we decided not to include information from 

EDSP in DEDuCT. 

We remark that the primary goal of DEDuCT is to create a comprehensive curated 

compilation of published experiments on endocrine disruption in humans or rodents upon 

chemical exposure. DEDuCT was built with the sole intention to enable basic research 

towards understanding of systems-level perturbations upon EDC exposure.   

3.3 Comparison with US EPA safer chemical ingredients list 

US EPA has evaluated and released a safer chemical ingredients list (SCIL) of 931 

chemicals based on their functional use categories as part of its safer choice program 

(https://www.epa.gov/saferchoice/safer-ingredients). In SCIL, US EPA has labelled 

chemicals of low concern by green circle, chemicals of low concern for which additional 

data is required by green half-circle, chemicals satisfying safer choice criteria only for a 

particular functional use while possibly displaying hazardous profile in other uses by 

yellow triangle, and chemicals unsuitable for use in consumer products by grey square. We 

decided to compare the subset of 930 SCIL chemicals labelled by green circle or green 

half-circle or yellow triangle with the 686 potential EDCs in DEDuCT. 10 out of the 686 

potential EDCs were found in the SCIL (Figure 6C).  

None of these 10 potential EDCs in SCIL are listed under category I EDCs in DEDuCT 

with supporting evidence for endocrine disruption from in vivo human experiments. Of 

these 10 potential EDCs, 1, 7 and 2 are in category II, III and IV, respectively. Benzyl 

salicylate is the only chemical in SCIL that is listed as category II EDC in DEDuCT with 

supporting evidence for endocrine disruption from in vivo rodent and in vitro human 

experiments while lacking evidence from in vivo human experiments. As Benzyl salicylate 

is labelled by yellow triangle in SCIL based on the functional use category of fragrances, 

this suggests that this chemical may have potential to display hazardous profile in other use 

categories. For improved risk assessment, there is need to further evaluate and gather 

additional evidence for potential EDCs listed in the categories II, III and IV of DEDuCT.  
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3.4 Comparison with inactive ingredients of FDA approved drug products 

We have also compared the list of 3312 inactive ingredients used in US Food and Drug 

Administration (FDA) approved drug products from inactive ingredient database 

(https://www.accessdata.fda.gov) with 686 potential EDCs in DEDuCT. Inactive 

ingredients in a drug are the chemicals that do not have any pharmacological effect and 

these include colorants, drug preservatives and flavouring agents. We find that 44 of the 

686 potential EDCs are used as inactive ingredients in FDA approved drugs (Figure 6C). 

None of these 44 potential EDCs are listed under category I EDCs in DEDuCT. Of 44 

potential EDCs in FDA inactive ingredients list, 7 chemicals (Caffeine, Trichloroethylene, 

Diethyl phthalate, Butyl p-hydroxybenzoate, Methyl p-hydroxybenzoate, Ethyl p-

hydroxybenzoate, Butylated hydroxyanisole) are in category II,  30 in category III, and 7 in 

category IV of DEDuCT. For better risk assessment, these 44 potential EDCs in FDA 

inactive ingredients list require additional evidence from in vivo human experiments 

considering the effective dosage, route of exposure, and duration of exposure. 

3.5 EDCs differ both in their chemical structure and set of target genes 

We investigated the extent of chemical similarity between the 686 EDCs in DEDuCT. For 

this, we constructed the high chemical similarity network (CSN) for the 686 EDCs shown 

in Figure 5A (Methods; Supplementary Table S9). In Figure 5A, it is seen that the high 

CSN has a large connected component of 255 EDCs, many small components of 2 or more 

EDCs and many isolated EDCs. From this analysis, we concluded that EDCs can be 

dissimilar in their chemical structure. 

We next investigated the similarity between the target genes of EDCs in our resource. 

Based on ToxCast assays, we were able to obtain the set of target genes for 383 out of 686 

EDCs (Methods; Supplementary Table S10). Thereafter, we constructed the high target 

similarity network (TSN) for the 383 EDCs shown in Figure 5B (Methods; Supplementary 

Table S11). In Figure 5B, it is seen that the high TSN has a large connected component of 

199 EDCs, many small components of 2 or more EDCs and many isolated EDCs. Based on 

the limited information on target genes from ToxCast assays, we concluded that EDCs can 

have very different set of target genes. 
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Lastly, we investigated whether there is any relationship between structural similarity and 

functional similarity of EDCs. Recall that we have quantified the structural similarity 

between two EDCs using the Tanimoto coefficient and the functional similarity or 

commonality between the sets of target genes for two EDCs using the Jaccard index 

(Methods). In Figure 6D, we plot this structural similarity between pairs of EDCs as a 

function of the functional similarity between sets of target genes for pairs of EDCs. Based 

on the limited information on target genes for 383 EDCs from ToxCast assays, we find no 

significant correlation between structural similarity and functional similarity of EDCs 

(Figure 6D).  

These observations underscore the challenge in developing computational models to 

predict EDCs. Since traditional computational toxicity models based on quantitative 

structure activity relationship (QSAR) use chemical similarity and bioactivity information 

for their predictions, our results based on high CSN and high TSN suggest that such models 

for EDCs are unlikely to have high predictive power. Alternatively, computational systems 

toxicity models leveraging information in DEDuCT on chemical structure, dosage 

information, set of target genes and systems-level perturbations of EDCs may have better 

predictive power.   

3.6 Evaluation of the sensitivity of toxicity predictors using compiled 

experimental evidence in DEDuCT 

Several computational toxicity predictors such as admetSAR 2.0 (Yang et al., 2019), 

pkCSM (Pires et al., 2015), ProTox (Banerjee et al., 2018), SwissADME (Daina et al., 

2017), Toxtree 2.6.1 (Patlewicz et al., 2008) and vNN server (Schyman et al., 2017) have 

been developed for risk assessment of chemicals. We have used these tools to predict the 

ADMET properties of the 686 EDCs, and this information is readily available from 

DEDuCT webserver (Methods; Supplementary Table S12). Since DEDuCT compiles 

experimentally observed toxicity profiles or endocrine-mediated endpoints for the 686 

EDCs from supporting literature, we decided to utilise this compiled experimental evidence 

as a positive dataset to evaluate the sensitivity of computational toxicity prediction tools.   

In DEDuCT, 157 EDCs have experimental evidence to cause hepatic endocrine-mediated 

perturbations. Among the toxicity predictors, admetSAR 2.0, pkCSM and vNN server can 
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predict the hepatotoxicity of chemicals. Of these 157 EDCs, admetSAR 2.0, pkCSM and 

vNN server gave correct prediction for 60, 22 and 41 EDCs, respectively. Thus, the 

sensitivity for predicting hepatotoxicity of EDCs by admetSAR 2.0, pkCSM and vNN 

server are 0.39, 0.14 and 0.26, respectively, based on our dataset.  

 In DEDuCT, 185 EDCs have experimental evidence to cause endocrine-mediated 

cancer. Among the toxicity predictors, admetSAR 2.0 and Toxtree 2.6.1 can predict the 

carcinogenicity of chemicals. Of these 185 EDCs, admetSAR 2.0 predicted 56 while 

Toxtree 2.6.1 predicted none to be carcinogens. Thus, the sensitivity for predicting 

carcinogenicity of EDCs by admetSAR 2.0 and Toxtree 2.6.1 is 0.30 and 0.0, respectively, 

based on our dataset.  

admetSAR 2.0 predicted 127 out of the 185 EDCs with experimental evidence to cause 

cancer in DEDuCT to be non-carcinogens, and we have compared these 127 EDCs with the 

potential carcinogens released by the International Agency for Research on Cancer (IARC) 

Monographs (Loomis et al., 2018) (https://monographs.iarc.fr/) and the Report on 

Carcinogens (RoC) by the National Toxicology Program 

(https://ntp.niehs.nih.gov/pubhealth/roc/). Based on this comparison, we found 9 of the 127 

EDCs predicted as non-carcinogens by admetSAR 2.0 were listed as potential carcinogens 

in IARC Monographs and RoC. Notably, 3 of the 127 EDCs, namely, benzo[a]pyrene, 

diethylstilbesterol and pentachlorophenol are categorized as group 1 potential carcinogens 

for human by IARC Monographs. 

In summary, this evaluation of the computational toxicity tools for prediction of 

hepatotoxicity and carcinogenicity of EDCs based on the compiled experimental evidence 

in DEDuCT suggests lack of significant predictive power. A possible interim solution 

towards increasing the predictive power of the existing tools will be to update their positive 

training dataset with experimental information on EDCs from DEDuCT.     

4. Conclusions 

EDCs are a group of chemicals of emerging concern which are omnipresent in our 

environment. Since endocrine disruption mechanism is a special form of toxicity, the risk 

assessment and identification of EDCs remains challenging (WHO/UNEP, 2013). In this 
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work, we have developed a detailed workflow which was employed to identify 686 

potential EDCs with supporting evidence for endocrine disruption from published 

experiments in humans or rodents. Our workflow for identification of EDCs consists of 

four stages (Figure 1). Firstly, we used text mining and existing resources to compile more 

than 16000 published research articles with potential information on EDCs. Secondly, we 

manually inspected these published research articles to filter a subset of 3300 articles 

containing published experiments for endocrine disruption in humans or rodents upon 

chemical exposure. Thirdly, we compiled the list of 1626 chemicals tested for endocrine 

disruption in at least one of these 3300 research articles. Fourthly, we evaluated the 

significance of the observed effects in the published experiments for the 1626 tested 

chemicals for endocrine-specific perturbations, and this led to the identification of 686 

potential EDCs with supporting evidence from 1796 published research articles. 

Importantly, we have compiled, unified and standardized the observed adverse effects upon 

EDC exposure in published experiments into 514 unique endocrine-mediated endpoints 

which were further classified into 7 systems-level perturbations (Figure 2). Vitally, we 

have also compiled the dosage information at which endocrine-mediated endpoints were 

observed upon EDC exposure in published experiments. Thereafter, we have classified the 

potential EDCs based on the type of supporting evidence, their environmental source 

(Figure 3) and their chemical classification (Figure 4). Lastly, we have obtained additional 

information for the 686 potential EDCs including 2D and 3D chemical structures, 

physicochemical properties, molecular descriptors, predicted ADMET properties and target 

genes. DEDuCT webserver contains the entire compiled information on the 686 potential 

EDCs and is accessible at: https://cb.imsc.res.in/deduct/.  

 After compiling the 686 potential EDCs, we have compared the US EPA safer chemical 

ingredients list (SCIL) and FDA inactive ingredients list with DEDuCT. Of the 686 

potential EDCs, 10 and 44 are present in SCIL and FDA inactive ingredients list, 

respectively. However, none of these potential EDCs in SCIL or FDA inactive ingredients 

list are among category I EDCs in DEDuCT with supporting evidence for endocrine 

disruption from in vivo human experiments. The potential EDCs in SCIL or FDA inactive 

ingredients list which are in category II, III or IV in DEDuCT require further evaluation of 

their potential risk based on additional evidence from in vivo human experiments.  
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Furthermore, we have employed a network-centric approach to understand the link 

between the chemical space of EDCs and their biological target space. Here, we have 

constructed and analysed two different networks of EDCs, namely, the chemical similarity 

network (CSN) and the target similarity network (TSN). Based on CSN, we infer that 

EDCs can be dissimilar in their chemical structure. Based on TSN, we infer that EDCs can 

have very different set of target genes. Subsequent investigation of the relationship between 

the chemical structure and biological (gene) targets of EDCs found no correlation. These 

results in addition to a previous report (Diamanti-Kandarakis et al., 2009) underscore that 

EDCs can be structurally dissimilar, and this raises potential challenges in developing 

structure-based predictive computational models for EDCs. Lastly, the compiled 

experimental evidence for EDCs in DEDuCT was used to evaluate the predictive power of 

existing computational toxicity tools. Such an evaluation using our compiled dataset 

suggests that the existing tools for predicting hepatotoxicity and carcinogenicity of 

chemicals lack significant predictive power. In near future, toxicity predictors can integrate 

experimental evidence from DEDuCT to improve their predictive power.  

An important aspect of EDCs is their ability to exert adverse effects even at low dosage 

values (Vandenberg, 2014; Vandenberg et al., 2012; Welshons et al., 2003). Our 

compilation of dosage information at which endocrine-mediated endpoints were observed 

in published experiments upon individual EDC exposure will further help researchers to 

understand the low dose exposure effects of EDCs. Also, our large-scale compilation of the 

observed effects or endpoints along with the systems-level perturbations upon EDC 

exposure can be visualized as a tripartite network with nodes as EDCs, endocrine-mediated 

endpoints and systems-level perturbations. Future exploration of this tripartite network will 

enhance systems-level understanding of perturbed biological pathways upon EDC 

exposure.  
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Figure captions 

Figure 1: Detailed workflow with four stages to identify potential EDCs from published 

research articles containing supporting experimental evidence of systems-level endocrine-

mediated perturbations in humans or rodents.  

Figure 2: Schematic figure depicting the classification of the 514 endocrine-mediated 

endpoints into 7 systems-level perturbations. Note that this classification of endpoints into 

systems-level perturbations is overlapping, that is, a given endpoint may fall into more than 

one systems-level perturbations.   

Figure 3: Classification of the 686 EDCs into 7 broad categories and 48 sub-categories 

based on their source in the environment. In this figure, the number of EDCs in each 

category or sub-category is reported within the parenthesis. Note that this environmental 

source-based classification is overlapping, that is, a given EDC may belong to multiple 

categories or sub-categories. 
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Figure 4: Classification of the 686 EDCs into chemical kingdoms and chemical super-

classes using ClassyFire. Of the 686 EDCs, 644 are organic and 42 are inorganic 

compounds. The 644 organic EDCs can be further classified into 19 super-classes while the 

42 inorganic EDCs fall into 3 super-classes. The number of EDCs in each super-class is 

reported within the parenthesis. 

Figure 5: Network of EDCs based on chemical similarity and gene target similarity. (A) 

Network visualization of high chemical similarity network (CSN) of 686 EDCs. (B) 

Network visualization of high target similarity network (TSN) of 383 EDCs. The high TSN 

was constructed for 383 EDCs which have information on their target genes from ToxCast 

assays. The legend at the bottom of this figure gives the colour code for nodes or EDCs in 

CSN and TSN which is based on the 7 systems-level perturbations, namely, Reproductive 

(RT), Developmental (DT), Metabolic (MT), Immunological (IT), Neurological (NT), 

Hepatic (HT) and Endocrine-mediated cancer (CT), associated with EDCs in DEDuCT. 

Note that if an EDC is associated with more than one systems-level perturbations then its 

colour is given by Multiple. Moreover, the thickness of the edges in CSN and TSN are 

based on their edge weights given by Tanimoto coefficient and Jaccard index, respectively 

(Methods). 

Figure 6: (A) Histogram shows the occurrence of 7 systems-level perturbations in the 

supporting evidence compiled from published experiments for the 686 EDCs. Majority of 

EDCs in DEDuCT have adverse effects on the reproductive system followed by 

metabolism. (B) Comparison of the 686 EDCs in DEDuCT with those in the WHO report, 

TEDX and EDCs Databank. From the Venn diagram, it is seen that 198 EDCs in DEDuCT 

are not captured in the three other existing resources. (C) Comparison of the 686 EDCs in 

DEDuCT with the US EPA safer chemical ingredient list (SCIL) and the list of inactive 

ingredients of FDA approved drug products. 10 EDCs are present in the SCIL while 44 

EDCs are present in FDA inactive ingredients list. (D) Scatter plot of functional similarity 

between sets of target genes for pairs of EDCs as a function of chemical structure similarity 

between pairs of EDCs. We find no significant correlation (Pearson correlation coefficient 

R=0.17) between the structural and functional similarity of EDCs. 
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Tables 

Table 1: Comparison of the information on EDCs in DEDuCT with three existing 

resources, namely, EDCs Databank, TEDX and WHO report.  

Feature DEDuCT EDCs 
Databank TEDX WHO 

report 
Number of EDCs 686 615 1428 184 
Web interface Yes Yes Yes No 

Compilation of endocrine-mediated 
endpoints for EDCs from published 
experiments on endocrine disruption in 
humans or rodents 

Yes No No No 

Dosage information specific to 
endocrine-mediated endpoints for EDCs 
from published experiments on 
endocrine disruption in humans or 
rodents 

Yes No No No 

Systems-level perturbations for EDCs 
based on observed endocrine-mediated 
endpoints in published experiments on 
endocrine disruption in humans or 
rodents 

Yes No No No 

Categorization of EDCs based on the 
type of supporting evidence Yes No No No 

Categorization of EDCs based on 
environmental source Yes No No No 

Categorization of EDCs based on their 
use Yes Yes Yes No 

Chemical classification of EDCs Yes No No No 
Availability of 2D structure for EDCs Yes Yes No No 
Availability of 3D structure for EDCs Yes Yes No No 

Downloadable formats for 2D and 3D 
structure of EDCs 

SDF, 
MOL2, 
PDB, 
PDBQT 

SDF, 
MOL2, 
PDB, 
PDBQT 

No No 

Chemical identifiers of EDCs PubChem or 
CAS 

PubChem or 
CAS CAS No 

Physicochemical properties of EDCs Yes Yes No No 
Molecular descriptors for EDCs Yes No No No 
Predicted ADMET properties of EDCs Yes No No No 
Chemical-gene association based on 
experimental assays Yes No No No 

Chemical similarity filter Yes Yes No No 
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Supplementary Tables 

Supplementary Table S1: Filtered list of research articles compiled from PubMed query, 

the WHO report, TEDX and EDCs Databank that contain keywords related to EDCs. This 

list of 14297 research articles was obtained at the end of stage 1 of the workflow shown in 

Figure 1.    

Supplementary Table S2: Filtered list of research articles on EDCs based on study type 

and test organism. This list of 3300 research articles was obtained at the end of stage 2 of 

the workflow shown in Figure 1.    

Supplementary Table S3: List of 1626 chemicals along with their Pubchem and CAS 

identifiers that were tested for endocrine disruption in humans or rodents in at least one of 

the filtered research articles from stage 2 of the workflow shown in Figure 1.  

Supplementary Table S4: Final list of 686 EDCs with supporting evidence of systems-

level endocrine-mediated perturbations in published experiments from 1796 research 

articles. 

Supplementary Table S5: List of 514 endocrine-mediated endpoints and their 

categorization into 7 systems-level endocrine-mediated perturbations. List of abbreviations: 

RT - Reproductive endocrine-mediated perturbations; DT - Developmental endocrine-

mediated perturbations; MT - Metabolic endocrine-mediated perturbations; IT - 

Immunological endocrine-mediated perturbations; NT - Neurological endocrine-mediated 

perturbations; HT - Hepatic endocrine-mediated perturbations; CT - Endocrine-mediated 

cancer. 

Supplementary Table S6: List of standardized units along with their description that were 

used to compile the dosage values of EDCs specific to endocrine-mediated endpoints from 

published experiments. 

Supplementary Table S7: Final list of No observed adverse effect level (NOAEL) and 

Low observed adverse effect level (LOAEL) values for EDCs based on test and effective 

dosage values reported in published experiments in supporting literature. Note that the 

supporting evidence for the EDCs in our resource has been compiled from three different 

types of published experiments or study types, namely, in vivo (IVH) or in vitro (IVTH) 
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experiments in humans or in vivo (IVR) experiments in rodents. Importantly, NOAEL 

value for an EDC could not be determined from a published experiment if an endocrine-

mediated endpoint or adverse effect is observed at every sampled test dosage, and in such a 

case, it is only possible to determine the LOAEL value for the EDC. 

Supplementary Table S8: Classification of the 686 EDCs into 4 categories (I-IV) based 

on the type of supporting evidence for endocrine disruption in published experiments. 

Supplementary Table S9: High chemical similarity network (CSN) of the 686 EDCs 

obtained using the threshold value of 0.450 for the Tanimoto coefficient. Note that the 

Tanimoto coefficient is a measure used to quantify the chemical similarity between any 

pair of chemicals. The table lists the edges between pairs of EDCs in the high CSN along 

with the edge weights given by the Tanimoto coefficient between pairs of EDCs.    

Supplementary Table S10: List of target genes for 383 EDCs based on 1228 ToxCast 

assay component endpoints specific to human. 

Supplementary Table S11: High target similarity network (TSN) of the 383 EDCs 

obtained using the threshold value of 0.517 for the Jaccard index. Note that the Jaccard 

index is a measure used to quantify the similarity between the sets of target genes for any 

pair of EDCs. The table lists the edges between pairs of EDCs in the high TSN along with 

the edge weights given by the Jaccard index between pairs of EDCs. 

Supplementary Table S12: The list of ADMET properties predicted by the considered 

software tools, namely, admetSAR 2.0, pkCSM, ProTox, SwissADME, Toxtree 2.6.1 and 

vNN server. 

Supplementary Figures 

Supplementary Figure S1: (A) The size of the largest connected component of the 

chemical similarity network (CSN) of EDCs as a function of the increasing Tanimoto 

coefficient for omitting edges. (B) The size of the largest connected component of the 

target similarity network (TSN) of EDCs as a function of the increasing Jaccard index for 

omitting edges. 

Supplementary Figure S2: The web interface of DEDuCT. (A) The screenshot shows the 

different search options in our resource to obtain information on EDCs. Simple search 
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option in DEDuCT can be used to search for individual EDCs using the chemical name or 

standard identifier. Physicochemical filter option in DEDuCT can be used to also filter 

EDCs based on their physicochemical properties such as molecular weight, number of 

hydrogen bond donors or acceptors, number of rotatable bonds. Chemical similarity filter 

gives the top 10 structurally similar EDCs in DEDuCT in comparison to the query 

molecule. (B) The Browse section in the web interface of DEDuCT can be used to view the 

EDCs based on the type of supporting evidence or their environmental source or chemical 

classification or systems-level perturbations and endocrine-mediated endpoints. 
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