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Abstract 7 

Spatial Transcriptomics allows the sequencing of the complete transcriptomes from barcoded 8 

regions of intact tissue. The technology has the potential to answer a wide range of biological 9 

questions concerning cellular function, but analysis of the data presents a number of challenges 10 

which are not met by existing analysis tools. Here we present Spaniel, an R package providing a 11 

framework for analysing and sharing Spatial Transcriptomics data. 12 

Main 13 

Whilst technologies such as single cell RNAseq provide tools for dissecting cellular heterogeneity, 14 

dissociation of the tissue mean that information about spatial relationship of the cells is lost. Spatial 15 

Transcriptomics (ST) 1 is a method for sequencing spatially barcoded transcriptomes from intact 16 

tissue sections. This provides a method of linking gene expression data to spatial location of a cell 17 

within a tissue cross-section, to further elucidate cellular function. Computational analysis of 18 

Spatial Transcriptomics data has a unique set of requirements which are not satisfied by existing 19 

analysis tools. Firstly, there is a strong visual element to the analysis and gene expression must be 20 

linked back to a histological image of the tissue. Secondly, to answer complex questions there is 21 

need for data integration both between different Spatial Transcriptomics datasets and with other 22 

datasets such as single cell RNAseq.  Finally, a close collaboration between a computational 23 

biologist analysing the data and the wet-lab biologist with specialised knowledge of the tissue type 24 

is required to interpret the experiments, but as each Spatial Transcriptomics dataset generates a 25 

large amount of data and a number of decisions must be taken during analysis, it difficult to share 26 

data in a static manner. 27 
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Numerous tools exist for analysing single cell RNAseq and low input RNAseq experiments 2, but 28 

these lack methods for visualising histological data. The ST Viewer tool 3 has been designed for 29 

analysing and visualising ST data but as it is a standalone tool it is not suitable for integrative 30 

analysis of multiple datasets. 31 

Here we introduce Spaniel, an R package which provides a framework for analysing and sharing 32 

Spatial Transcriptomics data. Spaniel provides methods for thorough quality control, visualisation 33 

and pre-processing of the data. It uses two pre-existing S4 objects designed for single cell analysis, 34 

namely Seurat object 4 and SingleCellExperiment object 5, providing strong potential for integration 35 

of and with other single cell datasets. Spaniel also provides a Shiny app which allows results to be 36 

shared in an interactive manner.  37 

 38 

To test the Spaniel application and produce the figure presented here, we used publicly available 39 

sequencing data 1 from the mouse olfactory bulb and the hematoxylin and eosin (H&E), HE_Rep1 40 

taken from the Spatial Transcriptomics website (http://www.spatialtranscriptomicsresearch.org/). 41 

Each Spatial Transcriptomics experiment involves sectioning a 5-16 µm  slice of tissue which is 42 

placed on a slide containing a grid of spatially barcoded polyT probes. The probes are positioned in 43 

spots on the slide in a 35 * 35 grid, where each spot covers 10 – 100 cells. The sequencing data was 44 

generated using paired end sequencing where read 1 contains the spatial barcode and UMI and read 45 

2 contains the transcript sequence.  Spaniel takes a spatial transcriptomic expression matrix where 46 

each row corresponds to a gene and each column corresponds to a spot coordinate.  To create the 47 

expression data, from the sequencing data, the paired FASTQ files were demultiplexed with a 48 

publically available perl script 49 

(https://github.com/tallulandrews/scRNASeqPipeline/blob/master/0_custom_undo_demultiplexing.50 

pl) using the spatial barcodes encoded in read 1. Read 2 from successfully demultiplexed pairs were 51 

trimmed for quality using Trimmomatic version 0.36 6. A reference was created using Ensembl 52 

mouse reference genome Release M20 (GRCm38.p6). The trimmed reads were aligned to this 53 
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reference using STAR version 2.5.3a 7 in single read alignment mode.  The number of reads were 54 

quantified using HTSEQ version 0.6.1 8 and a count matrix was created. The H & E images were 55 

cropped to region around the edges of the spots and resized to 1000 x 1071 pixels  with a resolution 56 

of 72dpi using a photo editor.  57 

Spaniel includes a series of tools to aid the quality control and analysis of Spatial Transcriptomics 58 

data and is designed to be used alongside existing tools to aid integration of multiple datasets. It 59 

includes functions to create either a Seurat S4 object or SingleCellExperiment S4 object which are 60 

designed for single cell experiment analysis and contain slots for both expression data and 61 

metadata. The package provides function to import a raw count matrix file and a barcodes text file. 62 

The barcodes can be either be barcode file provided by Spatial Transcriptomics giving the 63 

coordinates of each probe or adjusted barcodes obtained by pre-processing the image using ST Spot 64 

Detector.   The Scater R 9 package is used to calculate QC metrics for SingleCellExpeiment objects.  65 

Spaniel also provides a function to create a rasterised grob, compatible with ggplot2, from a pre-66 

processed H&E image which is used as the background image for the plots. In this example, the 67 

sample is from the mouse olfactory bulb which is a multi-layered structure found in the forebrain of 68 

vertebrates (Figure1A). 69 

The ST_plot function provides a method to visualise metrics contained within the Seurat object 70 

overlaid onto the image of the tissue. This plot can be used initially as a quality control step as well 71 

as to visualise different clustering solutions or gene expression of specific genes.  72 

Quality Control is a crucial first step in the analysis of this data. By inspecting the number of genes 73 

and number of reads per spot, using the ST_plot function, it is possible to pinpoint potential 74 

problems with the data that may confound downstream analysis. For example, spots which fall 75 

outside of the tissue with high number of counts may be an indicator of overall background RNA 76 

contamination. Figure 1B shows the number of genes per spot where spots with at least 2000 genes 77 

per spot are coloured in blue and spots with fewer than 2000 genes are coloured in red. The 78 

majority of spots above this threshold fall within the tissue area as expected, but a few fall outside 79 
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the tissue area perhaps indicating contamination.  One of the primary aims of Spatial 80 

Transcriptomics analysis is the identification of anatomical regions which share similar 81 

transcriptomes.  As the package is tightly integrated with the Seurat package and 82 

SingleCellExperiment object it possible to choose a wide range of clustering methods such as the 83 

Seurat FindClusters function to identify regions sharing gene expression patterns. After clustering 84 

Seurat can be used to detect genes which are differentially expressed between clusters. The clusters, 85 

shown in figure 1C, appear to match the different layers of the olfactory bulb. For example, spots 86 

which fall into cluster 0 are detected in the granule cell layer. Through differential gene expression, 87 

Nrgn was found to be upregulated in cluster 0 compared to the other clusters (Figure 1D). This gene 88 

is neuron-specific and is the top gene associated with the granule cell layer of the olfactory bulb in 89 

the Allen Mouse Brain Atlas10. 90 

 91 

Spaniel’s Shiny application can be hosted on a local computer or any service running R server (e.g. 92 

shinyserver.io) and offers the user 4 plots showing a) the number of genes detected per spot, b) the 93 

number of reads detected per spot, c) clustering results, d) the gene expression of a selected gene. 94 

The app uses a pre-processed S4 object and grob which are both saved in in RDS format allowing 95 

data to be transferred between the computational biologist performing the analysis and other 96 

researchers within the group. The gene plot allows users to select any individual gene to plot, whilst 97 

the cluster plot enables the visualisation of clustering results at multiple resolutions. Installation 98 

instruction and code can be found here: https://github.com/RachelQueen1/Spaniel 99 

 100 
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 101 

Figure 1: A) H&E image of mouse olfactory bulb showing the different layers. Example plots using 102 

Spaniel showing B) quality control metrics such as the number of genes detected per spot, C) the 103 

results of Seurat’s FindClusters clustering analysis, D) the expression of the Nrgn gene. 104 

 105 

 106 

 107 
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