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Abstract:   
Hi-C experiments have been widely adopted to study chromatin spatial organization, which plays 
an essential role in genome function. We have recently identified frequently interacting regions 
(FIREs) and found that they are closely associated with cell-type-specific gene regulation. 
However, computational tools for detecting FIREs from Hi-C data are still lacking. In this work, 
we present FIREcaller, a stand-alone, user-friendly R package for detecting FIREs from Hi-C 
data. FIREcaller takes raw Hi-C contact matrices as input, performs within-sample and cross-
sample normalization, and outputs continuous FIRE scores, dichotomous FIREs, and super-
FIREs. Applying FIREcaller to Hi-C data from various human tissues, we demonstrate that 
FIREs and super-FIREs identified, in a tissue-specific manner, are closely related to gene 
regulation, are enriched for enhancer-promoter (E-P) interactions, tend to overlap with regions 
exhibiting epigenomic signatures of cis-regulatory roles, and aid the interpretation or GWAS 
variants. The FIREcaller package is implemented in R and freely available at 
https://yunliweb.its.unc.edu/FIREcaller.  
 
Highlights: 

- Frequently Interacting Regions (FIREs) can be used to identify tissue and cell-type- 
specific cis-regulatory regions. 

- An R software, FIREcaller, has been developed to identify FIREs and clustered FIREs 
into super-FIREs. 

 
1. Introduction 
Chromatin folding in the three-dimensional (3D) space is closely related to genome function [1]. 
In particular, gene regulation is orchestrated by a collection of cis-regulatory elements, including 
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promoters, enhancers, insulators, and silencers. Alteration of chromatin spatial organization in the 
human genome can lead to gene dysregulation and consequently, complex diseases including 
developmental disorders and cancers [2, 3].   
 
High-throughput chromatin conformation capture (Hi-C) has been widely used to measure 
genome-wide chromatin spatial organization since first introduced in 2009 [4-6]. Analyzing Hi-C 
data has led to the discovery of structural readouts at a cascade of resolutions, including A/B 
compartments [6], topologically associating domains (TADs) [7], chromatin loops [8], and 
statistically significant long-range chromatin interactions [9-11]. Among these Hi-C readouts 
identified in mammalian genomes, TADs and chromatin loops are largely conserved across cell 
types [12, 13], while A/B compartments and long-range chromatin interactions exhibit rather 
moderate levels of cell-type-specificity [6, 7]. 

 
As an attempt to identify Hi-C readouts that are better indicative of cell type or tissue-specific 
chromatin spatial organizations, we have in our previous work [14], identified thousands of 
frequently interacting regions (FIREs) by studying a compendium of Hi-C datasets across 14 
human primary tissues and 7 cell types. We defined FIREs as genomic regions with significantly 
higher local chromatin interactions than expected under the null hypothesis of random collisions 
[14]. 
 
FIREs are distinct from previously discovered Hi-C structural readouts such as A/B compartments, 
TADs,  and chromatin loops. In general, FIREs tend to reside at the center of TADs, associate with 
intra-TAD enhancer-promoter (E-P) interactions, and are contained within broader regions of 
active chromatin [14]. FIREs are tissue and cell-type-specific, and enriched for tissue-specific 
enhancers and nearby tissue-specifically expressed genes, suggesting their potential relevance to 
tissue-specific transcription regulatory programs. FIREs are also conserved between human and 
mouse. In addition, FIREs have been revealed to occur near cell-identity genes and active 
enhancers [14]. Thus, FIREs have proven valuable in identifying tissue and cell-type-specific 
regulatory regions, functionally conserved regions such as enhancers shared by human and mouse, 
and in interpreting non-coding genetic variants associated with human complex diseases and traits 
[14-16].  
 
Since the discovery of FIREs, we have collaborated with multiple groups to further demonstrate 
their value in various applications, resulting in multiple recent preprints and publications [16-19]. 
For example, in an analysis of adult and fetal cortex Hi-C datasets, FIREs and super-FIREs 
recapitulated key functions of tissue-specificity, such as neurogenesis in fetal cortex and core 
neuronal functions in adult cortex [19]. In addition, evolutionary analyses revealed that these brain 
FIRE regions have stronger evidence for ancient and recent positive selection, less population 
differentiation, and fewer rare genetic variants [19]. For another example, Gorkin et al. [16] 
investigated how 3D chromatin conformation in lymphoblastoid cell lines (LCL) varies across 20 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2020. ; https://doi.org/10.1101/619288doi: bioRxiv preprint 

https://doi.org/10.1101/619288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

individuals. They reported that FIREs are significantly enriched in LCL-specific enhancers, super-
enhancers, and immune related biological pathways and disease ontologies, further demonstrating 
the close relationship between FIREs and cis-regulatory elements [16]. In particular, even with the 
sample size of ≤ 20 individuals, hundreds of FIRE-QTLs (that is, genetic variants associated with 
the strength of FIRE) have been reported, suggesting that FIREs show strong evidence of genetic 
regulation. 
 
Despite the importance and utilities of FIREs, only in-house pipelines exist for detecting FIREs, 
limiting the general application of FIRE analysis and the full exploration of cell-type-specific 
chromatin spatial organization features from Hi-C data. In this work, we describe FIREcaller, a 
stand-alone, user-friendly R package for detecting FIREs from Hi-C data, as an implementation of 
the method described in our previous work [14]. 
 

2. Materials and Methods  
2.1 Input matrix 
First, FIREcaller takes an n×n Hi-C contact matrix 𝑀 as the 
input (Figure 1), which can be from a gzipped text file, or 
the widely used .hic or .cooler file. The contact matrix M is 
constructed by dividing the genome into consecutive non-
overlapping bins of size 𝑏 for each chromosome. In our 
original work [14], b was fixed at 40Kb. In this FIREcaller 
work, we allow b to be 10Kb, 20Kb, or the default 40Kb. 
Each entry in the contact matrix M, mij , corresponds to the  
number of reads mapped between bin i and bin j. The 
corresponding symmetric n×n matrix reflects the number of 
mapped intra-chromosomal reads between each bin pair [6]. 
We removed all intra-chromosomal contacts within 15Kb to 
filter out reads due to self-ligation.  
 
Recommendations for the resolution of the input matrix 
depend on the sequencing depth of the input Hi-C data. 
Specifically, we recommend using a 10Kb bin resolution for 
Hi-C data with ~2 billion reads, 20Kb bin resolution for Hi-
C data with 0.5-2 billion reads, and a 40Kb bin resolution for 
Hi-C data with <0.5 billion reads [6, 8, 20-23]  (more details 
can be found in Supplement Information S1).   
 
2.2 Cis-interaction calculation 
Taking the n×n contact matrix as the input, FIREcaller 
calculates the total number of local cis-interactions for each 

Figure 1.  Flow chart of calling 
FIREs using the  FIREcaller 
software.  * indicates when >1 
replicate per condition exists. Further 
detailed in Section 2.8. 
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bin (40Kb default). Following our previous work [14], we define “local” to be within ~200Kb by 
default. This threshold is largely driven by empirical evidence that contact domains exert 
influences on transcription regulation within 200Kb. For instance, contact domains reported in 
human GM12878 cells from in-situ Hi-C data are at a median size of 185 Kb [8, 20]. In addition, 
Jin et al. reported a median distance of E-P interactions at 124Kb [21], Song et al. reported ~80% 
of promoter-interacting regions within 160Kb [24], and Jung et al. found promoter-centered 
long-range chromatin interactions with a median distance of 158 Kb [25]. Consistently, an 
analysis of the dorsolateral prefrontal cortex sample [26] showed E-P interactions at a median 
distance of 157Kb, and our study showed adult cortex E-P interactions at a median distance of 
190Kb [19] (Supplement Information S2). On the other hand, multiple cis-regulatory regions 
have been shown to control their target genes from longer genomic distances [3, 19, 20, 27]. To 
accommodate these longer-range chromatin interactions, our FIREcaller software allows a user-
specified upper bound of the cis-interacting regions. 

 
2.3 Bin level filtering 
Bins are then filtered based on multiple criteria that may lead to systematic biases, including 
effective restriction fragment lengths which measures the density of the restriction enzyme cut 
sites within each bin, GC content, and sequence uniqueness [28, 29]. FIREcaller removes bins 
with 0 mappability, 0 GC content or 0 effective fragment length. It also removes bins for which 
more than 25% of their neighborhood (within 200Kb, by default) bins have 0 mappability, 0 GC 
content or 0 effective fragment length. In addition, any bins with a mappability less than 90% are 
removed. Finally, any bins overlapped within the MHC region or the ENCODE blacklist regions 
[30] are also filtered out (Supplement Information S3). 
 
2.4 Within-sample normalization 
FIREcaller then uses the HiCNormCis method [14] to conduct within-sample normalization. 
HiCNormCis adopts a Poisson regression approach, adjusting for the three major sources of 
systematic biases: effective fragment length determined by restriction enzyme cutting frequency, 
GC content, and mappability [14]. 
 
As a brief summary of the HiCNormCis method, we let 𝑈!, 𝐹!, 𝐺𝐶! and 𝑀! represent the total cis-
interactions (15-200Kb, by default), effective fragment length, GC content, and mappability for 
bin 𝑖, respectively. We assume that 𝑈! follows a Poisson distribution, with mean 𝜃!, where 
log(𝜃!) = 𝛽" +	𝛽#𝐹! + 𝛽$%𝐺𝐶! +	𝛽&𝑀!. After fitting the Poisson regression model, we define 
the residuals 𝑅! 	from the Poisson regression as the normalized cis-interaction for bin 𝑖 which are 
approximately normal (Supplement Information S4).  
 
FIREcaller fits a Poisson regression model by default. Users can also fit a negative binomial 
regression model. In practice, both Poisson regression and negative binomial regression model 
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achieve similar effect of bias removal, while Poisson regression is computationally more 
efficient (Supplement Information S5). 
 
Our FIREcaller package also allows users to directly input a normalized contact map, for 
example, data normalized by a different normalization pipeline, via the "normalized" option. By 
default, normalized=FALSE, if switched to TRUE, FIREcaller will bypass this within-sample 
normalization step. 
 
2.5 Across-sample normalization 
If the user provided multiple Hi-C datasets, FIREcaller uses the R function normalize.quantiles 
in the "preprocessCore" package to perform quantile normalization of the normalized cis-
interactions across samples [31].  
 
2.6 Identifying FIREs 
FIREcaller then converts the normalized cis-interactions into Z-scores, calculates one-sided p-
values based on the standard normal distribution, and classifies bins with p-value < 0.05 as 
FIREs. The output file contains, for each bin, the normalized cis-interactions, the –ln(p-value) 
(i.e., the continuous FIRE score), and the dichotomized FIRE or non-FIRE classification.   
 
2.7 Detecting Super-FIREs  
FIREcaller also identifies contiguous FIREs, termed as super-FIRE (Figure 2). FIREcaller first 
concatenates all contiguous FIRE bins by summing their –ln(p-value) (i.e., the continuous FIRE 
score) to quantify the overall or cumulative amount of chromatin interactions. The summed 
continuous FIRE scores from contiguous FIREs (which we term as super-FIRE score) are then 
evaluated against their rank from least interactive to most interactive, where FIREcaller 
determines the inflection point where the slope of the tangent line is one. Super-FIREs are 
defined as contiguous FIRE regions beyond the inflection point (Figure 2B). This method is 
adapted from the Ranking of Super-Enhancer (ROSE) algorithm [32], which was originally 
proposed for the identification of super-enhancers.  
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Figure 2. Super-FIRE detection. A) Flow chart for super-FIRE identification. B) Scatterplot of 
clustered FIREs ranked by their super-FIRE scores for the Hi-C data from hippocampus [14], 
ordered from the least interactive regions (left) to the most interactive regions (right). Blue 
dashed line highlights the inflection point of the curve and the red dots highlight super-FIREs, 
which are clusters of contiguous FIREs to the right of the inflection point. 
 
2.8 Identification of differential FIREs 
Similar to TADcompare to identify differential TADs [33], FIREcaller allows users to identify 
differential FIREs between different experimental conditions (e.g., tissues, cell lines, treatments, 
or developmental stages), when each condition contains at least two replicates. FIREcaller first 
calculates the normalized cis-interactions for each replicate, and then applies the R package 
"limma" to perform differential FIRE analysis. FIRE bins with fold change > 2 (in terms of the 
average normalized cis-interactions between conditions) and Benjamini-Hochberg adjusted p-
value < 0.05 are selected as differential FIREs. 
 
2.9 Visualizing FIREs and super-FIREs 
To visualize FIREs and super-FIREs with other epigenetic data such as TAD boundaries, ChIP-
seq peaks and the locations of typical enhancers and super-enhancers, FIREcaller generates a 
circos plot using the "circlize" package in R [34] (Supplement Information S10).  
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3. Results 
To further demonstrate the utility of FIREcaller in terms of connecting the 3D genome structure 
and function, we first visualized FIREs of Hi-C datasets in Schmitt et al [14] using a virtual 4C 
plot (Section 3.1) in HUGIn [35], then presented novel FIRE results in fetal  [36] and adult brain 
tissue [37] and integrated with gene expression data (Section 3.2), followed by the joint analysis 
of E-P interactions, and histone modifications (Section 3.2 - 3.4), as well as differential FIRE 
analysis (Section 3.5).  
 
3.1 An illustrative example 
We used the Hi-C data from human hippocampus tissue in our previous study [14] to showcase 
the utility of FIREcaller. Figure 3 shows an illustrative example of a 400Kb super-FIRE (merged 
from 10 consecutive bins, and marked by the yellow horizontal bar in the "FIREs" track), which 
overlaps with two hippocampus super-enhancers (indicated by the two orange horizontal bars in 
the "Enhancers" track). Notably, this super-FIRE contains a schizophrenia-associated GWAS 
SNP rs9960767 (black vertical line) [38], and largely overlaps with gene TCF4 (chr18: 
52,889,562-53,332,018; pink horizontal bar depicted at the top with the color of the bar 
reflecting the log10 expression of the gene), which plays an important role in neurodevelopment 
[39]. Since rs9960767 resides within a super-FIRE with highly frequent local chromatin 
interactions, we hypothesize that chromatin spatial organization may play an important role in 
gene regulation in this region, elucidating potential mechanism by which rs9960767 affects the 
risk of schizophrenia. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. An example of a super-FIRE in human hippocampus tissue. Virtual 4C plot of a 
1Mb region (chr18:52,665,002-53,665,002) anchored at the schizophrenia-associated GWAS 
SNP rs9960767 (black vertical line), visualized by HUGIn [35]. The solid black, red and blue 
lines represent the observed contact frequency, expected contact frequency, and –log10(p-value) 
from Fit-Hi-C [40], respectively. The dashed purple and green lines represent significant 
thresholds corresponding to Bonferroni correction and 5% FDR, respectively. The yellow 
horizontal bar in the “FIREs” track depicts the 400Kb super-FIRE region. The two orange 
horizontal bars in the “Enhancers” track mark the two hippocampus super-enhancers in the 
region. 
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3.2 Integrative analysis of FIREs with gene expression in human brain tissues 
To study the relationship between FIREs and tissue-specifically expressed genes, we applied 
FIREcaller to Hi-C data from fetal [36] and adult [37] cortical tissues, and identified 3,925 fetal 
FIREs and 3,926 adult FIREs. Among them, 2,407 FIREs are fetal-specific and 2,408 FIREs are 
adult-specific (the remaining 1,518 FIREs are shared).  
 
We then overlapped FIREs with gene promoters and found that the dynamics of FIREs across 
brain developmental stages are closely associated with gene regulation dynamics during brain 
development (Figure 4). Specifically, we examined expression levels of genes whose promoters 
(defined as ±	500 bp of transcription start site [TSS]) overlap with fetal brain-specific FIREs and 
are expressed in fetal brain, similarly genes whose promoter overlap with adult brain-specific 
FIREs and are expressed in adult brain. Gene expression data in both fetal and adult brain cortex 
are from two of our recent studies [36, 37]. These criteria resulted in 707 and 882 genes in fetal 
and adult brain, respectively. Among them, 412 genes are fetal brain specific, 587 are adult brain 
specific, and 295 genes are shared (Table 1).   
 
  # FIREs  # FIREs overlapping 

with a gene 
 # of genes 
overlapping FIREs 

Adult-specific  2,408  488 587 
Fetal-specific  2,407  338 412 
Shared  1,518 258 295 

 
Table 1. Tissue-specific FIREs and shared FIREs, and overlapping genes. 
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Figure 4. Distribution of expression for genes overlapping fetal or adult brain FIREs. The 
leftmost pair of violin boxplots shows the expression profile of the 587 genes mapped to adult 
brain-specific FIREs, with expression measured in fetal brain cortex (blue) and adult brain cortex 
(red), respectively. The second pair of violin boxplots shows the expression profile of the 412 
genes mapped to fetal brain-specific FIREs, again in fetal brain cortex (blue) and adult brain 
cortex (red), respectively. The third pair shows the expression profile of the 295 genes mapped to 
FIREs shared between fetal and adult brain, yet again in fetal brain cortex (blue) and in adult 
brain cortex (red). The fourth pair shows the expression profile of genes not overlapping any 
FIREs, with a total of 15,640 such genes (labelled “Not FIRE bins”). To the farthest right shows 
the expression profile of 816 genes overlapping with “permuted-FIREs” with fetal cortex gene 
expression (blue) and adult brain cortex gene expression (red). 
 
For the 587 genes overlapped adult brain-specific FIREs, the mean gene expression levels, 
measured by log2(FPKM), are –0.052 and 0.190 in fetal and adult brain cortex, respectively. 
These 587 genes are significantly up-regulated in adult brain (paired t-test p-value= 1.3×10–10 
Figure 4; Table S5). Meanwhile, for the 412 genes overlapped with fetal brain-specific FIREs, 
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the mean gene expression levels are 0.551 and 0.209 in fetal and adult brain cortex, respectively. 
These 412 genes are significantly up-regulated in fetal brain (paired t-test p-value=7.8×10–13) 
(Figure 4; Table S5). By contrast, for the 295 genes overlapped with FIREs shared between fetal 
and adult cortex, the mean gene expression levels are 0.328 and 0.312 in fetal and adult brain 
cortex, respectively. These 295 genes show no significant difference in their expression levels 
between fetal and adult brain (paired t-test p-value = 0.79). Similarly, genes not overlapping with 
any FIREs exhibit no significant expression differences in fetal and adult brains either (paired t-
test p-value = 0.96) (Figure 4). For genes overlapped with “permuted-FIREs”, there is no 
significant difference in expression levels between fetal and adult brain (paired t-test p-value = 
0.84) (Figure 4). 
 
3.3 Integrative analysis of FIREs and E-P interactions 
We used Hi-C data from left ventricle and liver tissues from Schmitt et al study [14], and applied 
Fit-Hi-C [40] to call significant chromatin interactions at 40Kb bin resolution. We only 
considered bin pairs within 2Mb distance. Next, we used H3K27ac ChIP-seq peaks [41] in left 
ventricle and liver tissues to define active enhancers, and used 500 bp upstream / downstream of 
TSS to define promoters. A 40Kb bin pair is defined as an E-P interaction if one bin contains a 
promoter, and the other bin contains an active enhancer. In total, at an FDR<1%, we identified 
41,401 and 30,569 E-P interactions in left ventricle and liver, respectively. Among them, 29,096 
are left ventricle-specific, and 18,264 liver-specific. 
 
We then applied FIREcaller at 40Kb resolution, and identified 3,643 FIREs in left ventricle and 
3,642 FIREs in liver, with 1,186 FIREs shared between these two tissues. We found that FIREs 
are enriched for E-P interactions compared to non-FIREs for both liver and left ventricle (liver: 
odds ratio [OR] = 7.2, Fisher's exact test p-value < 2.2×10–16; left ventricle: OR = 4.0, p-value < 
2.2×10–16). Comparing between the two tissues, we observed that left ventricle-specific E-P 
interactions are highly enriched in left ventricle-specific FIREs and liver-specific E-P 
interactions highly enriched in liver-specific FIREs (OR=3.8, p-value <2.2×10–16; Table 2). Our 
results demonstrate that the tissue-specificity of FIREs is closely associated with the tissue-
specificity of E-P interactions [14]. 
 

 
Table 2. Tissue-Specific FIREs and Tissue-Specific E-P interactions in Liver and Left 
Ventricle tissues. In the table, we count the numbers of tissue-specific E-P interactions 
involving tissue-specific FIREs. For example, 1,093 means there are 1,093 left ventricle specific 
E-P interactions involving left ventricle-specific FIREs. Similarly, for the remaining three 
counts.   

 Left Ventricle-Specific E-P Liver-Specific E-P 

Left Ventricle-Specific FIRE 1,093 416 

Liver-Specific FIRE 951 1,392 
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3.4 Integrative analysis of FIREs and ChIP-seq peaks. 
Next, we evaluated the relationship between FIREs and histone modifications in cortex samples 
[26, 37, 41]. We found that H3K4me3 and H3K27ac ChIP-seq peaks are both enriched at FIRE 
regions (Figure 5). 
 

  
 
Figure 5. H3K4me3 and H3K27ac ChIP-seq peaks are enriched at FIREs. X axis is the 
distance from a bin, with the bins grouped into FIRE bins and non-FIRE bins. Y axis is fold 
enrichment quantified by MACS [42] when applied to the corresponding histone ChIP-seq data. 
 
3.5 Differential FIREs between GM12878 and H1 cells 
We used FIREcaller to identify differential FIREs between GM12878 cells [8] and H1 
embryonic stem cells [14], where Hi-C data for each cell type consists of two biological 
replicates. We identified 4,140 differential FIREs, where 2,346 FIREs are significantly more 
interactive in GM12878 and 1,794 more interactive in H1.  
 
Next, we tested whether the differential FIREs are enriched for typical enhancers or super-
enhancers [41] in the corresponding cell types. As expected (Figure 6), FIREs more interactive in 
H1 are significantly more likely to overlap H1 typical enhancers (OR = 1.74; Fisher’s exact test 
p-value = 1.03×10-4) and super-enhancers (OR = 1.94; p-value = 0.04). Similarly FIREs more 
interactive in GM12878 are significantly more likely to overlap GM12878 typical enhancers (OR 
= 78.37; Fisher’s exact test p-value < 2.2×10-16), and super-enhancers (OR = 78.92; p-value < 
2.2×10-16).  We note that the odd ratios for these two cell lines differ rather drastically, which is 
driven by the fact that H1 FIREs are significantly, but not as strongly enriched in H1 enhancers, 
compared to GM12878. These results are consistent with those reported in the original Schmitt et 
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al paper [14] where ~35% GM12878 FIREs overlapped with GM12878 typical enhancers, 
whereas only ~6% H1 FIREs overlapped with H1 typical enhancers (Schmitt et al Figure 4C). 
Similar patterns were observed for super-enhancers (Schmitt et al Figure 4D). 
 
 
 
 

 
Figure 6.  Relationship between differential FIREs and cell-type-specific enhancers in 
GM12878 and H1 cells. The size of the dots corresponds to the OR and the color of the dots 
corresponds to the p-value. 
 
4. Discussion 
In this paper, we present FIREcaller, a user-friendly R package to identify FIREs from Hi-C 
data. We demonstrate its utilities through applications to multiple Hi-C datasets and integrative 
analyses with E-P interactions, histone modifications and gene expression. We confirmed that 
FIREs are tissue/cell-type-specific, enriched of tissue/cell-type-specific enhancers, and are near 
tissue/cell type-specifically expressed genes, informative for prioritizing variants identified from  
genome-wide association studies (GWAS), consistent with other published works [14, 16-19, 
43]. In addition to the identification of FIREs and super-FIREs, our FIREcaller also allows the 
detection of differential FIREs and visualization of results. 
 
With the development of FIREcaller, FIREs can be easily identified and used in Hi-C data 
analysis along with TADs, A/B compartments, and chromatin loops. FIREcaller is 
computationally efficient. Using a single core of a 2.50 GHz Intel processor, the CPU time for 
running FIREcaller for one Hi-C dataset, all autosomal chromosomes together, at 40Kb 
resolution with default parameters requires 20.3 seconds with ~113 MB of memory. 
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Except for the identification of differential FIREs, FIREcaller treats each Hi-C dataset as an 
independent sample. When multiple replicates are available, user can merge the replicates before 
calling FIREs and super-FIREs. For differential FIREs, we currently do not allow single 
replicate as we consider multiple replicates to be necessary for meaningful statistical inference. 
Future research can explore strategies to accommodate single replicate from each or some 
conditions. One limitation is that we have not yet applied FIRE calling in many organisms, 
which warrants future studies. Another limitation of the current FIREcaller is that the resolution 
might still be too coarse, largely due to the lack of high-depth Hi-C data. With the availability of 
high-depth Hi-C data based on 4-bp cutters or technologies that allow higher-resolution 
chromatin architecture mapping in the future, we will explore FIREcaller further at higher 
resolutions. As a region-based summary of spatial organization information, FIREcaller also 
lends itself well to sparse data such as those from single cell Hi-C, which warrants further study.  
 
In sum, we developed FIREcaller, a stand-alone, user-friendly R package, to identify FIREs from 
Hi-C data. We believe FIREcaller is a useful tool in studying tissue/cell-type-specific features of 
chromatin spatial organization.   
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