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Abstract 

We present an approach for inferring genome-wide regulatory causality and demonstrate its 
application on a yeast dataset constructed by independently inducing hundreds of transcription 
factors and measuring timecourses of the resulting gene expression responses. We discuss the 
regulatory cascades in detail for a single transcription factor, Aft1; however, we have 201 TF 
induction timecourses that include >100,000 signal-containing dynamic responses. From a 
single TF induction timecourse we can often discriminate the direct from the indirect effects of 
the induced TF. Across our entire dataset, however, we find that the majority of expression 
changes are indirectly driven by unknown regulators. By integrating all timecourses into a single 
whole-cell transcriptional model, potential regulators of each gene can be predicted without 
incorporating prior information. In doing so, the indirect effects of a TF are understood as a 
series of direct regulatory predictions that capture how regulation propagates over time to create 
a causal regulatory network. This approach, which we call CANDID (​Causal Attribution 
Networks Driven by Induction Dynamics)​, resulted in the prediction of multiple transcriptional 
regulators that were validated experimentally.  
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Introduction 
A central problem in modern genomics is how to extract causality from experimental data. 
Additionally, distinguishing direct from indirect effects is an enduring challenge. In experiments 
that elicit dynamics (often due to environmental perturbations), linking responses to potential 
upstream molecular causes to build gene regulatory networks (GRNs) can be done with the aid 
of prior knowledge ​[1]​. Integrating prior knowledge with genomic studies of mutants has also 
been used to determine ​direct​ regulatory relationships between transcription factors (TFs) and 
genes involved in core cellular processes, from cell cycle control to the DNA damage response 
[2,3]​. GRNs typically focus on well-studied genes, require extensive prior information to 
elucidate, and are often missing direct molecular interactions. Addressing these issues requires 
a fresh perspective. 
 
Large-scale maps have been generated with the goal of identifying direct TF regulatory targets 
[4,5]​. Interpreting the biological impact of these interactions is challenging because regulatory 
interactions are dynamic and contingent on physiological state. Genes with similar ChIP profiles 
can exhibit opposite expression responses ​[6]​, and highly expressed regions of the genome can 
be “hyper-ChIPable”, resulting in a non-biological source of signal ​[7]​.  Alternatively, genetic 
perturbations with expression or growth-rate as readouts can be used to group functionally 
similar genes and processes ​[8,9]​. Gene expression profiling of deletion mutants (i.e., 
asymptotic readouts of a perturbation) can help identify co-regulated genes, though without 
dynamics there is limited potential for determining direct regulatory relationships because how 
information propagates from the deletion to each differentially expressed gene is not observed 
[10]​. 
 
We argue that identifying ​direct causal ​relationships without prior knowledge can be improved 
by using well-defined interventions followed by longitudinal genome-scale measurements. The 
work of McIsaac ​et al. ​adopted this approach for the purposes of dissecting the incompletely 
understood regulatory connectivity of the yeast sulfur regulon ​[11]​. By generating strains that 
expressed each known sulfur-related TF from an engineered promoter that could be activated 
by a small molecule (β-estradiol), a single TF could be rapidly induced and responses could be 
tracked as they propagated over time. But genome-wide time-resolved datasets are uncommon, 
and accordingly, existing approaches utilizing dynamics must either rely extensively on prior 
information to predict the true regulator among a set of correlated alternatives ​[12]​, or focus on 
small networks where many possible regulators are removed ​[1,13]​. Thus, the field requires 
experimental datasets that are suitable for elucidating GRNs, and new analytical approaches for 
learning non-canonical regulators from such data. 
 
Here, we present an approach (CANDID) for revealing genome-wide causal relationships 
without incorporating prior information. We generated over two-hundred TF induction 
timecourses in which a single yeast TF was rapidly induced, and full transcriptome differential 
expression was tracked, typically across eight​ ​timepoints. Such timecourses feature the near 
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immediate strong induction of an inducer-driven TF of interest, followed by rapid changes in 
genes that are directly regulated by these TFs, and later changes of indirectly regulated genes 
(​Figure 1A-C​). While these indirect effects contain many uncharacterized regulatory processes, 
they can be difficult to attribute to a single specific regulator (​Figure 1D​) using single 
timecourses. By aggregating all timecourses, we can more confidently identify which 
regulator(s) are acting in each individual timecourse by finding the parsimonious set of 
regulators whose abundances account for each gene’s expression variability (​Figure 1E, F​). 
Furthermore, our approach implicitly dissects indirect regulation into a series of direct regulatory 
relationships, and by not utilizing prior information, we minimize bias against re-learning known 
biology. Accordingly, predicted intermediate regulators span canonical transcriptional regulators 
as well as genes of unknown function. We tested ten predicted latent regulators, and found 
three of them to be genuine transcriptional regulators and are commonly induced and repressed 
across many experiments. 

Results 
Each of 201 ​ ​genes’ native promoters were separately replaced with a β-estradiol-inducible 
promoter as previously described ​[11,14]​ (​Table S1 ​). This set of induced genes is heavily 
enriched for non-essential TFs and chromatin modifiers. Each strain was grown to a 
steady-state in chemostat culture and following the addition of β-estradiol, the full transcriptome 
was measured at 4-10 post-induction timepoints (83% of timecourses contained 8 timepoints). 
Initially, 1691 microarrays were generated from 217 distinct induction experiments. 15 induction 
experiments were repeated at least once using the same induced gene to either capture late 
changes in some experiments (e.g., ​GCN4​) or to allow for calibration experiments across the 
two induction systems used in this study (referred to as ZEV ​[14,15]​ and GEV ​[16]​). 
 
Most genes’ expression did not change in a typical induction experiment, with some notable 
exceptions (i.e., induction of Gcn4). Accordingly, the inducer-driven signal of interest is relatively 
sparse and interspersed among ubiquitous noise. This noise was governed by both a mild 
stress response ​[17]​ and Gaussian noise that varied across both genes and arrays. In order to 
isolate inducer-specific expression changes, the stress response was subtracted from each 
timecourse and then an observation-level noise model was used to select a subset of 
timecourses that are statistically inconsistent with experimental noise (​Figures S1, S2, S3 ​). The 
signals from these 100,036 timecourses were retained (~8% of timecourses) while all other 
timecourses were set as invariant (a log2 fold-change of zero). The full transcriptional dataset is 
available as ​Table S2 ​. Further details on processing these data can be found in the supplement. 

Regulatory cascades and impulses 
 
The Aft1 timecourse is an illustrative example of the value of induction data for revealing 
intricate regulatory phenomena. When Aft1 is induced, two broad classes of expression 
changes are observed: fast induction of targets which are known to be bound by Aft1 based on 
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ChIP and gradual changes of genes whose expression has previously been shown to be 
correlated with, but not bound by Aft1 (​Figure 2A​) ​[18]​. Such expression changes were typical of 
our dataset. Most genes in this dataset exhibit either a sigmoidal or impulse response (double 
sigmoidal); thus, we fit a Bayesian version of the Chechik & Koller kinetic model to each 
timecourse ​[19]​. These parametric fits enabled the direct comparison of timecourses based 
upon whether they were sigmoidal or impulses and by using interpretable kinetic parameters. 
Sigmoidal responses are summarized with a half-max time constant ​t​rise​ and asymptotic 
expression level ​v​inter​. Impulse responses include two additional parameters: t​fall ​, which describes 
the time when the response returns halfway to its final level, and ​v​final​, the asymptotic expression 
level of the impulse (​Figure 2B​) ​[19]​. Utilizing these kinetic parameters, we observed multiple 
binding motifs of genes with characteristic response kinetics, including, as expected, the Aft1 
motif associated with early activation, and a different motif (recognized by Tod6/Dot6 [also 
referred to as a PAC motif]) associated with early inhibition (​Figure 2C​). Targets activated and 
repressed in the Aft1 experiment have similar kinetic responses, and both classes contain 
examples of impulse-like expression responses (​Figure 2D​). Beyond Aft1, other TFs with a large 
number of impulse-like responses (indicative of feedback control / perfect adaptation) include 
Pho4, Mac1, Oaf1, Rtg1, Rtg2, Stb5, and Zap1 (​Figures S4, S5, S6 ​). In total, we find evidence 
of transcriptional feedback in more than 1700 timecourses (~2% of all timecourses). To allow 
others to provide comparable investigations into the kinetics, functional coherence, and 
regulation of each timecourse in our dataset, we provide an interactive website 
(http://candid.research.calicolabs.com).  
 
We can broadly categorize timecourses at a dataset-level based on existing knowledge. While 
strong acute regulation events are frequently associated with the direct binding of the induced 
TF, over 75% of genes responding in our dataset are new regulatory connections (​Figure S7 ​). 
Additionally, we find that 79% of genes reported as being directly bound by a TF do not exhibit a 
significant expression response in the corresponding TF’s induction experiment (​Figure S7 ​). 
The low recall of reported transcriptional regulation underscores the value of dynamic data for 
evaluating realized regulatory potential. Actual regulation may be greatly impacted by chromatin 
accessibility and the regulatory context of the extracellular environment ​[11,20–22]​. This is 
further supported by the weak agreement between the reported binding and coexpression 
partners of a TF with the number of genes that change when it is induced (​Figure S8 ​). 
 
Since induced TFs directly account for a small portion of the observed expression changes, it 
raises a broader question: ​which regulators are actually acting in each induction experiment?​ To 
investigate whether the kinetics of responding genes can be informed by promoter composition, 
we carried out systematic ​de novo​ motif discovery of all timecourses and identified 715 promoter 
motifs enriched in the responding genes across all experiments (​Table S3 ​). 34% of these motifs 
could be matched to known regulators and thus suggest plausible candidates for regulators 
which may operate in each timecourse. While linking TFs to their targets using motifs has been 
a common assumption in order to enable genome-scale GRN inference, we find this assumption 
can be limiting. Indeed, in the Aft1 induction experiment, the Aft1 motif is associated with direct 
activation of only a small number of genes. Since we would also like to understand regulatory 
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cascades without requiring regulators to possess direct DNA binding ability, we developed a 
model that, assuming no prior information, could allow for the elucidation of regulators with 
unappreciated transcriptional impacts. 

Integrative modeling 
In a given TF induction experiment, we infer which early-responding genes are causally 
responsible for the gene expression changes that occur later in the experiment. In a single 
timecourse, however, we would only be able to identify a coexpressed cluster of genes whose 
expression coincides with a late change, rather than a single candidate regulator (​Figure 1D​). 
While reliably inferring regulatory mediators from a single timecourse is a dubious prospect, 
across all timecourses, genes respond in a median of twelve induction experiments (or in ~5% 
of experiments; ​Figure S9 ​). Therefore, aggregating multiple experiments provides the potential 
to decouple each gene’s expression dynamics from those of spurious correlates. As we have 
generated hundreds of strong orthogonal gene-level perturbations, our dataset provides an 
opportunity to test this approach. Across >1650 samples, each gene has a distinct pattern of 
variation and establishing such expression distinctness required a dataset on this scale (​Figure 
S10 ​).  
 
To learn direct regulatory relationships from such data, we formulate a set of gene-level 
regression models that attempt to predict the rate of change of each target gene as a sparse 
linear combination of all genes’ expression: 
 

Equation 1 ​: ln(y )/Δt  Δ ijt = ∑
 

k
α (y ) y ) y( ik kjt − 1 + β (yik ijt kjt − 1 ) /

ijt
 

 
Here, is the expression relative to the control strain and relative to time zero of a gene ​i​ in ayijt  
timecourse ​j​ at a time ​t ​ (i.e., for treatment ​r ​ and control ​ g​, ; therefore,r /g )/(r /g )yijt = ( ijt ijt ij0 ij0  

). Here, α represents the linear effect of one transcript on another and β ∀{I , }yij0 = 1 J  
represents the effect proportional to the target transcript. We allow any transcript to affect any 
other transcript, and thus we sum over all genes (with index ​k​). Since most genes will not be 
regulatory, we use L1 regularization (i.e., LASSO) to shrink uninformative predictive coefficients 
to zero. We also enforce a predicted rate of change of zero at time zero, reflecting the 
pre-induction steady-state assumption. To arrive at this formula, we considered a suite of 
alternative data cleaning and modeling approaches (see Supplement for details) and decided 
upon this formalism and hyperparameters based on an ability to predict held-out induction 
datasets (in total, 50 million regressions performed).  
 
The global regression model attempts to predict the rate of change of a target gene based on 
other regulators (​Figure 3A​). These instantaneous estimates can in turn be integrated to provide 
the model’s estimates of log ​2​ fold-changes (​Figure 3B​). Grossly, the above model explains 43% 
of the variability in log ​2​ fold-changes (​Figure S11 ​). While the model appropriately does not 
account for all expression variability, the variables in the above regression are directly 
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determined by experimental data. Accordingly, our inability to predict one gene’s regulation 
does not affect modeling of another gene’s regulation. 

Decomposing indirect regulation into sequential direct regulation 
The parameters of Equation 1 are regression coefficients that approximate ; in othery  / ∂y∂ i j  
words, they capture the potential of a gene ​j​ to alter the expression of a gene ​i​. However, to 
understand regulatory phenomena like the impulses observed in Aft1, we must consider both 
regulatory potential, as well as each regulator’s realized expression. To capture such 
relationships, we interrogate the fitted timecourses from our model, and to attribute changes to 
individual regulators, we consider their marginal contributions to overall timecourse changes. 
Using this framework, we look at each differentially expressed gene in a given timecourse and 
attribute each regulatory response (e.g., rise, or fall) to one or more regulators based on 
regulators’ marginal contributions to the response. Revisiting the Aft1 timecourse, our marginal 
attribution analysis predicts that different regulators are responsible for genes that respond with 
different kinetics (​Figure 3C​). In line with binding data, Aft1 is predicted to be the primary 
regulator of early activated genes, while Aft1 is predicted to turn off genes (in part) through the 
activation of Hmx1. Each regulator-target relationship can be thought of as a directed edge in a 
graph, with the whole graph describing how the regulation is predicted to have unfolded across 
time during each induction experiment. Performing such attribution analysis for all timecourses 
indicates that the induced TF is the primary direct driver of gene expression changes in nearly 
every experiment with signal (​Figure S12 ​); however, numerous other regulators are predicted as 
mediators of indirect effects.  
 
The synthesis of timecourse-level graphs across all induction experiments reveals a global 
Causal Attribution Network (​Figure 4 ​) that links regulators with induction experiments to 
predicted intermediate regulators and the biological processes targeted by each regulator. In 
some cases (e.g., the Pho4 induction experiment), regulators predicted by the model do not 
connect back to the induced TF. This highlights that some regulatory phenomena are not 
explained by the model, but by directly using each gene’s abundance, its potential for regulation 
can be established. This global view reveals several predicted regulatory hubs, which are 
predicted to be directly activated or inhibited by multiple regulators and subsequently regulate a 
set of downstream targets. 

Multiple transcriptional regulators confirmed 
Our modeling results highlight many potential new regulators that we sought to confirm 
experimentally. These regulators include both hubs predicted to regulate targets across many 
experiments as well as mediators of interesting dynamic phenomena (such as impulses). To 
validate putative regulators, a separate β-estradiol induction timecourse was generated for each 
of ten new regulators of interest (​Table S4 ​).  
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Three of these induction timecourses showed strong changes in the putative regulators’ targets 
(​Figure 5 ​, p < 10^-12; overlap of predicted and measured targets by ​χ​2 ​test) (see Supplement). 
Correctly predicting 3/10 transcriptional regulators is notable, both because few genes are 
thought to be able to act as specific transcriptional regulators, and because all confirmed 
regulators were poorly studied. In line with the integrative signals that we aimed to capture in 
this study (Figure 1E), the three confirmed regulators change in many experiments, and act as 
hubs which connect diverse TFs to prominent regulatory processes. Each validated regulator 
temporally preceded its predicted targets and variation in the regulator’s t​rise​ was correlated with 
changes in its targets’ t​rises​ and the regulator’s v​inter​ was correlated with targets’ v​inters​ (​Figure 
S13 ​). Invalidated regulators, in contrast, either temporally coincided with their spurious targets 
or were active in a small number of timecourses and thus difficult to distinguish from correlated 
genes. 
 
Hmx1, notably, mediates indirect effects of Aft1 and Aft2. Induction of Aft1 or Aft2, key 
regulators involved in iron utilization, results in diverse expression changes. We find that as part 
of the iron utilization cascade, Aft1/Aft2 activate expression of ​HMX1​. Hmx1 ​ ​induction results in 
the inhibition of ​COX​ genes, and genes involved in sterol biosynthesis (a process that requires 
heme), including ​CYB5​ (encodes Cytochrome b5) and nearly every ​ERG​ gene ​[23]​, establishing 
a regulatory link between iron regulation, heme metabolism, and sterol synthesis (​Figure 6A​). 
Previously, it was found that ​hmx1∆ ​cells accumulate heme, suggesting that Hmx1 activity is 
important role in recycling heme during conditions of iron starvation ​[24]​. ​HMX1​ induction also 
represses ​NDE1​, which encodes a mitochondrially-localized NADH dehydrogenase and is 
important for cellular respiration.  
 
Stp4 is annotated as a potential TF that contains a Krueppel-like domain ​[25]​. Our data strongly 
suggest that Stp4 is a ​bona fide​ TF resulting in activation/repression of hundreds of genes 
(​Figure 5 ​). In the Stp4-responsive gene set there is a set of 83 fast-responding, strongly 
repressed genes. Using MEME, we determined that promoters of these genes are enriched for 
the motif GNRCGGCY;​ ​this motif is nearly identical to a Stp4 motif derived from a protein 
binding microarray ​[26]​. Genes responsive to this motif are strongly enriched for transmembrane 
transport (corrected p-value = 2.07 x 10 ​-8​), and include the biotin transporter (​VHT1​) and heme 
transporter (​PUG1​) (​Figure 6B​). This cluster contains genes strongly inhibited by Stp4, including 
numerous amino acid transporters (​GAP1, TAT1, PUT4, ODC1, BAP3, YCT1, ​and ​GNP1​)​. 
 
Fmp48, named after “found in mitochondrial proteome”, is a putative protein of unknown 
function with predicted kinase activity. In the Fmp48 validation experiment, ~1800 genes 
changed by more than two-fold, making Fmp48 a prominent transcriptional regulator. Genes 
that respond to Fmp48 activation fall into three clear classes: activation with fast kinetics, 
repression with fast kinetics, and repression with slow kinetics (​Figure 5 ​). Quickly repressed 
genes are mostly strong enriched for genes involved in rRNA processing, while slowly 
repressed genes are strongly enriched for genes involved in mitotic cell cycle and DNA 
replication (corrected p-values < 0.001); in fact, the class of slowly repressed genes includes all 
of the core histones: H3 (​HHT1​ and ​HHF1​), H4 (​HHT2​ and ​HHF2​), H2A and H2B (​HTA1​, ​HTA2 ​, 
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HTB1​, and ​HTB2​), as well as H2A-Z ​(HTZ1​), Cen H3 (​CSE4​), and H1 (​HHO1​). Comparing our 
data to a previous gene expression profiling study of ~1400 deletion mutants ​[27]​, we find that 
the Fmp48 45-minute timepoint is most correlated with ​cst6∆​, ​ram1 ​∆, and csm1∆ (with Pearson 
correlation of ~0.2) and most anti-correlated with ​nrm1​∆, ​hur1 ​∆, and ​ecm30​∆ (with Pearson 
correlations of ~ -0.15). ​NRM1​ encodes a transcriptional co-repressor of cell cycle genes, and 
indeed, we find that Nrm1 strongly represses cell cycle genes when induced (​Figure S14 ​). This 
suggests that Fmp48, as part of its regulon, may activate Nrm1 activity to inhibit cell-cycle 
progression.  
 
Fmp48 is a regulator of metabolic and diverse stress-responsive genes (​Figure 6C​). Previously, 
it was found that Fmp48 interacts with TOR, and that overexpression results in alterations in 
mitochondrial morphology and differential growth phenotypes depending on carbon source 
(slight overexpression of Fmp48 is toxic when glycerol is a carbon source, but not when 
raffinose is) ​[28]​. Genes that are activated by >2-fold in both our dataset and a previously 
published Fmp48 overexpression gene expression dataset ​[28]​ are most enriched for 
methylglyoxal metabolic processes (corrected p-value 1.12 x 10 ​-7​) and cellular response to 
chemical stimuli (corrected p-value 2.39 x 10 ​-7​) (​Figure S15 ​). The most up-regulated genes 
across both datasets includes ​HSP26,​ ​SIP18 ​, ​ALD3​, ​FMP16 ​, ​CTT1 ​, ​GND2 NQM1 ​, ​GRE1 ​, 
HSP12​, ​SPI1 ​, ​SSH3 ​, ​DDR2​, ​SOL4 ​, ​RTC3 ​, ​MSC1 ​, ​RTN2 ​, ​PAI3 ​. ​GRE1 ​ and ​SIP18​ are paralogs 
that are important for overcoming the dehydration-rehydration process, and ​CTT1​ encodes 
catalase, a potent antioxidant. Beyond metabolic and stress-responsive genes, this gene set 
includes ​RTN2​, which encodes a gene important for maintaining Endoplasmic Reticulum shape 
and has stress-dependent localization ​[29]​. Clearly, our data highlight Fmp48 as a prominent, 
hub-like regulator. 

Discussion 
 
In order to understand regulatory architecture, we require datasets that elicit diverse 
physiological regulatory responses, and possess sufficient information to disambiguate the 
drivers of each regulatory response. Synthetic biology holds great promise for creating such 
datasets, and, when combined with new analytical tools, can be utilized to identify new 
regulators and GRNs. 
 
Here, we demonstrated the power of using large datasets and TF induction timecourses to 
reveal new regulatory connections. Four results are worth highlighting. First, our dataset reveals 
homeostatic relationships. By inducing a TF and measuring changes in expression over time, 
direct activation/repression can be revealed, and novel cases of feedback can be observed as 
impulse-like transcriptional responses. Second, expression variation is associated with a 
modest number of transcriptional regulators with major effects, while many perturbations elicit 
minimal transcriptional responses; in fact, ~40 of the TF induction experiments (~20% of all 
experiments) elicited no significant changes in gene expression (​Figure S12 ​). Third, using 
kinetic information is essential for prioritizing potential causal regulatory relationships. By 
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integrating hundreds of time courses with a dynamical systems model that explicitly includes 
time, we can make predictions of new regulatory interactions without the use of prior knowledge. 
Fourth, we highlight the regulatory potential of previously under-appreciated regulators of gene 
expression.  
 
Approaching genome-scale modeling of network regulation from dynamic data also yielded 
insights about how to collect, process, and analyze such data. Because most genes do not 
respond in a typical induction experiment, we used hard-thresholding to remove (i.e., set equal 
to zero) the majority of values in our dataset, leaving ~100,000 timecourses with coherent, 
biologically-feasible patterns of variability. Having first identified signal-containing timecourses, 
we were then able to determine the nature of this signal using parametric models and by 
modeling the dataset-level relationships between signals. When fitting a genome-scale 
regression model we made a number of assumptions about biological processes to include 
versus those we should ignore based on our experimental design. In doing so, our model may 
fail to capture a number of important regulatory phenomena including complex combinatorial 
regulation, post-transcriptional regulation, post-translational regulation, localization and 
regulation due to non-proteins (e.g., metabolites) ​[30–34]​. These phenomena could hamper our 
analysis to the extent that regulators are absent, their concentrations are misrepresented, or 
their kinetics are temporally shifted. Because a transcriptional model is inherently incomplete, 
our modeling approach was structured to be robust to mis-specification by describing variables 
directly from data rather than creating latent variables. Our model builds relationships between 
genes with coherent regulatory relationships without being grossly biased by regulation that it 
cannot represent. This model is inherently incomplete, and accordingly, our model only explains 
~40% of expression variation (​Figure S11 ​). An additional challenge we faced when fitting a 
model that allows for regulation by any gene is distilling a single regulator from a set of possibly 
highly-correlated possibilities. Some regulators not well-represented by our dataset may also be 
correlated with measured transcripts raising the possibility that predicted transcriptional 
regulators may be false-positives if they correlate to an unmeasured regulator. By utilizing >200 
timecourses, we are in a regime where identifiability of an individual regulator becomes 
possible, because we are able to break the correlation between pairs of genes (​Figure S10 ​). It is 
also noteworthy that this ability decays quickly once an appreciable fraction of timecourses are 
removed (​Figure S10 ​). 
 
In a given timecourse, genes with similar kinetics often have a common regulator, and we 
expect kinetic similarity between genes to be reflected in the DNA composition of their 
promoters. More could be done here, perhaps by training a model with grouped regularization 
[35]​ based on either existing motifs (see ​[18]​) or motifs directly learned from the data ​[36]​. In 
practice, some transcriptional regulators (e.g., chromatin modifiers) will not affect targets in a 
manner consistent with an easily discoverable DNA motif, and in other cases global effects may 
cause widespread expression changes ​[37]​. Motifs, nevertheless, may kinetically localize 
despite the absence of clear direct regulation by the induced TF. For example, ribosomes that 
are acutely inhibited in the Aft1 and Pho4 experiments are enriched for the PAC sequence motif 
but there is little expression evidence that the associated regulators are operating. To avoid the 
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case where we are over-fitting to known relationships, we opted to build an ​ab initio​ model of 
transcription which allowed for regulatory relationships between any pairs of genes and fit based 
on coherent patterns of expression. Only one of the three validated transcriptional regulators 
was annotated as a putative TF. For the remaining non-TFs, other downstream regulators may 
ultimately drive variation (whether by changes in a secondary messenger, TF localization, etc.). 
Still, in each case the predicted regulator is sufficient to elicit a regulatory response and is more 
proximal to the effect than the induced TF, and thus more informative of direct regulation. 
 
In the future, improvements in synthetic biology and computational modeling will result in even 
better predictive models. In the approach presented here, only one TF was perturbed at a time, 
resulting in a large but relatively sparse gene expression dataset. The use of combinatorial 
perturbations, as well as induction of non-TFs, will result in richer dynamic datasets. As new 
timecourse datasets become available and are integrated with time series analysis and prior 
knowledge, we expect predictive models to require fewer experiments to build. Moreover, 
dataset generation and model evaluation naturally dovetail when using synthetic perturbations. 
Regulators can be easily tested with new induction experiments. When modeling predictions 
succeed, we confirm new biology; when they fail, the model gets better. 
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Figures 
 

 
 
Figure 1: Inferring direct regulation using overlapping induction timecourses. A. ​ In each 
experiment, one transcriptional regulator with an inducible promoter is rapidly overexpressed in 
response to 1 µM ​β-estradiol​. ​B. ​Example of three genes (labeled ​B​, ​C ​, and ​D​) responding with 
different kinetics following induction of regulator ​A​. ​C. ​Hypothetical example of a regulatory 
cascade in which an induced transcriptional regulator ​A​ directly inhibits ​C​ and directly activates 
B​. ​B ​,​ ​in turn, directly activates ​D​. ​D. ​In practice, we don’t know that ​A​ regulates ​D​ via ​B​ and 
instead want to infer such regulatory relationships. In this example, direct regulation of ​D​ by ​B ​ is 
only one hypothesis that is consistent with the data - all viable hypotheses are shown by dashed 
lines. ​A​ could directly activate ​D​, ​C ​ could inhibit ​D​, or ​A ​ could regulate an unmeasured 
confounder ​U​ which is the true regulator. Direct regulation by a variable ​Y​, which is independent 
of ​A ​, is not possible since the timecourse begins at steady state. ​E. ​Integrating the ​A​ induction 
timecourse with a second induction timecourse, which perturbs ​B​ without perturbing ​A​ or ​C​, 
allows us to narrow down ​D​’s possible sources of regulation. In this case, ​U​ may still be a 
possibility if it is remains correlated with ​B​. ​F. ​Overview of data and analysis performed in this 
study. Over 200 induction timecourses were constructed allowing for many opportunities to 
resolve ambiguous regulation. 
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Figure 2. Characterizing the downstream responses of Aft1 induction. A. ​Heatmap 
summary of Aft1 induction timecourse showing all genes that change with |log2(fold-change)| > 
1.5. ​B. ​Parametric summaries of representative sigmoidal activation and inhibition timecourses 
and impulse (double sigmoid) modeling of transitory inhibition. Sigmoids are summarized by 
half-max time (t​rise​) and the asymptote (v​inter​), while impulses include a second half-max (t​fall ​) time 
and final asymptote (v​final ​). The strongest supported model for each timecourse is shown as a 
filled in line, while the alternative model is shown with a dashed line. ​C. ​K-mers enriched in the 
promoters of regulated genes are overlaid on summary of each gene’s t​rise​ and v​inter​. Presence of 
the Aft1 motif is associated with early activation, while early inhibition is associated with the PAC 
motif (Tod6/Dot6). ​D. ​Response kinetics are overlaid on gene coordinates based on synthetic 
lethality as a surrogate for functional similarity. Up-regulated genes are enriched for vesicle 
trafficking/glycosylation processes and down-regulated genes are enriched for 
mitochondrial/mitotic/rRNA processes.  
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Figure 3. Predicted causal attribution of Aft1-driven transcriptional changes. A. ​Using a 
representative Aft1 target gene, ​YHB1​, fold-change differences between timepoints (solid grey 
dots) are compared to the LASSO regression model’s fit (crosses). The model’s predicted 
marginal contribution of three predicted regulators (Fet3, Hmx1, and Arn2) to the combinatorial 
control of ​YHB1​ are shown with bars that sum to the model’s overall fit (crosses). ​B. ​The ​YHB1 
fold-change differences fit by regression can be converted to full timecourses to determine the 
marginal contributions of each regulator in driving a regulatory transition of interest (rises and 
falls). ​C. ​Each differentially-expressed gene in the Aft1 timecourse is laid out based on its 
kinetics and colored according to the regulator predicted to be the strongest driver of differential 
expression. Model-derived fractional contributions of regulators to expression of ​AQY2,​ ​NSR1​, 
YHB1​, and ​HEM25​ are depicted as donut charts.  
 

            13 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/619577doi: bioRxiv preprint 

https://doi.org/10.1101/619577


 
Figure 4. Synthesis of predicted networks. ​ Direct regulation between genes is defined based 
on causal attribution analysis and indirect regulation of an induced gene is defined if a gene is 
differentially expressed regardless of whether attribution analysis indicated a direct regulatory 
relationship. ​A.​ Edges between both genes with induction experiments and predicted regulators 
were formed based on regulatory cascades predicted from individual experiments (as shown in 
Figure 3C). For this visualization, major regulators selected as per Figure 3C are rooted to the 
induced transcription factor regardless of whether they were directly or indirectly regulated by 
this gene. Predicted regulators are linked to GO categories based on overlap with their 
predicted targets and similarly genes with an induction experiment are linked to GO categories 
based on overlap of either direct or indirect targets with GO categories. ​B. ​Local networks 
based on upstream direct/indirect regulators and downstream direct targets of three validated 
regulators. 
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Figure 5. Model-driven identification of transcriptional regulators. ​All genes passing 
hard-thresholding in each experiment are shown. K-means clustering was used to cluster 
responsive genes (K = 4 for Fmp48 and K = 2 for Stp4 and Hmx1) and GO slim gene-sets 
enriched in each cluster are shown. 
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Figure 6. Gene regulatory networks (GRNs) predicted computationally and validated 
experimentally. ​TFs with induction experiments used for modeling are shown in blue. Genes 
that were induced based on model predictions are shown in orange, and responses to those 
genes are shown in green. ​A.​ Hmx1 is part of the yeast iron regulon, and upon activation, can 
repress a set of genes involved in respiration and sterol metabolism. ​B.​ Stp4 is regulated by a 
diverse set out TFs. Genes that respond most quickly/strongly to Stp4 induction are repressed, 
and enriched for amino acid transporters. Promoters of these genes are enriched for the 
indicated binding motif. ​C.​ Fmp48 is activated/repressed by many TFs, and in turn, regulates 
diverse cellular processes.  
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Supplemental Figures 
 

 
Figure S1: Systematic identification and summarization of regulatory signals. ​Since most 
transcriptional regulators affect a relatively small number of target genes, meaningful changes in 
expression are relatively sparse (~9% of timecourses). These signal-containing timecourses are 
distinguished from timecourses which are purely noise, by first regressing out an average stress 
response, then selecting timecourses with extreme observation-level signal-to-noise and finally 
shrinking observations towards zero based on signal-to-noise.  
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Figure S2: ​Full transcriptome of the “raw” gene expression data. Genes are sorted 
alphabetically from bottom to top. Note the increase in variability of gene expression for genes 
near the top of the clustergram (these are mostly genes that begin with “Y” as they have no 
known function and lack a standard name).  
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Figure S3: ​Full transcriptome of the “shrunken” gene expression data. Genes are sorted 
alphabetically from bottom to top.  
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Figure S4: Counts of impulse vs. sigmoids across experiments. ​ Transcriptional regulators 
are characterized based on the number of transcriptional responses that are sigmoid (e.g., turn 
on) versus impulses (e.g., turn on, then off). Pho4, Oaf1, Aft1, and Zap1, among other 
transcription factors, are highly enriched for impulse dynamics.  
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Figure S5: Most impulses exhibit near-perfect adaptation. v ​inter ​ is compared to v ​final ​ for all 
timecourses exhibiting impulse dynamics. ​ The absolute value of each coefficient was floored 
to three for visualization.  
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Figure S6. Diverse, functionally significant regulation in the Pho4 induction experiment. 
A. ​Heatmap summary of Pho4 induction timecourse showing all >4-fold changes. ​B. ​Parametric 
summaries of representative sigmoidal activation and inhibition timecourses and impulse 
(double sigmoid) modeling of transitory inhibition. Sigmoids are summarized by half-max time 
(t​rise​) and the asymptote (v​inter​), while impulses include a second half-max (t​fall ​) time and final 
assymptote (v​final ​). The strongest supported model for each timecourse is shown as a filled in 
line, while the alternative model is shown with a dashed line. ​C. ​K-mers enriched in the 
promoters of regulated genes are overlaid on summary of each gene’s t​rise​ and v​inter​. ​D. 
Response kinetics are overlaid on gene coordinates based on synthetic lethality as a surrogate 
for functional similarity. Pho4 rapidly inhibits ribosome biogenesis, rRNA processing and mRNA 
processing. ​E.​ The rRNA processing and ribosome biogenesis responses are each acute 
inhibition impulses that can be clearly distinguishing based on kinetics.  
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Figure S7: Functional classes of kinetic responses. ​For each of the >100,000 timecourses 
with parametric fits, timecourses were divided into four categories: directly induced (TF induced 
in cognate experiment), binding (direct regulation based on direct-binding data from Yeastract), 
expression (co-expression of TF and responsive gene based on data from Yeastract), and new 
dynamics (newly discovered gene associations outside the other three classes).  
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Figure S8: Response magnitude comparison with reported regulation. ​Scatter plot of 
number of targets or correlation-associated genes (Yeastract) versus the number of genes with 
significant dynamical responses in the “shrunken” data.  
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Figure S9: Extent of differential expression per experiment or gene ​. A)​ ​Histogram of the 
number of differentially expressed genes in each experiment. B) Histogram of the number of 
transcriptional regulators under which a gene changes (median 12, mean = 15.3, maximum 
would be changing under all 203 distinct induction experiments). 
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Figure S10: Histograms of maximum correlation of genes to all other measured genes are 
shown as experiments are pruned from the dataset. ​Panels indicate the number of 
experiments included in the analysis, where smaller datasets retain the experiments with the 
largest number of differentially expressed genes. Each gene is summarized based on the 
maximum correlation of its expression across all included experiments and timepoints to every 
other genes’ expression. The blue line indicates the median of the maximum correlation of 
genes. For the purpose of calculating medians, genes which are dropped when constructing the 
reduced datasets are represented with a correlation of one (since they are impossible to 
discriminate from other absent regulators). 
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Figure S11 ​:​ Fit of regulatory model to observed gene-expression measurements ​. Each 
observation compares measured log2 fold-changes from the dataset that the whole-cell model 
was fit to (i.e., time courses that passed full noise model and filters; see section 8 of the 
supplement) with the fitted fold-changes predicted from the whole-cell model.  
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Figure S12 ​: ​Induced transcriptional regulators are the primary drivers of gene expression 
changes in most experiments​. Each experiment summarized differentially expressed genes 
based on the regulator with the largest attributed role in achieving the rise time. The rank of the 
induced transcription factor among regulators, derived from the model, is shown across all 
experiments. 
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Figure S13: Identifying latent transcriptional regulatory hubs. A. ​For each gene whose 
expression change is partially attributed (attributing at least 5% of variation) to a regulator’s 
levels in 5 or more experiments, the timing of the regulator is compared to its predicted targets 
within the same experiment. ​B. ​The v​inter​ value (i.e., expression-level asymptote) of each 
regulator is compared to the v​inter​ of each of its effects in the same experiment. Targets are 
colored based on whether the regression model indicates an activating or inhibitory relationship. 
 
  

            29 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 1, 2019. ; https://doi.org/10.1101/619577doi: bioRxiv preprint 

https://doi.org/10.1101/619577


 
 

 
Figure S14: Transcriptional response to ​NRM1​ induction mapped onto the genetic 
interaction network. ​Genes kinetics are summarized based on timing and direction of change 
as per Figure 2D. 
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Figure S15: Comparing transcriptome data from two Fmp48 overexpression datasets. 
Data shown in Figure 5 are plotted along the y-axis. Replicates from Breitkreutz ​et al.​ (2009) are 
averaged and plotted along the x-axis. The Pearson correlation is 0.47 and is significant with 
p-value < 2.2e-16.  
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