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Abstract  
 
Understanding of the tumor microenvironment (TME) structure is likely to have a profound and 

immediate impact on therapeutic interventions as well as the development of signatures for 

diagnostic and prognostic evaluations. DNA methylation arrays represent one of the most 

reproducible molecular assays across replicates and studies, but its value of profiling tumor-

infiltrating immune lymphocytes (TILs) hasn’t been intensively investigated. Here we report a 

model-based evaluation of tumor TIL levels using DNA methylation profiles. By employing a 

hybrid method of stability selection and elastic net, we show that methylation array data in ten 

TCGA cancer types provide a strikingly accurate prediction of immune cell abundance, in 

particular the levels of T cells, B cells and cytotoxic cells in skin cutaneous melanoma (SKCM). 

The immune-informative CpG sites showed significant prognostic values, representing important 

candidates for further functional validation. Further, we present regression models each using 

only ten CpG sites to estimate the levels of infiltrated immune cell types in melanoma. To 

validate these models, we performed matched methylation EPIC array and RNA-seq on 30 new 

melanoma samples. We observed high concordance on methylation and gene expression 

predicted tumor immune infiltration levels in our new dataset. Our study demonstrated that DNA 

methylation data is a valuable resource in reliably evaluating tumor immune responses. The 

selected methylation panels provide candidate targets for future clinical researches. Our 

prediction models are easy to implement and will provide reference for future clinical practices. 
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Introduction 
 
Understanding of the crosstalk between tumor cells and the host immune microenvironment is 

crucial to the prediction and monitoring of therapy response, and to the discovery of new targets 

for drug development [1]. In addition to higher mutation and neo-antigen load [2-4], the presence 

of tumor infiltrating lymphocytes (TIL) is believed to be associated with a favorable prognosis 

and better response to adjuvant treatment. For example, gene expression signatures specific to 

CD8+ cytotoxic lymphocytes and dendritic cells have been found to be associated with a better 

overall clinical outcome in cancer [5]. Insights on the roles of these immune cell types in cancer 

progression and immune evasion, as well as the association between other immune cells and 

drug responses, offer new opportunities for more effective interventions[1, 6, 7].  

 

However, there are still considerable technological and analytical barriers to accurately assessing 

tumor immunity in situ. The major disadvantages of traditional H&E and immunohistochemical 

(IHC) staining methods are that they are only semi-quantitative and that they suffer from bias 

and variability from sample slicing. Flow cytometry analysis offers more accurate immune cell 

measures, but it is labor intensive and requires fresh tissues and cell type specific markers. Over 

the past decade, efforts has been made to deconvolve the tumor microenvironment (TME) from 

microarray or RNA-seq profiled gene expression data. CIBERSORT applies a support vector 

regression of tumor gene expression profiles on a matrix of reference gene expression signatures 

[8]. TIMER is a resource that employs a constrained linear regression model on expression levels 

of informative genes [5]. Both of these two methods require reference gene expression profiles 

from purified immune cells to identify informative signatures and perform the estimation. On the 

other hand, single sample gene set enrichment analysis (ssGSEA) calculates the expression 

enrichment score for a predefined marker gene list within a sample [ref]. Gene expression 

profiles in reference cells are not required in using ssGSEA, which avoids the potential bias 

introduced by references. Molecular researches have provide plenty of resources for marker 

genes in various immune cells. Some are summarized in Bindea et. al. [9], as well as in the latest 

nCounter PanCancer Immune profiling panel from NanoString [10]. Studies using the above 

methods have observed associations between tumor immune infiltration and cancer prognosis in 

multiple cancer types, which offers great promise in their clinical applications [11, 12]. However, 

significant variations have been observed between estimations using different methods or 
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references. There is still a pressing need to improve the accuracy in quantifying the cell 

components of TME to facilitate both retrospective and prospective clinical studies.  

 

DNA methylation has an essential role in the epigenetic control of gene expression and disease 

development. The haploid human genome has approximately 29 million cytosine-Guanine (CpG) 

sites with different methylation status [13], which is collectively referred to as the DNA 

methylome. An increasing number of cancer methylome profiles from tumor and other tissues 

have been accumulated in the public domain. To date, TCGA has processed >10,000 samples 

with two types of array platforms, Infinium HumanMethylation27 (27k array, released in 2009) 

and HumanMethylation450 (450k array, released in 2011) [14]. They measure around 27,000 

and 485,000 individual CpG sites respectively. More cancer samples have been now profiled 

with HumanMethylationEPIC array (contains over 860k sites) and other platform such as 

bisulfite sequencing. The methylome profiles have been found to provide stable cell 

differentiation signatures [ref], and studies have found that it can accurately estimate cell 

components in blood samples [15]. Recently, the reference-based method CIBERSORT has been 

employed to estimate the cellular composition of 9 cell types from DNA methylation data [16]. 

In addition, methylation assay have much less stringent tissue sample requirement: it requires 

small amount of DNA and does not require fresh tissues. As such, there is a strong impetus for a 

comprehensive analysis of tumor methylomes for immune cell type and response deconvolution. 

The predictive biomarker panels based on DNA methylation have great translational potential 

due to its high detection sensitivity and stable signatures.  

 

In this study, we proposed a model-based method to evaluate the level of tumor infiltrated 

lymphocytes. We took advantage of the tumor immune cell infiltration results from gene 

expression profiles using ssGSEA and TIMER. By applying a hybrid method of stability 

selection and random lasso to 10 cancer types in TCGA, we selected CpG sites (methylation 

panel CpGs) that are important in predicting tumor immune cell scores for each of 24 immune 

cell types. We found that genes in close proximity of methylation panel CpGs are enriched in 

immune response related functions. We observed associations between methylation of panel 

CpG sites and cancer prognosis. Finally, we focused on three cell types: T cells, B cells, 

cytotoxic cells in skin cancer, which achieved the best prediction accuracy in the TCGA dataset. 
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We arrived at a simple linear regression model with ten variables (LS10) for each of the three 

cell types, and validated our models with 30 newly sequenced skin cancer samples with matched 

DNA methylation array and RNA-seq profiles. Our study provides a facile model for evaluating 

levels of immune infiltration in skin cancer using DNA methylation data. The cell type and 

cancer type specific methylation panels will also serve as an important resource for future 

clinical studies.  

 

MATERIAL AND METHODS 

 

TCGA methylation and gene expression data  

We analyzed 10 major cancer types each with at least 300 samples that have matched 

methylation profiles and gene expression profiles available in TCGA: bladder urothelial 

carcinoma (BLCA), breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma 

(HNSC), kidney renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma 

(PRAD), and skin cutaneous melanoma (SKCM) and thyroid carcinoma (THCA). Molecular 

profiles for all tumor samples were downloaded from the Broad’s GDAC Firehose portal 

(http://gdac.broadinstitute.org/). Normalized beta values from the Illumina Infinium 

HumanMethylation450 platform (450K) containing 485,577 probes were downloaded. CpG sites 

with more than 5% missing values were removed from downstream analysis and the rest of 

missing values were filled by the median of available data. CpG sites with bottom 10% variances 

were also removed to minimize the influence of observational noise. We performed an arcsine 

transformation of the beta values: arcsin(2*Beta-1) before applying further statistical analysis 

[ref]. Normalized gene expression values from RNA-seq were also downloaded for matched 

samples. We used two published methods to estimate the level of infiltrated immune cells in this 

dataset. 1) Tumor Immune Estimation Resource (TIMER, http://cistrome.org/TIMER) estimates 

the relative abundance of the six major tumor-infiltrating immune cell types, CD8+ T cell, CD4+ 

T cells, B cells, neutrophils, macrophages, and dendritic cells [5]. 2) Single cell gene set 

enrichment analysis (ssGSEA) estimates the level of infiltration for 24 immune cells, 2 

lymphocyte infiltration summary statistics, as well as the activity of tumor antigen presenting 

machinery. 24 immune cell type specific signature genes were adopted from Bindea et. al. [9]. 
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Two lymphocyte infiltration summary statistics are defined as in Senbabaoglu et. al. [12]: (1) 

overall immune infiltration score (IIS) is aggregated from both adaptive and innate immune 

scores; (2) T cell infiltration score (TIS) is aggregated from nine T cell scores. ssGSEA scores 

were calculated using R bioconductor package GSVA [17].  

 

Hybrid method to get methylation panel 

We utilized an iterative method as shown in Figure 2A to identify marker CpG sites in tumor 

immune infiltration. In each iteration, ⅔ of all samples were randomly selected as training set, 

while the rest of samples were kept as test set. Next, 10% features were randomly selected as 

candidate features for the regression analysis. Then elastic net regression were performed using 

R package glmnet [18]. This process was iterated 500 times in consideration of execution time 

and stability of the results. At the end of all iterations, importance score of each CpG were 

calculated, and the prediction accuracy was summarized. The importance score is defined as the 

ratio of the counts that a feature is kept by elastic net divided by the counts that this feature is 

randomly chosen in the feature pre-selection step. Features with importance score greater than 

0.9 (methylation panel CpG sites) were documented in the methylation panel in Supplementary 

table 2. R source code for feature screening and selection is available at 

https://github.com/xfwang/immu.  

 

Gene ontology analysis 

Gene ontology analysis was performed using Gorilla, using all human protein coding genes as 

background [19].  

 

Survival analysis 

Clinical data for TCGA dataset were downloaded from https://www.cbioportal.org/. We evaluate 

the association of each individual CpG biomarker in the methylation panels with patient overall 

survival (OS) and progression-free survival (PFS) based on Kaplan-Meier method and log-rank 

test. The log-rank test p values were calculated using R package survival [20] The survival plots 

were generated using R package survminer and ggplot2 [21].  

 

SKCM EPIC array and RNA-seq data analysis 
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R package minfi was used to preprocess the 850K methylation data from EPIC array [22]. CpGs 

with less than 5% missing value were imputed by the median value of the probe. Quantile 

normalization method was applied to get beta values. RNA-seq data were aligned to hg19 using 

TopHat2. Reads were counted using htseq-count. Normalized gene expression TPMs were 

calculated using RSEM. ssGSEA scores were calculated for 30 new SKCM samples the same as 

TCGA samples. 

 

RESULTS 

Global methylation profiles across tumor types 

We analyzed 10 major cancer types that have more than 300 samples with both 450K 

methylation profiles and RNA-seq gene expression profiles available in TCGA. The data include 

407 bladder urothelial carcinoma (BLCA), 780 breast invasive carcinoma (BRCA), 521 head and 

neck squamous cell carcinoma (HNSC), 316 kidney renal clear cell carcinoma (KIRC), 530 brain 

lower grade glioma (LGG), 449 lung adenocarcinoma (LUAD), 370 lung squamous cell 

carcinoma (LUSC), 498 prostate adenocarcinoma (PRAD), 471 skin cutaneous melanoma 

(SKCM) and 509 thyroid carcinoma (THCA) samples. We performed an unsupervised clustering 

analysis of their methylation profiles using the t-distributed stochastic neighbor embedding (t-

SNE) method. As shown in Figure 1A, patient samples predominantly cluster by cancer types. 

Clusters from squamous histology cancers LUSC and HNSC partly overlap each other. Some 

cancer subtypes such as basal-like breast cancers also make up distinguished clusters 

(Supplementary Figure 1). We calculated tumor infiltrating lymphocyte (TIL) scores from RNA-

seq data using two methods, TIMER and ssGSEA, (see methods) and mapped the results to the t-

SNE plot. We found the level of immune cell infiltration varies among cancer and immune cell 

types (Supplementary Figure 2). For example, compared to other cancer types, an immune “cold” 

cancer type, brain lower grade glioma, has lower abundance for most immune cells but the 

highest gamma delta T cells (Tgd cells) abundance (Figure 1B-E). These results suggest that the 

methylation profiles for cancer samples serve as an important molecular signature for their states 

and may provide important information for cancer treatment and prognosis. 

 
Estimate tumor immune landscape using DNA methylation profiles 
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We applied a supervised learning method to estimate TIL scores and to identify CpG biomarkers 

that are important in estimating tumor immune landscape (Figure 2A, see methods). The TIL 

scores estimated from RNA-seq using ssGSEA were used as the training response of the immune 

infiltration level. Compared to gene expression, DNA methylation data are ultra-high 

dimensional, thus standard feature selection methods such as lasso and elastic net cannot be 

directly applied due to high computational complexity and unstable estimation. To solve this 

issue, we employed a hybrid method that combine the advantages of stability selection and 

random lasso. Stability selection method generates multiple bootstrap samples from the original 

data, and increases the stability of the result by summarizing the results from multiple bootstraps 

[23]. Random lasso keeps a subset of features for learning in each iteration, thus alleviate the 

collinearity issue in the data [24]. Our method is based on an iterative process with the following 

steps: Samples were first randomly split into training and test set in 2:1 ratio. 10% CpG sites 

were randomly selected as candidate features before the elastic net model fitting. Using elastic 

net regression, features were further selected because a fraction of coefficients were suppressed 

to zero due to L1 regularization. The regularization parameter in elastic net was chosen based on 

a cross-validation process. We next evaluated the prediction accuracy using test set Pearson and 

Spearman correlations as well as mean squared error. These steps were iterated for 500 times, 

considering both the computational complexity and the result stability. Finally, we defined an 

importance score of each CpG, as its ratio of non-zero coefficients in training models where the 

CpG is a candidate feature. The CpGs were prioritized by their importance scores. Importance 

score = 1 indicates the feature is an important signature in predicting TIL levels. Whereas 

importance score = 0 indicates that the feature is not important in predicting TIL levels. 

We observed a high concordance between methylation and RNA-seq predicted TIL scores for 24 

cell types and 3 summarizing scores using ssGSEA (as defined in [12], see method, Figure 2B 

and Supplementary Table 1). We found that methylation data can accurately predict overall 

immune infiltration level. The Pearson correlation between methylation and ssGSEA estimated 

immune infiltration score (IIS) ranges from 0.75 to 0.93. The Pearson correlation for T cell 

infiltration score (TIS) varies from 0.59 to 0.92, with most cancer types exceed 0.8 expect for 

LGG (0.59). In predicting specific immune cell types, we found that methylation data achieved 

the highest prediction power for T cells (Pearson correlation ranges from 0.86 to 0.95) and B 

cells (Pearson correlation ranges from 0.78 to 0.93). Cytotoxic cells, estimated from ssGSEA, 
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also achieved a high prediction concordance between methylation data and gene expression data 

(Pearson correlation ranges from 0.57 to 0.90). As expected, cell types with lower abundance in 

the tumor microenvironment, such as T gamma delta (Tgd) cells and eosinophils, are more 

difficult to predict. In terms of cancer types, SKCM and BRCA have higher prediction accuracy 

compared to other cancer types. In contrast, LGG obtains low prediction accuracy in general. In 

addition, we applied our methods to TIL scores for six immune cell types estimated in TIMER 

(Figure 2B). We observed high Pearson correlation between methylation and gene expression 

predicted TIL scores for five out of six major immune cell types: CD4 T cells (varies from 0.58 

to 0.87), CD8 T cells (from 0.59 to 0.87), B cells (from 0.59 to 0.88), dendritic cells (from 0.65 

to 0.86) and neutrophils (from 0.63 to 0.83). The prediction accuracy for macrophage is lower 

compared to other cell types (Pearson correlation ranges between 0.39 and 0.76). With respect to 

cancer types, SKCM and BRCA again achieved the best prediction accuracy, with Pearson 

correlation ranges from 0.58 to 0.88.  

Important predictive and prognostic methylation biomarkers  

We further investigated specific CpG biomarkers in estimating T cells and B cells, focusing on 

five cancer types (BRCA, HNSC, LUAD, PRAD and SKCM) with a high prediction accuracy. 

Top ranking CpGs are methylation markers that obtain a high predictive power of the tumor 

immune microenvironment. We first investigated top CpGs that are shared by different cancer 

types. The importance scores of three CpG sites, cg04776231, cg14094409, and cg04776231 are 

greater than 0.9 for T cell in all five cancer types (Figure 3A). These CpGs are in the gene body 

of PTPN12, DIABLO, and CCDC57. PTPN12 is a member of protein tyrosine phosphatase (PTP) 

family gene which has been identified as an important prognosis marker in multiple cancer types. 

Previous study has observed abnormally low PTPN12 expression in triple negative breast cancer 

patients, while restoring PTPN12 expression significantly impacted the tumorigenic and 

metastatic potential of PTPN12 deficient cells [25]. Decreased expression of PTPN12 is also 

correlated with poor prognosis in hepatocellular carcinoma [26] and non-small cell lung cancer 

[27]. Diablo (also called smac) is a protein that interacts and antagonizes inhibitors of apoptosis 

proteins (IAPs) [28], and it has been identified as a prognosis marker in multiple cancers like 

colon cancer [29], small cell lung cancer [30]. In the case of estimating B cell abundance, three 

CpG sites, cg26568226, cg01445100 and cg15286847, have importance scores greater than 0.9 
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in our analysis (Figure 3B). They are located in the gene body of  CYFIP1, BANP, and KLHL36, 

respectively. Cyfip1 is a component of WAVE regulatory complex that promotes actin assembly. 

It was found to be commonly deleted in various human epithelial cancers, and it may serve as an 

invasion suppressor gene [31]. BANP encodes a protein that binds to matrix attachment regions, 

but its gene expression level doesn’t significantly vary among tissue types according to GTEx 

results from UCSC genome browser. BANP gene can also generate a circular RNA from its exon 

5-11 (circ-BANP). Circ-BANP has been found to be overexpressed in colorectal cancer and lung 

cancer samples, and was suggested as a prognosis and therapeutic marker for colorectal and lung 

cancer [32, 33]. KLHL36 is a gene that was much less investigated in cancer cells compared to 

the other two, and its molecular functions still remain investigated. 

In addition, we studied predictive CpG sites that are shared across different TIL cell types. We 

found the importance score of cg07638500 is greater than 0.9 in estimating B cells, T cells, 

cytotoxic cells as well as overall infiltration scores (TIS and IIS) in SKCM (Supplementary 

Figure 3). cg07638500 is located in the gene body of myosin light chain kinase (MYLK). 

Previous study has found that the gene expression level of MYLK is associated with the 

invasiveness of uveal melanoma cells [34]. The Venn diagrams of overlapping CpGs across cell 

types for all five cancer types are available in Supplementary Figure 3. These results on related 

functions of top methylation markers suggest that methylation array contains important 

molecular information of the tumor microenvironment that needs to be further investigated. We 

documented the methylation biomarkers with importance scores greater than 0.9 (methylation 

panel) for 33 immune infiltration scores across 10 cancer types in Supplementary Table 2. This 

will serve as an important resource of methylation biomarkers in understanding the tumor 

microenvironment.  

As an important validation, we investigated the prognosis power of CpGs in our methylation 

panel using Kaplan-Meier curves and log-rank test. Tumor samples in the top 20th percentile of 

selected probe value were compared with those in the bottom 20th percentile. We found that the 

association between methylation and patient survival varies by cancer type (Figure 3C). Among 

ten cancer types in our analysis, SKCM showed the strongest association between CpG 

biomarkers and prognosis. For example, we found that lower methylation values of cg01445100 

(BANP) is associated with improved survival (adjusted p-value <0.01) in SKCM as well as 
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HNSC patients (Figure 3D and 3E). These results indicate that the investigation of DNA 

methylation signatures may provide novel insights to the understanding of tumor progression and 

prognosis.  

Biological functions of top methylation probes 

We next investigated the biological functions of genes next to methylation probes in our 

methylation panel. Gene ontology analysis of the genes closest to selected methylation probes 

reveals enriched processes related to lymphocyte activation, signal transduction, and regulation 

of cell adhesion in many cancer types (see Supplementary Table 3 for GO results for BRCA, 

HNSC, HNSC, LUAD, PRAD and SKCM). The top five enriched processes in SKCM are small 

GTPase mediated signal transduction, lymphocyte activation, cellular component organization 

and cell surface receptor signaling pathway. The fraction of methylation marker probes in close 

proximity to immune marker genes [9] varies from 0 to 26% in all cancer types (Supplementary 

Table 4). We compared the predictive power of immune marker gene related CpGs to the 

predictive power of our methylation panel, and found a lower prediction accuracy using immune 

marker gene related CpGs (Supplementary Figure 4). This result suggests that some CpGs that 

are not in close proximity of immune marker genes also plays an important role in determining 

the tumor microenvironment.  

Regression models for TIL estimation in SKCM 

Our analysis of TCGA data shows that methylation profiles achieves the best prediction accuracy 

in SKCM. Next, we took two approaches to build practical tools for estimating immune cell 

infiltration scores in SKCM using our methylation panel. In this analysis, all TCGA samples 

were used as the training set. The first approach is to directly apply elastic net regression models 

(ElasticNet model) on the training set. Regularization parameters in the ElasticNet model were 

selected by cross-validation. The second approach is to use forward stepwise selection with 

linear regression models. We plotted model BIC as a function of the number of features in this 

model, and found that model BIC first dropped rapidly then gradually increased as more CpGs 

were included (Figure 4A). We chose the linear regression model with ten CpG sites as our final 

model  (LR10 model), in order to keep the regression model easy to implement while retain high 

prediction accuracy. To further validate our predictive models, we performed EPIC 850K 
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methylation array on 30 independent SKCM samples profiled with matched RNA-seq. A 

quantile normalization (see methods) was applied to calculate the beta values for EPIC samples. 

We found high concordance between ssGSEA and estimated TIL scores in EPIC sample using 

both ElasticNet model and LR10 model (Figure 4B and 4C). Importantly, no significant 

difference between prediction power in EPIC samples was observed between the ElasticNet and 

LR10 model. The heatmap of beta values of CpG sites in the LR10 model in our new melanoma 

samples reveals stratification of samples with high vs. low levels of immune cell infiltration 

(Figure 4D). These results further demonstrated the power of our predictive model in evaluating 

SKCM TIL abundance and the robustness of our method to experimental variations.  

Here we present the LR10 model for estimating B cell, T cell and cytotoxic cell infiltration in 

SKCM using arcsin transformed methylation beta values, arcsin(2*beta-1). Coefficients were 

rounded to the third decimal places.  

y[SKCM, B.cells] = 0.163 - 0.097 × cg01445100 - 0.042 × cg07768103 - 0.066 × cg12453504 

+ 0.105 × cg16928994 + 0.040 × cg17575314 + 0.036 × cg22249612 + 0.019 × cg27428551 - 

0.024 × cg04456029 + 0.072 × cg21852842 + 0.021 × cg02570354  

y[SKCM, T.cells] = 0.356 - 0.016 × cg00221794 + 0.033 × cg00357551 - 0.035 × cg06159562 

+ 0.082 × cg10142237 + 0.070 × cg18449389 - 0.063 × cg20284891 + 0.099 × cg22799850 + 

0.043 × cg23547429 - 0.069 × cg26207239 + 0.019 × cg09884146  

y[SKCM, Cytotoxic.cells] = 0.364 - 0.056 × cg00619505 + 0.104 × cg09915299 - 0.044 × 

cg13868356 - 0.044 × cg14094409 + 0.079 × cg22799850 + 0.021 × cg03338209 - 0.047 × 

cg00651185 + 0.020 × cg02965295 - 0.014 × cg03526142 + 0.019 × cg10880603 

 

DISCUSSION 

Combining molecular data from both DNA and RNA will largely contribute to our 

understanding of the tumor-immune ecosystem and its association with clinical outcomes such as 

patient responses from receiving immune checkpoint inhibitors. Existing methods for tumor 

immune cell decomposition are largely based on gene expression data, while DNA data are only 

considered informative for tumor mutational and clonality analysis. Due to the high sensitivity of 
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DNA methylation profiles to cell mixtures, digital dissection of the tumor immune landscape 

based on methylation data might be a promising new trend in cancer research. It has been 

previously demonstrated that tumor purity estimates from DNA methylation profiles (LUMP) 

showed high concordance with the estimates produced by other molecular data [35]. Compared 

to gene expression data, DNA methylation has further appealing features: (1) DNA methylation 

signature is generally more reliable and presumably more reproducible in routine analysis than 

gene expression. The addition of methyl group to cytosine is a very stable chemical alternation. 

RNA expression value, on the other hand, is complicated by many factors and is more likely to 

be affected by somatic copy number variations. Additionally, DNA itself is also chemically more 

stable than RNA. (2) Epigenetic elements have a high translational potential as these elements 

potentially represent the most “druggable” targets in cancer. For example, among all genes that 

are modulated in cancer cell treated with the FDA-approved drug 5-azacityidine, about twenty 

percent are related to immune regulation [ref]. The analysis procedure developed in this study 

will not only facilitate the secondary data analysis of retrospective data where both gene 

expression and DNA methylation data are available, but will also greatly aid future prospective 

studies in which only DNA methylation data are available. (3) Methylation arrays are less 

expensive compared to sequencing and flow cytometry methods. DNA methylation array-based 

assays are also forward compatible: most CpG sites in old platforms will be included in newer 

assays. This feature makes the further validation of our results possible with arrays such as the 

EPIC array or sequencing based methylation assays.  

As previously discussed, methods for deconvolving cell content from molecular data fall into 

two main categories: reference-based and reference-free [36]. The reference-based method is 

motivated by the gene expression based deconvolution using constrains (e.g., CIBERSORT), 

which is implemented based on the cell-type-specific gene expression profiles (GEP). The 

default reference GEP used in CIBEERSORT is called LM22, which contains 547 genes for 

distinguishing 22 cell types. These genes were selected based on the differential expression 

analysis from expression profiles of purified cell subsets, and ideally, they should be exclusively 

expressed in each cell type they are representing. Similarly, a cell-type-specific methylation 

reference profiles can be constructed by analyzing methylation profiles of purified cell groups, 

using differential methylation (DM) analysis or analysis for identifying differential methylated 

regions (DMRs). On the other hand, reference-free methods do not require reference gene 
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expression or methylation profiles, but use unsupervised methods such as surrogate variable 

analysis (SVA) to discover potential cell type groups. However, because reference-free methods 

do not provide direct estimate of the cell type fractions, they are only suitable in adjusting for 

confounding factors in EWAS and not applicable if the main purpose is to estimate the 

abundance of immune cells in solid tumor tissues. Both the recently developed 

MethylCIBERSORT and our procedure fall into the reference-based method category, despite 

the differences in constructing reference panel and the predictive model.  

The biomarker discovery scheme developed in this study provides a practical solution for the 

problem of limited methylation data generated from FACS-purifed cells. An ideal reference 

panel should include CpGs that are exclusively highly-methylated or unmethylated in the cell 

type that they are representing. This is usually done by comparing DMRs from pairwise DM 

analysis from any two purified cell populations. Given the considerable heterogeneity in the 

tumor microenvironments and in the molecular profiles of malignant cells, we argue that the 

differential-methylation-based strategy should be applied separately in each cancer type. 

However, most of the existing molecular deconvoultion methods, including CIBERSORT and 

MethylCIBERSORT, have been built based on a unified panel from the same source of the 

purified immune cells. While there is a paucity of purified methylation libraries for each cancer 

type, the recent development in single cell DNA methylation analysis offers another possibility. 

Single cell methylation data allows us to isolate the cell populations in silico and built single cell 

reference methylation profiles (sc-MPs), similar to the concept of the single-cell reference GEP 

(sc-GEP). Our model-based scheme can be adapted to build sc-MPs in the future. Another 

promising extension of our method is to select CpGs that are associated with immunotherapy 

responses. Immunotherapy, such as immune checkpoint blockade (ICB), has rapidly become a 

first-line treatment option in many cancer types. There are yet no methylation biomarkers 

available to predict response to ICBs. 
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Figure Legends 

Figure 1. Global methylation profiles across cancer types. (A) Visualization of methylation 

profiles of all TCGA samples in this analysis using t-SNE. TCGA sample type codes: TP - 

primary solid tumor; TR - Recurrent solid tumor; TAP – additional, new primary; TM – 

metastatic; TAM - additional metastatic. (B) Visualization of selected immune scores of all 

samples. Immune scores were calculated using ssGSEA method.  
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Figure 2. A hybrid method to evaluate levels of tumor infiltrated immune cells. (A) The 

workflow to derive methylation panels. (B) DNA methylation profiles is powerful in estimating 

tumor infiltrated immune cell scores. Prediction accuracy varies by cancer and immune cell type. 

In general, skin cancer melanoma (SKCM) achieves the best prediction accuracy among cancer 

types. T cells, B cells as well as cytotoxic cells achieves the best prediction accuracy among cell 

types.  
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Figure 3. Methylation panels for estimating tumor infiltrated immune cell scores. (A) and (B) 

CpG sites shared by methylation panels of T cells and B cells in five cancer types, BRCA, 

SKCM, HNSC, LUAD, and PRAD. (C) Association between methylation and cancer prognosis 

varies by cancer type. SKCM and HNSC achieved the best association, whereas PRAD was the 

worst. (D) and (E) Examples of Kaplan-Meier curves of marker CpGs in our methylation panel. 

cg01445100 is located near to the promoter region of gene BANP. Lower methylation level of 

cg01445100 is associated with better prognosis in SKCM and HNSC.   
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Figure 4. Validation of our regression model using 30 new melanoma samples. (A) BIC as a 

function of the number of  features in forward stepwise selection of linear regression models. 

Red line indicates the final selected number of features. (B) Pearson correlation of gene 

expression predicted TIL scores with methylation predicted TIL scores using LS10 and 

ElasticNet model for 30 new melanoma samples. (C) Scatter plot of gene expression predicted 

TIL scores vs. methylation predicted TIL scores. Grey dots: TCGA skin cancer melanoma 

samples. Black dots: 30 new melanoma samples. (D) Heatmaps for methylation levels of features 

in RL10 model for 30 new melanoma samples. Cell types from left to the right: T cells, B cells, 

cytotoxic cells. ssGSEA scores are visualized on the right of each panel.   
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