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Abstract Quantitative behavioral measurements are important for answering questions across12

scientific disciplines—from neuroscience to ecology. State-of-the-art deep-learning-based methods13

offer major advances in data quality and detail by allowing researchers to automatically estimate14

locations of an animal’s body parts directly from images or videos. However, currently-available15

animal pose estimation methods have limitations in speed, robustness, and usability. Here we16

introduce an open-source software toolkit, DeepPoseKit, that addresses these problems. Using17

modern desktop hardware, our methods perform real-time measurements at ∼30–110-Hz with18

offline performance >1000-Hz—approximately 2–6× faster than current methods. We achieve19

these results while only increasing average error <0.5-pixels compared to the most-accurate20

methods currently available. We demonstrate the versatility of our approach with multiple21

challenging animal pose estimation tasks in laboratory and field settings—including groups of22

interacting individuals. Our work reduces barriers to using advanced tools for measuring behavior23

and has broad applicability across the behavioral sciences.24

25

Introduction26

Understanding the relationships between individual behavior, brain activity (reviewed by Krakauer27

et al. 2017), and collective and social behaviors (Rosenthal et al., 2015; Strandburg-Peshkin et al.,28

2013; Jolles et al., 2017; Klibaite et al., 2017; Klibaite and Shaevitz, 2019) is a central goal of the29

behavioral sciences—a field that spans disciplines from neuroscience to psychology, ecology, and30

genetics. Measuring and modelling behavior is key to understanding these multiple scales of31

complexity, and, with this goal in mind, researchers in the behavioral sciences have begun to32

integrate theory and methods from physics, computer science, and mathematics (Anderson and33

Perona, 2014; Berman, 2018; Brown and De Bivort, 2018). A cornerstone of this interdisciplinary34

revolution is the use of state-of-the-art computational tools, such as computer vision algorithms,35

to automatically measure locomotion and body posture (Dell et al., 2014). Such a rich description36

of animal movement then allows for modeling, from first principles, the full behavioral repertoire37

of animals (Berman et al., 2014a, 2016; Wiltschko et al., 2015; Johnson et al., 2016; Todd et al.,38

2017; Klibaite et al., 2017; Markowitz et al., 2018; Klibaite and Shaevitz, 2019; Costa et al., 2019).39

Tools for automatically measuring animal movement represent a vital first step toward developing40

unified theories of behavior across scales (Berman, 2018; Brown and De Bivort, 2018). Therefore,41
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technical factors like scalability, robustness, and usability are issues of critical importance, especially42

as researchers across disciplines begin to increasingly rely on these methods.43

Two of the most recent contributions to the growing toolbox for quantitative behavioral analysis44

are fromMathis et al. (2018) and Pereira et al. (2019), who make use of a popular type of machine45

learning model known as convolutional neural networks, or CNNs (LeCun et al. 2015; Appendix 1), to46

automatically measure detailed representations of animal posture—structural keypoints, or joints, on47

the animal’s body—directly from images and without markers. While these methods offer a major48

advance over conventional methods with regard to data quality and detail, they have disadvantages49

in terms of speed, robustness, and ease of use, which may limit their practical applications. To50

address these problems, we introduce a new software toolkit called DeepPoseKit that is fast, robust,51

and easy-to-use. We run experiments using multiple datasets to compare our methods to those52

fromMathis et al. (2018) and Pereira et al. (2019) and find that our approach offers considerable53

performance improvements. These results also demonstrate the flexibility of our methods in both54

the laboratory and the field, and our work is widely applicable across a range of scientific disciplines.55

Animal pose estimation using deep learning56

In the past, conventional methods for measuring posture with computer vision relied on species-57

specific algorithms (Uhlmann et al., 2017), highly-specialized or restrictive experimental setups58

(Mendes et al., 2013; Kain et al., 2013), attaching intrusive physical markers to the study animal59

(Kain et al., 2013), or some combination thereof. These methods also typically required expert60

computer-vision knowledge to use, were limited in the number or type of body parts that could61

be tracked (Mendes et al., 2013), involved capturing and handling the study animals to attach62

markers(Kain et al., 2013)—which is not possible for many species—and despite best efforts to63

minimize human involvement, often required manual intervention to correct errors (Uhlmann et al.,64

2017). All of these methods were built to work for a small range of conditions and typically required65

considerable effort to adapt to novel contexts.66

In contrast to conventional computer-vision methods, modern deep-learning–based methods67

can be used to achieve human-level accuracy in nearly any context by manually annotating data68

(Figure 1)—known as a training set—and training a general-purpose image-processing algorithm—a69

convolutional neural network or CNN—to automatically estimate the locations of an animal’s body70

parts directly from images (Figure 2). State-of-the-art machine learning methods, like CNNs, use71

these training data to parameterize a model of the relationship between a set of input data—i.e.72

images—and the desired output distribution—i.e. posture keypoints. After adequate training, a73

model can be used to make predictions on previously-unseen data from the same dataset—inputs74

that were not part of the training set—which is known as inference. In other words, these models75

are able to generalize human-level expertise at scale after having been trained on only a relatively76

small number of examples. We provide more detailed background information on using CNNs for77

pose estimation in Appendices 1–6.78

Similar to conventional pose estimation methods, the task of implementing deep-learning79

models in software and training them on new data is complex and requires expert knowledge.80

However, in most cases, once the underlying model and training routine are implemented, a high-81

accuracy pose estimation model for a novel context can be built with minimal modification—often82

just by changing the training data. With a simplified toolkit and high-level software interface83

designed by an expert, even scientists with limited computer-vision knowledge can begin to apply84

these methods to their research. Once the barriers for implementing and training a model are85

sufficiently reduced, the main bottleneck for using these methods becomes collecting an adequate86

training set—a non-expert but labor-intensive task made less time-consuming by techniques87

described in Appendix 2.88

Mathis et al. (2018) and Pereira et al. (2019) were the first to popularize the use of CNNs89

for animal pose estimation. These researchers built on work from the human pose estimation90

literature (e.g. Andriluka et al. 2014; Insafutdinov et al. 2016; Newell et al. 2016) using a type of91
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Figure 1. An illustration of the workflow for DeepPoseKit. An initial image set is annotated and then iteratively updated using the active learning

approach developed by Pereira et al. (2019). The training set is updated with new training examples selected based on the current model
performance. This process is repeated as necessary until performance is adequate. The pose estimation model can then be used to make

predictions for the full data set, which can then be used for further analysis.

Figure 1–video 1. A visualization of the posture data output for a group of locusts (5× speed).
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fully-convolutional neural network or F-CNN (Long et al. 2015; Appendix 3) known as an encoder-92

decoder model (Appendix 3 Box 1). These models are used to measure animal posture by training93

the network to transform images into probabilistic estimates of keypoint locations, known as94

confidence maps (shown in Figure 2), that describe the body posture for one or more individuals.95

These confidence maps are processed to produce the 2-D spatial coordinates of each keypoint,96

which can then be used for further analysis. The methods fromMathis et al. (2018) can be used to97

estimate posture for single individuals—known as individual pose estimation—or multiple individuals98

simultaneously—known as multiple pose estimation. In contrast, the methods from Pereira et al.99

(2019) are limited to individual pose estimation. Themethods we present in this paper are technically100

limited to individual pose estimation; however, we successfully remove this limitation and extend101

our methods to groups of interacting individuals by first localizing and tracking individuals using102

additional software (see Appendix 4 for discussion).103

Mathis et al. (2018) use a previously-published pose estimation model known as DeeperCut104

(Insafutdinov et al., 2016), which is built on the popular ResNet architecture (He et al., 2016)—a105

state-of-the-art model for image classification. This choice is advantageous because the use of a106

popular architecture allows for using a pre-trainedmodel to improve performance, known as transfer107

learning (Pratt 1993; Appendix 2), but it is also disadvantageous as the model is overparameterized108

with >25 million parameters. Overparameterization allows the model to make accurate predictions109

at the cost of unnecessarily slow inference. More recent work fromMathis and Warren (2018) has110

shown that the inference speed for DeeperCut (Insafutdinov et al., 2016) can be improved at the111

expense of increased prediction error. The original methods fromMathis et al. (2018) may also be112

difficult to use for beginners, but recent updates to the software have attempted to address this113

problem (see Nath et al. 2018).114

With regard to model design, Pereira et al. (2019) take the opposite approach of implementing115

a custom network architecture that attempts to limit model complexity and overparameterization116

(Appendix 6), which they call LEAP (LEAP Estimates Animal Pose). LEAP is advantageous because it is117

explicitly designed for fast inference but has disadvantages such as a lack of robustness to data118

variance, like rotations or shifts in lighting, and an inability to generalize to new experimental setups.119

Additionally, to achieve maximum performance, the LEAP framework requires computationally120

expensive preprocessing that is not practical for many datasets, which makes it unsuitable for a121

wide range of experiments (see Appendix 6 for more details). The software from Pereira et al.122

(2019) is generally easy to install and use, but much of the interface is written in MATLAB (The123

Mathworks Inc.), which requires an expensive and restrictive software license.124

Together the methods from Mathis et al. (2018) and Pereira et al. (2019) represent the two125

extremes of a phenomenon known as the speed-accuracy trade-off (Huang et al., 2017b)—an active126

area of research in the machine learning literature. Mathis et al. (2018) prioritize accuracy over127

speed by using a large overparameterizedmodel (Insafutdinov et al., 2016), and Pereira et al. (2019)128

prioritize speed over accuracy by using a smaller less-robust model. While this speed-accuracy129

trade-off can limit the capabilities of CNNs, there has been extensive work to make these models130

more efficient without impacting performance (e.g. Chollet 2017; Huang et al. 2017a; Sandler et al.131

2018). To address the limitations of this trade-off, we apply recent developments from the machine132

learning literature and provide an effective solution to the problem. In the case of F-CNN models133

used for pose estimation, improvements in efficiency and robustness have been made through134

the use of multi-scale inference (Appendix 3 Box 1) and by increasing the number of connections135

between layers in the model (Appendix 3 Figure 1)—both of which we incorporate into our methods.136

Methods and Results137

Here we introduce fast, flexible, and robust pose estimation methods with a software interface138

that emphasizes usability. Our methods build on the state-of-the-art for individual pose estimation139

(Newell et al. 2016; Appendix 5), convolutional regression models (Jégou et al. 2017; Appendix140

3 Box 1), and conventional computer vision algorithms (Guizar-Sicairos et al., 2008) to improve141
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Figure 2. An illustration of the model training process for DeepPoseKit. Input images x (top-left) are augmented (bottom-left) with various spatial
transformations (rotation, translation, scale, etc.) followed by noise transformations (dropout, additive noise, blurring, contrast, etc.) to improve the

robustness and generalization of the model. The ground truth annotations are then transformed with matching spatial augmentations (not shown

for the sake of clarity) and used to draw the confidence maps y for the keypoints and hierarchical posture graph (top-right). The images x are then
passed through the network to produce a multidimensional array g(f (x))—a stack of images corresponding to the keypoint and posture graph
confidence maps for the ground truth y. Mean squared error between the outputs for both hourglasses g(f (x)) and f ′(x) and the ground truth
data y is then minimized (bottom-right), where f ′(x) indicates a subset of the output from f (x)—only those feature maps being optimized to
reproduce the confidence maps for the purpose of intermediate supervision (Appendix 5). The loss function is minimized until the validation loss

stops improving—indicating that the model has converged or is starting to overfit to the training data.

model efficiency and achieve faster, more accurate results on multiple challenging pose estimation142

tasks. We developed two model implementations—including a new model architecture that we call143

Stacked DenseNet—and a new method for processing confidence maps called subpixel maxima that144

provides fast and accurate results with subpixel precision—even at low resolutions. We also discuss145

amodification to incorporate the global geometry between keypoints when training pose estimation146

models that increases accuracy without decreasing speed. We ran experiments to optimize our147

approach and compared our models to those from Insafutdinov et al. (2016) (DeeperCut)—the148

model used by Mathis et al. (2018)—and Pereira et al. (2019) (LEAP) using three image datasets149

filmed in the laboratory and the field—including multiple interacting individuals that were first150

localized and cropped from larger, multi-individual images.151

An end-to-end pose estimation framework152

We provide a full-featured, extensible, and easy-to-use software package that is written entirely153

in the Python programming language (Python Software Foundation) and is built on the popular154

Keras deep-learning package (Chollet et al., 2015)—using Tensorflow as a backend (Abadi et al.,155

2015). Our software is a complete, end-to-end pipeline (Figure 1) with a custom GUI (graphical156

user interface) for creating annotated training data with active learning similar to Pereira et al.157

(2019; Appendix 2), as well as an interface for data augmentation (Jung 2018; Appendix 2; shown158

in Figure 2), model training and evaluation (Figure 2; Appendix 1), and running inference on new159

data. We designed our high-level programming interface to be a testbed for experimentation,160

allowing the user to go from idea to execution as quickly as possible, and we organized our software161

into a Python module called DeepPoseKit. The code, documentation, and examples for our entire162
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software package are freely available at https://github.com/jgraving/deepposekit under a permissive163

open-source license.164

Our pose estimation models165

To achieve the goal of “fast animal pose estimation” introduced by Pereira et al. (2019), while166

also wanting to achieve the robust predictive power of models like DeeperCut (Insafutdinov et al.,167

2016), we implemented two fast pose estimation models that extend the current state-of-the-art168

for individual pose estimation introduced by Newell et al. (2016) and the current state-of-the169

art for convolutional regression from Jégou et al. (2017). Our model implementations use fewer170

parameters than both DeeperCut (Insafutdinov et al., 2016) and LEAP (Pereira et al., 2019) while171

simultaneously removing many of the limitations of these architectures.172

In order to limit overparameterization while minimizing performance loss, we designed our173

models to allow for multi-scale inference (Appendix 3 Box 1) while optimizing our model hyper-174

parameters for efficiency. Our first model is a novel implementation of FC-DenseNet from Jégou175

et al. (2017; Appendix 3 Box 1) arranged in a stacked configuration similar to Newell et al. (2016;176

Appendix 5). We call this new model Stacked DenseNet, and to the best of our knowledge, this is177

the first implementation of this architecture in the literature—for pose estimation or otherwise.178

Further details for this model are available in Appendix 8. Our second model is a modified version179

of the Stacked Hourglassmodel from Newell et al. (2016; Appendix 5) with hyperparameters that180

allow for changing the number of filters in each convolutional block to constrain the number of181

parameters—rather than using 256 filters for all layers as described in Newell et al. (2016).182

Subpixel keypoint prediction on the GPU183

In addition to implementing our efficient pose estimation models, we developed a new method184

to process the model outputs to allow for faster, more accurate predictions. When using a fully-185

convolutional posture estimation model, the confidence maps produced by the model must be186

converted into coordinate values for the predictions to be useful, and there are typically two choices187

for making this conversion. The first is to move the confidence maps out of GPU memory and188

post-process them on the CPU. This solution allows for easy, flexible, and accurate calculation of189

the coordinates with subpixel precision. However, CPU processing is not ideal because moving190

large arrays of data between the GPU and CPU is costly, and computation on the CPU is generally191

slower. The other option is to directly process the confidence maps on the GPU and then move the192

coordinate values from the GPU to the CPU. This approach usually means converting confidence193

maps to integer coordinates based on the row and column index of the global maximum for each194

confidence map. However, this means that, to achieve a precise estimation, the confidence maps195

should be predicted at the full resolution of the input image, or larger, which slows down inference196

speed.197

As an alternative to these two strategies, we introduce a new GPU-based convolutional layer that198

we call subpixel maxima. This layer uses the fast, efficient, image registration algorithm introduced199

by Guizar-Sicairos et al. (2008) to translationally align a centered two-dimensional Gaussian filter200

to each confidence map via Fourier-based convolution. The translational shift between the filter201

and each confidence map allows us to calculate the coordinates of the global maxima with high202

speed and subpixel precision. This technique allows for accurate predictions even if the model’s203

confidence maps are dramatically smaller than the resolution of the input image.204

Learning global relationships between keypoints205

Minimizing extreme prediction errors is important to prevent downstream effects on any further206

behavioral analysis —especially in the case of analyses based on time-frequency transforms like207

those from Berman et al. (2014a, 2016); Klibaite et al. (2017); Todd et al. (2017); Klibaite and Shae-208

vitz (2019) and Pereira et al. (2019) where high magnitude errors can cause inaccurate behavioral209

classifications. One way to minimize extreme errors when estimating posture is to incorporate210
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multiple spatial scales when making predictions. Our pose estimation models are implicitly capable211

of using information from multiple spatial scales (see Appendix 3 Box 1), but there is no explicit212

signal that optimizes the model to take advantage of this information when making predictions.213

To remedy this, we modified the model’s output to predict, in addition to the keypoint locations,214

a hierarchical graph of edges describing the global geometry between keypoints—similar to the part215

affinity fields described by Cao et al. (2017). This was achieved by adding an extra set of confidence216

maps to the output where edges in the postural graph are represented by Gaussian-blurred lines217

the same width as the Gaussian peaks in the keypoint confidence maps. Our posture graph output218

then consists of four levels: (1) a set of confidence maps for the smallest limb segments in the graph219

(e.g. foot to ankle, knee to hip, etc.; Figure 2), (2) a set of confidence maps for individual limbs (e.g.220

left leg, right arm, etc.; Figure 3), (3) a map with the entire postural graph, and (4) a fully-integrated221

map that incorporates the entire posture graph and confidence peaks for all of the joint locations222

(Figure 2). Each level of the hierarchical graph is built from lower levels in the output, which forces223

the model to learn correlated features across multiple scales when making predictions.224

Experiments and model comparisons225

We ran three experiments to test and optimize our approach. First, we compared our new subpixel226

maxima layer to an integer-based global maxima with downsampled outputs ranging from 1× to227

1
16
× the input resolution using our Stacked DenseNet model. Next, we tested if training a Stacked228

DenseNet model to predict the global geometry of the posture graph improves accuracy. Finally,229

we compared our model implementations of Stacked Hourglass and Stacked DenseNet to the230

models from Pereira et al. (2019) and Insafutdinov et al. (2016), which we also implemented in231

our framework (see Appendix 8 for details on our implementation of Insafutdinov et al. 2016).232

When benchmarking these models we incorporated the relevant improvements from our exper-233

iments—including subpixel maxima and predicting global geometry between keypoints—unless234

otherwise noted.235

Datasets236

We performed experiments using the vinegar or "fruit" fly (Drosophila melanogaster) dataset (Figure237

3-video 1) provided by Pereira et al. (2019), and to demonstrate the versatility of our methods we238

also compared model performance across two previously unpublished posture data sets from239

groups of desert locusts (Schistocerca gregaria) filmed in a laboratory setting (Figure 3-video 2),240

and herds of Grévy’s zebras (Equus grevyi) filmed in the wild (Figure 3-video 3). Our locust dataset241

was filmed from above using a high-resolution camera (Basler ace acA2040-90umNIR) and video242

recording system (Motif, loopbio GmbH), and our zebra dataset was filmed from above using243

a commercially-available quadcopter drone (DJI Phantom 4 Pro). Individuals in the videos were244

positionally tracked and the videos were then cropped using the egocentric coordinates of each245

individual and saved as separate videos—one for each individual. Further details of how these246

image datasets were acquired, preprocessed, and tracked before applying our pose estimation247

methods will be described elsewhere. The locust and zebra datasets are particularly challenging248

as they feature multiple interacting individuals—with focal individuals centered in the frame—and249

the latter with highly-variable light conditions. Before training each model we split each data set250

into randomly selected training and validation sets with 90% training examples and 10% validation251

examples. The details for each dataset are described in Table 1.252

Model training253

For each experiment, we set our model hyperparameters to the same configuration and all models254

were trained with
1
4
× resolution outputs and a stack of two hourglasses with two outputs where255

loss was applied (see Figure 2). Although our model hyperparameters could be infinitely adjusted to256

trade off between speed and accuracy, we compared only one configuration for each of our model257

implementations. These results are not meant to be an exhaustive search of model configurations258
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Figure 3. A visualization of the datasets we used to evaluate our methods (Table 1). For each dataset, confidence maps for the keypoints

(bottom-left) and posture graph (top-right) are illustrated using different colors for each map. These outputs are from our Stacked DenseNet model

at
1
4× resolution.

Figure 3–video 1. A video of a behaving fly from Pereira et al. (2019) with pose estimation outputs visualized.
Figure 3–video 2. A video of a behaving locust with pose estimation outputs visualized.

Figure 3–video 3. A video of a behaving Grévy’s zebra with pose estimation outputs visualized.

Table 1. Datasets used for model comparisons.

Name Species Resolution # Images # Keypoints Individuals Source

Vinegar fly Drosophila melanogaster 192×192 1500 32 Single Pereira et al. (2019)
Desert locust Schistocerca gregaria 160×160 800 35 Multiple This paper

Grévy’s zebra Equus grevyi 160×160 1000 9 Multiple This paper
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as the best configuration will depend on the application. The details of the hyperparameters we259

used for each model are described in Appendix 8.260

To make our posture estimation tasks closer to realistic conditions and properly demonstrate261

the robustness of our methods to rotation, translation, and scale, we applied various augmentations262

to each data set during training. All models were trained using data augmentations that included263

random flipping, or mirroring, along both image axes with 0.5 probability, random rotations around264

the center of the image in the range [-180°, +180°), random scaling between [90%, 110%] for flies265

and locusts, random scaling between [75%, 125%] for zebras to account for greater size variation266

in the data set, and random translations in the range [-5%, +5%]. After performing these spatial267

augmentations we also applied a variety of noise augmentations that included multiple types of268

additive noise, dropout, blurring, and contrast augmentations to further ensure robustness and269

generalization.270

We trained our models (Figure 2) using mean squared error loss optimized using the ADAM271

optimizer (Kingma and Ba, 2014) with a learning rate of 1 × 10−3 and a batch size of 16. We lowered272

the learning rate by a factor of 5 each time the validation loss did not improve by more than 1 × 10−3273

for 10 epochs. We considered models to be converged when the validation loss stopped improving274

for 50 epochs, and we calculated validation error as the Euclidean distance between predicted275

and ground-truth image coordinates for only the best performing version of the model, which we276

evaluated at the end of each epoch during optimization. We performed this procedure five times277

for each experiment and randomly selected a new validation set for each replicate.278

Model evaluation279

Machine learning models are typically evaluated for their ability to generalize to new data, known280

as predictive performance, using a held-out test set—a subsample of annotated data that is not used281

for training or validation. However, when fitting and evaluating a model on a small dataset, using282

an adequately-sized validation and test set can lead to erroneous conclusions about the predictive283

performance of the model if the training set is too small (Kuhn and Johnson, 2013). Therefore, to284

maximize the size of the training set, we elected to use only a validation set for model evaluation.285

Generally a test set is used to avoid biased performance measures caused by overfitting the286

model hyperparameters to the validation set. However, we did not adjust our model architecture to287

achieve better performance on our validation set—only to achieve fast inference speeds. While we288

did use validation error to decide when to lower the learning rate during training and when to stop289

training, lowering the learning rate in this way should have no effect on the generalization ability290

of the model, and because we heavily augment our training set during optimization—forcing the291

model to learn a much larger image distribution than what is included in the training and validation292

sets—overfitting to the validation set is unlikely. We also demonstrate the generality of our results293

for each experiment by randomly selecting a new validation set with each replicate. All of these294

factors make the Euclidean error for the unaugmented validation set a reasonable measure of the295

predictive performance for each model.296

The inference speed for each model was assessed by running predictions on 100,000 randomly297

generated images with a batch size of 1 for real-time speeds and a batch size of 100 for offline298

speeds. Our hardware consisted of a Dell Precision Tower 7910 workstation (Dell, Inc.) running299

Ubuntu Linux v18.04 with 2× Intel Xeon E5-2623 v3 CPUs (8 cores, 16 threads at 3.00GHz), 64GB300

of RAM, and a Titan Xp GPU (NVIDIA Corporation). While the hardware we used for development301

and testing is quite advanced, there is no requirement for this level of performance, and our302

software can easily be run on lower-end hardware. We evaluated inference speeds on multiple303

consumer-grade desktop computers and found similar performance (±10%) when using the same304

GPU.305
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Assessing prediction accuracy with Bayesian inference306

To more rigorously assess performance differences between models, we parameterized the Eu-307

clidean error distribution for each experiment by fitting a Bayesian linear model with a Gamma-308

distributed likelihood function. This model takes the form:309

p(y|X, �� , ��) ∼ Gamma(�, �)

� = �2�−1

� = ��−1

� = ℎ(X��)

� = ℎ(X��)

where X is the design matrix composed of binary indicator variables for each pose estimation310

model, �� and �� are vectors of intercepts, ℎ(⋅) is the softplus function (Dugas et al., 2001)—or ℎ(x) =311

log (1 + ex)—used to enforce positivity of � and �, and y is the Euclidean error of the pose estimation312

model. Parameterizing our error distributions in this way allows us to calculate the posterior313

distributions for the mean E[y] = ��−1 ≡ � and variance Var[y] = ��−2 ≡ �. This parameterization314

then provides us with a statistically rigorous way to assess differences in model performance in315

terms of both central tendency and spread—accounting for both epistemic uncertainty (unknown316

unknowns, e.g. parameter uncertainty) and aleatoric uncertainty (known unknowns, e.g. data317

variance). Details of how we fitted these models can be found in Appendix 7.318

Subpixel prediction allows for fast and accurate inference319

We compared the accuracy of our subpixel maxima layer to an integer-basedmaxima layer using the320

fly dataset. We found significant accuracy improvements across every downsampling configuration321

(Appendix Figure 5). Even with confidence maps at
1
8
× the resolution of the original image, error322

did not drastically increase compared to full-resolution predictions. Making predictions at such323

a downsampled resolution allows us to achieve very fast inference >1000 Hz while maintaining324

relatively high accuracy. Additionally, achieving fast pose estimation using CNNs typically relies on325

massively parallel processing on the GPU with large batches of data, which makes fast real-time326

inference challenging to accomplish. Our Stacked DenseNet model, with a batch size of one, can run327

inference at ∼30-110Hz—depending on resolution (Appendix Figure 5a)—which could be further328

improved by reconfiguring the model with fewer parameters. This opens the door to truly real-time329

behavioral experiments with prediction errors similar to current state-of-the-art methods.330

Predicting global geometry improves accuracy and reduces extreme errors331

We find that forcing the pose estimation model to predict a hierarchical posture graph reduces332

prediction error (Appendix Figure 6), and because the feature maps for the posture graph can be333

removed from the final output during inference, this effectively improves prediction accuracy for334

free. Both the mean and variance of the error distributions were lower when predicting the posture335

graph, which suggests that learning global geometry both decreases error on average and helps to336

reduce extreme prediction errors. The overall effect size for this decrease in error is fairly small (<1337

pixel average reduction in error), but based on the results from the zebra dataset, this modification338

more dramatically improves performance for datasets with higher-variance images and sparse339

posture graphs. These results also suggest that annotating multiple keypoints to incorporate an340

explicit signal for global information may help improve prediction accuracy for a specific body part341

of interest.342
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# initialize, train, and save a model
from deepposekit.io import TrainingGenerator
from deepposekit.models import StackedDenseNet

generator = TrainingGenerator(‘path/to/data.h5’)
model = StackedDenseNet(generator)
model.compile(optimizer=‘adam’, loss=‘mse’)
model.fit(batch_size=16, n_workers=8)
model.save(‘path/to/model.h5’)

# load the model and run inference on new data
from deepposekit.models import load_model

model = load_model(‘path/to/model.h5’)
new_data = load_new_data(‘path/to/new/data’)
predictions = model.predict(new_data)

a b
Insafutdinov et al. (2016)  

DeeperCut

Pereira et al. (2018)  
LEAP

Ours

Figure 4. Our methods estimate posture at 2×—or greater—the speed of Pereira et al. (2019) while achieving similar accuracy to Insafutdinov
et al. (2016)—the model used byMathis et al. (2018)—shown here as mean accuracy (inverse Euclidean error) for our most challenging dataset of
multiple interacting Grévy’s zebras (E. grevyi) filmed in the wild (a). Our software interface is designed to be straightforward but flexible. We include
many options for expert users to customize model training with sensible default settings to make pose estimation as easy as possible for beginners.

For example, training a model and running inference on new data requires writing only a few lines of code and specifying some basic settings (b).

Our models are fast and robust343

Finally, we benchmarked our model implementations against the models from Pereira et al. (2019)344

and Insafutdinov et al. (2016). We find that our Stacked DenseNet model outperforms both345

LEAP (Pereira et al., 2019) and DeeperCut (Insafutdinov et al., 2016) in terms of speed while also346

achieving much higher accuracy than LEAP (Pereira et al., 2019) with similar accuracy to DeeperCut347

(Insafutdinov et al., 2016) (Figure 4a). We found that both the Stacked Hourglass and Stacked348

DenseNet models outperformed LEAP (Pereira et al., 2019) with >2× faster inference speeds349

and >3× higher mean accuracy. Not only were our models’ average prediction error significantly350

improved, but also, importantly, the variance was lower—indicating that our models produced fewer351

extreme prediction errors. At
1
4
× resolution, our Stacked DenseNet implementation consistently352

achieved prediction accuracy comparable to that of Insafutdinov et al. (2016)—with <0.5-pixel353

increase in average error—while running inference at nearly 4× the speed and using only ∼2% of354

the parameters— ∼26 million vs. ∼0.5 million. The inference speed could be further improved355

by using a
1
8
× output without much increase in error (Appendix Figure 5) or by further adjusting356

the hyperparameters to constrain the size of the model. Our Stacked Hourglass implementation357

followed closely behind this level of performance but consistently performed worse than our358

Stacked DenseNet model. We were also able to reproduce the results reported by Pereira et al.359

(2019) that LEAP and the Stacked Hourglass model from Newell et al. (2016) have similar average360

prediction error for the fly dataset. However, we also find that LEAP (Pereira et al., 2019) has much361

higher variance, which suggests it is more prone to extreme prediction errors—a problem for362

further data analysis. Detailed results of our model comparisons are shown in Appendix Figure 7.363

Discussion364

Here we have presented a new framework for estimating animal posture using deep learningmodels.365

We built on the state-of-the-art for individual pose estimation using convolutional neural networks366

to achieve fast inference without significantly reducing accuracy. Our pose estimation methods367

outperform currently-available methods fromMathis et al. (2018) (DeeperCut; Insafutdinov et al.368

2016) and Pereira et al. (2019) (LEAP) while also providing a simplified interface (Figure 4b) for369

using these advanced tools to measure animal behavior and locomotion. We tested our methods370
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across a range of datasets from controlled laboratory environments with single individuals to371

challenging field situations with multiple interacting individuals and variable lighting conditions. We372

found that our methods perform well for all of these situations. We ran experiments to optimize373

our approach and discovered that some straightforward modifications can greatly improve speed374

and performance. Additionally, we demonstrated that these modifications improve not the just375

the average error but also help to reduce extreme prediction errors—a key determinant for the376

reliability of subsequent statistical analysis.377

We highlighted important considerations when using CNNs for pose estimation and reviewed378

the progress of fully-convolutional regression models from the literature. Recent advancements379

for these models have been driven mostly by a strategy of adding more connections between380

layers to increase performance and efficiency (e.g. Jégou et al. 2017). New fundamentally-different381

models (Sabour et al., 2017) and loss functions (Chen et al., 2017) may provide further performance382

improvements. Recent work (e.g. Weigert et al. 2018; Roy et al. 2018) has also shown that future383

progress may require more mathematically-principled approaches such as applying probabilistic384

concepts (Kendall and Gal, 2017) and Bayesian inference at scale (Tran et al., 2018).385

Measuring behavior is an critical factor for many studies in neuroscience (Krakauer et al.,386

2017). Understanding the connections between brain activity and behavioral output requires387

detailed and objective descriptions of body posture that match the richness and resolution neural388

measurement technologies have provided for years (Anderson and Perona, 2014; Berman, 2018;389

Brown and De Bivort, 2018), which our methods and other deep-learning–based tools provide390

(Mathis et al., 2018; Pereira et al., 2019). We have also demonstrated the possibility that our391

toolkit could be used for truly real-time inference, which allows for closed-loop experiments where392

sensory stimuli or optogenetic stimulation are controlled in response to behavioral measurements393

(e.g. Bath et al. 2014; Stowers et al. 2017). Using real-time measurements in conjunction with394

optogenetics or thermogenetics may be key to disentangling the causal structure of motor output395

from the brain—especially given that recent work has shown an animal’s response to optogenetic396

stimulation can differ depending on the behavior it is currently performing (Cande et al., 2018).397

Real-time behavioral quantification is also particularly important as closed-loop virtual reality is398

quickly becoming an indispensable tool for studying sensorimotor relationships in individuals and399

collectives (Stowers et al., 2017).400

Quantifying individual movement is essential for revealing the genetic (Kain et al., 2012; Ayroles401

et al., 2015) and environmental (Bierbach et al., 2017; Akhund-Zade et al., 2019) underpinnings402

of phenotypic variation in behavior—as well as the phylogeny of behavior (e.g. Berman et al.403

2014b). Measuring individual behavioral phenotypes requires tools that are robust, scaleable, and404

easy-to-use, and our approach offers the ability to quickly and accurately quantify the behavior of405

many individuals in great detail. When combined with tools for genetic manipulations (Ran et al.,406

2013; Doudna and Charpentier, 2014), high-throughput behavioral experiments (Alisch et al., 2018;407

Werkhoven et al., 2019), and behavioral analysis (e.g. Berman et al. 2014a; Pereira et al. 2019;408

Wiltschko et al. 2015), our methods could help to provide the data resolution and statistical power409

needed for dissecting the complex relationships between genes, environment, and behavioral410

variation.411

When used together with other tools for localization and tracking, our methods are capable of re-412

liably measuring posture for multiple interacting individuals. The importance of measuring detailed413

representations of individual behavior when studying animal collectives has been well established414

(Strandburg-Peshkin et al., 2013; Rosenthal et al., 2015; Strandburg-Peshkin et al., 2015, 2017).415

Estimating body posture is an essential first step for unraveling the sensory networks that drive416

group coordination, such as vision-based networks measured via raycasting (Strandburg-Peshkin417

et al., 2013; Rosenthal et al., 2015). Additionally, using body pose estimation in combination with418

computational models of behavior (e.g. Costa et al. 2019,Wiltschko et al. 2015) and unsupervised419

behavioral classification methods (e.g. Berman et al. 2014a, Pereira et al. 2019) may allow for fur-420

ther dissection of how information flows through collectives by revealing the networks of behavioral421

12 of 32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620245doi: bioRxiv preprint 

https://doi.org/10.1101/620245
http://creativecommons.org/licenses/by-nc-nd/4.0/


contagion across multiple timescales and sensory modalities.422

When combined with unmanned aerial vehicles (UAVs; Schiffman 2014) or other field-based423

imaging (Francisco et al., 2019), applying these methods to the study of individuals and groups in424

the wild can provide high-resolution behavioral data that goes beyond the capabilities of current425

GPS and accelerometry-based technologies (Nagy et al., 2010, 2013; Kays et al., 2015; Strandburg-426

Peshkin et al., 2015, 2017; Flack et al., 2018)—especially for species that cannot be studied with427

tags or collars. Additionally, by applying these methods in conjunction with 3-D habitat recon-428

struction—using techniques such as photogrammetry—field-based studies can begin to integrate429

fine-scale behavioral measurements with the full 3-D environment in which the behavior evolved430

(e.g. Strandburg-Peshkin et al. 2017; Francisco et al. 2019). This combination of technologies could431

allow researchers to address questions about the behavioral ecology of animals that were previously432

impossible to answer.433

In conclusion, we have presented a toolkit, called DeepPoseKit, for automatically measuring434

animal posture from images. Our methods are fast, robust, and widely applicable to a range of435

species and experimental conditions. When designing our framework we emphasized usability436

across our entire software interface, which we expect will help to make these advanced tools acces-437

sible to a wider range of researchers. The fast inference and real-time capabilities of our methods438

should also help further reduce barriers to previously intractable questions across many scientific439

disciplines—including neuroscience, ethology, and behavioral ecology—both in the laboratory and440

the field.441
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a

b

Appendix 0 Figure 5. Our subpixel maxima algorithm increases speed (a) without decreasing accuracy (b). Inference speed is fast and can be run

in real-time on single images (batch size = 1) at ∼30-110Hz. Plots show the inference speeds for our Stacked DenseNet model across downsampling
configurations for each of our datasets (a). Prediction accuracy on the fly dataset is maintained across downsampling configurations (b).

Letter-value plots (top) show the raw error distributions for each configuration. Visualizations of the posterior distributions for the mean and

variance (bottom) illustrate statistical differences between the error distributions, where using subpixel maxima decreases both the mean and

variance of the error distribution.
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Appendix 0 Figure 6. Predicting the global geometry of the posture graph reduces error. Letter-value plots (top) show the raw error distributions

for each experiment. Visualizations of the posterior distributions for the mean and variance (bottom) show statistical differences between the

error distributions. Predicting the posture graph decreases both the mean and variance of the error distribution.
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Appendix 0 Figure 7. Euclidean error distributions for each model across our three datasets. Letter-value plots (left) show the raw error

distributions for each model. Histograms of the posterior distributions for the mean and variance (right) show statistical differences between the

error distributions. Overall the LEAP model from Pereira et al. (2019) was the worst performer on every dataset in terms of both mean and
variance. The DeeperCut model from Insafutdinov et al. (2016) was the best performer on every dataset followed closely by our implementation
of Stacked Densenet (Jégou et al., 2017) and Stacked Hourglass (Newell et al., 2016). The posteriors for Insafutdinov et al. (2016) and our Stacked
DenseNet model overlap almost completely for the fly dataset.
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Appendix 1669

Convolutional neural networks (CNNs)670

Artificial neural networks like CNNs are complex, non-linear regression models that "learn"
a hierarchically–organized set of parameters from real-world data via optimization. These

machine learning models are now commonplace in science and industry and have proven

to be surprisingly effective for a large number of applications where more conventional

statistical models have failed (LeCun et al., 2015). For computer vision tasks, CNN parameters
typically take the form of two-dimensional convolutional filters that are optimized to detect

spatial features needed to model relationships between high-dimensional image data and

some related variable(s) of interest, such as locations in space—e.g. posture keypoints—or

semantic labels (Long et al., 2015; Badrinarayanan et al., 2015).
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Once a training set is generated (Appendix 2), a CNN model must be selected and

optimized to perform the prediction task. CNNs are incredibly flexible with regard to how

models are specified and trained, which is both an advantage and a disadvantage. This

flexibility means models can be adapted to almost any computer vision task, but it also

means the number of possible model architectures and optimization schemes is very large.

This can make selecting an architecture and specifying hyperparameters a challenging

process. However, most research on pose estimation has converged on a set of models that

generally work well for this task (Appendix 3).
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After selecting an architecture, the parameters of the model are set to an initial value and

then iteratively updated to minimize some objective function, or loss function, that describes
the difference between the model’s predictive distribution and the true distribution of the

data—in other words, the likelihood of the model’s output is maximized. These parameter

updates are performed using a modified version of the gradient descent algorithm (Cauchy
1847) known asmini-batch stochastic gradient descent—often referred to as simply stochastic
gradient descent or SGD (Robbins and Monro, 1951; Kiefer et al., 1952). SGD iteratively
optimizes the model parameters using small randomly-selected subsamples, or batches,
of training data. Using SGD allows the model to be trained on extremely large datasets

in an iterative "online" fashion without the need to load the entire dataset into memory.

The model parameters are updated with each batch by adjusting the parameter values in

a direction that minimizes the error—where one round of training on the full dataset is

commonly referred to as an epoch. The original SGD algorithm requires careful selection and
tuning of hyperparameters to successfully optimize a model, but modern versions of the

algorithm, such as ADAM (Kingma and Ba, 2014), automatically tune these hyperparameters,
which makes optimization more straightforward.
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The model parameters are optimized until they reach a convergence criterion, which

is some measure of performance that indicates the model has reached a good location in

parameter space. The most commonly used convergence criterion is a measure of predictive

accuracy—often the loss function used for optimization—on a held-out validation set—a
subsample of the training data not used for optimization—that evaluates the model’s ability

to generalize to new "out-of-sample" data. The model is typically evaluated at the end of

each training epoch to assess performance on the validation set. Once performance on

the validation set stops improving, training is usually stopped to prevent the model from

overfitting to the training set—a technique known as early stopping (Prechelt, 1998).
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Appendix 2713

Collecting training data714

Depending on the variability of the data, CNNs usually require thousands or tens of thou-

sands of manually-annotated examples in order to reach human-level accuracy. However, in

laboratory settings, sources of image variation like lighting and spatial scale can be more

easily controlled, which minimizes the number of training examples needed to achieve

accurate predictions.
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719

This need for a large training set can be further reduced in a number of ways. Two

commonly used methods include (1) transfer learning—using a model with parameters that
are pre-trained on a larger set of images, such as the ImageNet database (Deng et al., 2009),
containing diverse features (Pratt, 1993; Insafutdinov et al., 2016; Mathis et al., 2018)—
and (2) augmentation— artificially increasing data variance by applying spatial and noise
transformations such as flipping (mirroring), rotating, scaling, and adding different forms

of noise or artificial occlusions. Both of these methods act as useful forms of regulariza-
tion—incorporating a prior distribution—that allows the model to generalize well to new
data even when the training set is small. Transfer learning incorporates prior information

that images from the full dataset should contain statistical features similar to other images

of the natural world, while augmentation incorporates prior knowledge that animals are

bilaterally symmetric, can vary in their body size, position, and orientation, and that noise

and occlusions sometimes occur.
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Pereira et al. (2019) introduced two especially clever solutions for collecting an adequate
training set. First, they cluster unannotated images based on pixel variance and uniformly

sample images from each cluster, which reduces correlation between training examples

and ensures the training data are representative of the entire distribution of possible

images. Second, they use active learning where a CNN is trained on a small number of
annotated examples and is then used to initialize keypoint locations for a larger set of

unannotated data. These pre-initialized data are then manually corrected by the annotator,

the model is retrained, and the unannotated data are re-initialized. The annotator applies

this process iteratively as the training set grows larger until they are providing only minor

adjustments to the pre-initialized data. This “human-in-the-loop”-style annotation expedites

the process of generating an adequately large training set by reducing the cognitive load

on the annotator—where the pose estimation model serves as a “cognitive partner”. Such

a strategy also allows the annotator to automatically select new training examples based

on the performance of the current iteration—where low-confidence predictions indicate

examples that should be annotated for maximum improvement (Figure 1).
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Of course, annotating image data requires software made for this purpose. Pereira
et al. (2019) provide a custom annotation GUI written in MATLAB specifically designed for
annotating posture using an active learning strategy. Mathis et al. (2018) originally did not
provide an annotation tool, but recently added a Python-based GUI in an updated version

of their software—including active learning and image sampling methods (see Nath et al.
2018). Our framework also includes a Python-based GUI for annotating data with similar
features toMathis et al. (2018) and Pereira et al. (2019).
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Appendix 3755

Fully-convolutional regression756

For the task of pose estimation, a CNN is optimized to predict the locations of postural

keypoints in an image. One approach is to use a CNN to directly predict the numerical

value of each keypoint coordinate as an output. However, making predictions in this way

removes real-world constraints on the model’s predictive distribution by destroying spatial

relationships within images, which negates many of the advantages of using CNNs in the

first place.
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CNNs are particularly good at transforming one image to produce another related

image, or set of images, while preserving spatial relationships and allowing for translation-

invariant predictions—a configuration known as a fully-convolutional neural network or F-
CNN (Long et al., 2015). Therefore, instead of directly regressing images to coordinate
values, a popular solution (Newell et al., 2016; Insafutdinov et al., 2016;Mathis et al., 2018;
Pereira et al., 2019) is to optimize a F-CNN that transforms images to predict a stack of
output images known as confidence maps—one for each keypoint. Each confidence map in
the output volume contains a single, two-dimensional, symmetric Gaussian indicating the

location of each joint, and the scalar value of the peak indicates the confidence score of the

prediction—typically a value between 0 and 1. The confidence maps are then processed to

produce the coordinates of each keypoint.
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In the case of multiple pose estimation where an image contains many individuals, the
global geometry of the posture graph is also predicted by training the model to produce part
affinity fields (Cao et al., 2017)— vector fields drawn between joints in the posture graph—or
pairwise terms (Insafutdinov et al., 2016)—vector fields of the conditional distributions
between posture keypoints (e.g. p(foot|head)). This allows multiple posture graphs to be
disentangled from the image using graph partitioning as the vector fields indicate the

probability of the connection between joints (see Cao et al. 2017 for details).
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Box 1. Encoder-decoder models781782

skip connections

{encoder {decoder

input output

783

Box 1 Figure 1. An illustration of the basic encoder-decoder design. The encoder converts the input

images into spatial features, and the decoder transforms spatial features to the desired output.
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A popular type of F-CNN (Appendix 3) for solving posture regression problems is known as

an encoder-decoder model (Figure 1), which first gained popularity for the task of semantic
segmentation—a supervised computer vision problemwhere each pixel in an image is classified

into a one of several labeled categories like “dog”, “tree”, or “road” (Long et al., 2015). This
model is designed to repeatedly convolve and downsample input images in the bottom-up

encoder step and then convolve and upsample the encoder’s output in the top-down decoder
step to produce the final output. Repeatedly applying convolutions and non-linear functions, or

activations, to the input images transforms pixel values into higher-order spatial features, while
downsampling and upsampling respectively increases and decreases the scale and complexity

of these features.
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Badrinarayanan et al. (2015) were the first to popularize a form of this model —known as
SegNet— for semantic segmentation. However, this basic design is inherently limited because
the decoder relies solely on the downsampled output from the encoder, which restricts the

features used for predictions to those with the largest spatial scale and highest complexity.

For example, a very deep network might learn a complex spatial pattern for predicting “grass”

or “trees”, but because it cannot directly access information from the earliest layers of the

network, it cannot use the simplest features that plants are green and brown. Subsequent

work by Ronneberger et al. (2015) improved on these problems with the addition of residual or
skip connections between the encoder and decoder, where feature maps from encoder layers
are concatenated to those decoder layers with the same spatial scale. This set of connections

then allows the optimizer, rather than the user, to select the most relevant spatial scale(s) for

making predictions.

796

797

798

799

800

801

802

803

804

805

806

807

Jégou et al. (2017) are the latest to advance the encoder-decoder paradigm. These researchers
introduced a fully-convolutional version of Huang et al.’s (2017a) DenseNet architecture known
as a fully-convolutional DenseNet, or FC-DenseNet. FC-DenseNet’s key improvement is an elabo-
rate set of feed-forward residual connections where the input to each convolutional layer is a

concatenated stack of feature maps from all previous layers. This densely-connected design
was motivated by the insight that many state-of-the-art models learn a large proportion of

redundant features. Most CNNs are not designed so that the final output layers can access

all feature maps in the network simultaneously, and this limitation causes these networks

to “forget” and “relearn” important features as the input images are transformed to produce

the output. In the case of the incredibly popular ResNet-101 (He et al., 2016) nearly 40% of
the features can be classified as redundant (Ayinde and Zurada, 2018). A densely-connected
architecture has the advantages of reduced feature redundancy, increased feature reuse,

enhanced feature propagation from early layers to later layers, and subsequently, a substantial
reduction in the number of parameters needed to achieve state-of-the-art results (Huang et al.,
2017a). Recent work has also shown that DenseNet’s elaborate residual connections also have
the pleasant side-effect of convexifying the loss landscape during optimization (Li et al., 2018),
which allows for faster optimization and increases the likelihood of reaching a good optimum.
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Appendix 3 Figure 1. An illustration showing the progression of encoder-decoder architectures from the literature—ordered by performance from

top to bottom (see Appendix 3 Box 1 for further details). Most advances in performance have come from adding connections between layers in the

network, culminating in FC-DenseNet from Jégou et al. (2017). Lines in each illustration indicate connections between convolutional blocks with the
thickness of the line indicating the magnitude of information flow between layers in the network. The size of each convolution block indicates the

relative number of feature maps (width) and spatial scale (height). The callout for FC-DenseNet (Jégou et al. 2017; bottom-left) shows the
elaborate set of skip connections within each densely-connected convolutional block as well as our additions of bottleneck and compression layers

(described by Huang et al. 2017a) to increase efficiency (Appendix 8)
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Appendix 4825

Individual vs. multiple pose estimation826

Most recent state-of-the-art methods for posture estimation now focus on simultaneously

estimating the pose of multiple individuals in an image (e.g. Cao et al. 2017)—known as
multiple pose estimation. However, the majority of work on multiple pose estimation has
not adequately solved the tracking problem of linking individual data across frames in a

video, especially after visual occlusions—although recent work has attempted to address this

problem (Iqbal et al., 2017; Andriluka et al., 2018). Reliably tracking individuals is important
for most behavioral studies, and there are a number of diverse methods already available for

solving this problem (Pérez-Escudero et al., 2014; Crall et al., 2015; Graving, 2017; Romero-
Ferrero et al., 2018; Wild et al., 2018; Boenisch et al., 2018). Therefore, to avoid solving
an already-solved problem, the work we describe in this paper is purposefully limited to

individual pose estimation where each image contains only a single focal individual—which
may be localized and cropped from a larger multi-individual image.
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We created a top-down posture estimation framework that can be easily adapted to

any data collection workflow, which could include any method for localizing and tracking

individuals. Limiting our methods in this way also simplifies the pose detection problem

and the cognitive task of creating annotated data. Additionally, because individual pose

estimation is such a well-studied problem in computer vision, we can build on the state-of-

the-art for this task (see Appendices 3 and 5 for details).
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Appendix 5845

The state of the art for individual pose estimation846

The current state of the art for individual posture estimation is Newell et al. (2016)— as well
as themany iterations of this design (e.g. Ke et al. 2018, Chen et al. 2017; also see benchmark
results from Andriluka et al. 2014). Newell et al. (2016) employ what they call a Stacked
Hourglass network (Appendix 3 Figure 1), which consists of a series of multi-scale encoder-
decoder hourglass modules connected together in a feed-forward configuration (Figure
2). The main novelties these researchers introduce include (1) stacking multiple hourglass

networks together for repeated top-down-bottom-up inference, (2) using convolutional

blocks based on the ResNet architecture (He et al., 2016) with residual connections between
the input and output of each block, and (3) using residual connections between the encoder

and decoder (similar to Ronneberger et al. 2015) with residual blocks in between. Newell
et al. (2016) also apply a technique known as intermediate supervision (Figure 2) where the
loss function used for model training is applied to the output of each hourglass as a way of

improving optimization across the model’s many layers. Recent work by Jégou et al. (2017)
has further improved on this encoder-decoder design (see Appendix 3 Box 1 and Appendix

3 Figure 1), but to the best of our knowledge, the model introduced by Jégou et al. (2017)
has not been previously applied to pose estimation.
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Appendix 6863

Overparameterization and the limitations of LEAP864

Overparameterization is a key limitation for many pose estimation methods, and addressing

this problem is critical for high-performance applications. Pereira et al. (2019) approached
this problem by designing their LEAP model after the model from Badrinarayanan et al.
(2015), which is a straighforward encoder-decoder design (Appendix 3 Figure 1; Appendix 3
Box 1). They benchmarked their model on posture estimation tasks for laboratory animals

and compared performance with the more-complex Stacked Hourglass model from Newell
et al. (2016). They found their smaller, simplified model achieved equal or better median ac-
curacy with dramatic improvements in inference speed up to 185 Hz. However, Pereira et al.
(2019) first rotationally and translationally aligned each image to improve performance, and
their reported inference speeds do not include this computationally expensive preprocessing

step. Additionally, rotationally and translationally aligning images is not always possible

when the background is complex or highly-variable—such as in field settings—or the study

animal has a non-rigid body. This limitation makes LEAP (Pereira et al., 2019) unsuitable in
many cases. While their approach is simple and effective for a multitude of experimental

setups, the LEAP model from Pereira et al. (2019) is also implicitly limited in the same ways
as Badrinarayanan et al.’s SegNet model (see Appendix 3 Box 1 for details). LEAP cannot
make predictions using multiple spatial scales and is not robust to data variance such as

rotations (Pereira et al., 2019).
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Appendix 7883

Fitting linear models with Stan884

We estimated the joint posterior p(�� , ��|X, y) for each model using the No-U-Turn Sampler
(NUTS; Hoffman and Gelman 2014), a self-tuning variant of the Hamiltonian Monte Carlo
(HMC) algorithm (Duane et al., 1987), implemented in Stan (Carpenter et al., 2017). We drew
HMC samples using 4 independent Markov chains consisting of 1,000 warm-up iterations

and 1,000 sampling iterations for a total of 4,000 sampling iterations. To speed up sampling,

we randomly subsampled 20% of the data from each replicate when fitting each linear model,
and we fit each model 5 times to ensure the results were consistent. All models converged

without any signs of pathological behavior. We performed a posterior predictive check by

visually inspecting predictive samples to assess model fit. For our priors we chose relatively

uninformative distributions �� ∼ Caucℎy(0, 5) and �� ∼ Caucℎy(0, 10), but we found that the
choice of prior generally did not have an effect on the final result due to the large amount of

data used to fit each model.
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Appendix 8897

Stacked DenseNet898

Our Stacked DenseNet model consists of an initial 7×7 convolutional layer with stride 2,
to efficiently downsample the input resolution—following Newell et al. (2016)—followed
by a stack of densely-connected hourglasses with intermediate supervision (Appendix 5)

applied at the output of each hourglass. We also include hyperparameters for the bottleneck

and compression layers described by Huang et al. (2017a) to make the model as efficient
as possible. These consist of applying a 1×1 convolution to inexpensively compress the
number of feature maps before each 3×3 convolution as well as when downsampling and
upsampling (see Huang et al. 2017a and Appendix 3 Figure 1 for details).
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Model hyperparameters907

For our Stacked Hourglass model we used a block size of 64 filters (64 filters per 3×3
convolution) with a bottleneck factor of 2 (64/2 = 32 filters per 1×1 bottleneck block). For
our Stacked DenseNet model we used a growth rate of 48 (48 filters per 3×3 convolution), a
bottleneck factor of 1 (1×growth rate = 48 filters per 1×1 bottleneck block), and a compression
factor of 0.5 (feature maps compressed with 1×1 convolution to 0.5m when upsampling
and downsampling, where m is the number of feature maps). For our Stacked DenseNet
model we also replaced the typical configuration of batch normalization and ReLU activations

(Goodfellow et al., 2016) with the more recently developed self-normalizing SELU activation
function (Klambauer et al., 2017), as we found this modification increased inference speed.
For LEAP (Pereira et al., 2019) we used a 1× resolution output with integer-based global
maxima because we wanted to compare our more complex models with LEAP in the original

configuration described by Pereira et al. (2019). Additionally, applying our subpixel maxima
algorithm at high resolution reduces inference speed compared to integer-based maxima,

so this would bias our speed comparisons.
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Our implementation of DeeperCut922

Because the original DeeperCut model from Insafutdinov et al. (2016) was not implemented
in Keras (a requirement for our pose estimation framework), our implementation of this

model does not exactly match the description in the paper. Implementing this model

directly in our framework is important to ensure model training and data augmentation

are identical when making comparisons. Nevertheless we assume our version is nearly

identical in performance due to the very similar architecture and number of parameters—a

ResNet-50 (He et al., 2016) encoder pretrained on the ImageNet database (Deng et al., 2009)
with a matching ResNet decoder. Additionally, pretrained feature detectors in the Keras

framework have a lower bound on input image size (224×224), so we were forced to add an
upsampling layer before the encoder to double the resolution of the input when evaluating

the model. Therefore speed comparisons between this model and the others may be biased.

To account for this, our implementation of Insafutdinov et al. (2016) takes advantage of
our fast subpixel maxima algorithm to increase speed, so our overall comparisons are

reasonable regardless of these constraints. Our reported inference speeds for our datasets

also match well with results from Mathis and Warren (2018) who evaluated the inference
speed of DeeperCut (Insafutdinov et al., 2016) for multiple image sizes.
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Appendix 9939

Depthwise-separable convolutions for memory-limited applications940

In an effort to maximize model efficiency, we also experimented with replacing 3×3 convo-
lutions in our model implementations with 3×3 depthwise-separable convolutions —first
introduced by Chollet (2017) and now commonly used in fast, efficient “mobile” CNNs (e.g.
Sandler et al. 2018). In theory this modification should both reduce the memory footprint
of the model and increase inference speed. However we found that, while this does dras-

tically decrease the memory footprint of our already memory-efficient models, it slightly

decreases accuracy and does not improve inference speed, so we opt for a full 3×3 con-
volution instead. We suspect that this discrepancy between theory and application is due

to inefficient implementations of depthwise-separable convolutions in many popular deep

learning frameworks, which will hopefully improve in the near future. At the moment we in-

clude this option as a hyperparameter for our Stacked DenseNet model, but we recommend

using depthwise-separable convolutions only for applications that require a small memory

footprint such as training on a lower-end GPU with limited memory or running inference on

a mobile device.
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