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Abstract Quantitative behavioral measurements are important for answering questions across scientific13

disciplines—from neuroscience to ecology. State-of-the-art deep-learning methods offer major advances in14

data quality and detail by allowing researchers to automatically estimate locations of an animal’s body parts15

directly from images or videos. However, currently-available animal pose estimation methods have limitations16

in speed and robustness. Here we introduce a new easy-to-use software toolkit, DeepPoseKit, that addresses17

these problems using an efficient multi-scale deep-learning model, called Stacked DenseNet, and a fast18

GPU-based peak-detection algorithm for estimating keypoint locations with subpixel precision. These advances19

improve processing speed >2× with no loss in accuracy compared to currently-available methods. We20

demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks in laboratory21

and field settings—including groups of interacting individuals. Our work reduces barriers to using advanced22

tools for measuring behavior and has broad applicability across the behavioral sciences.23

24

Introduction25

Understanding the relationships between individual behavior, brain activity (reviewed by Krakauer et al. 2017),26

and collective and social behaviors (Rosenthal et al., 2015; Strandburg-Peshkin et al., 2013; Jolles et al., 2017;27

Klibaite et al., 2017; Klibaite and Shaevitz, 2019) is a central goal of the behavioral sciences—a field that spans28

disciplines from neuroscience to psychology, ecology, and genetics. Measuring and modelling behavior is key to29

understanding these multiple scales of complexity, and, with this goal in mind, researchers in the behavioral30

sciences have begun to integrate theory and methods from physics, computer science, and mathematics31

(Anderson and Perona, 2014; Berman, 2018; Brown and De Bivort, 2018). A cornerstone of this interdisciplinary32

revolution is the use of state-of-the-art computational tools, such as computer vision algorithms, to automatically33

measure locomotion and body posture (Dell et al., 2014). Such a rich description of animal movement then34

allows for modeling, from first principles, the full behavioral repertoire of animals (Stephens et al., 2011;35

Berman et al., 2014a, 2016;Wiltschko et al., 2015; Johnson et al., 2016b; Todd et al., 2017; Klibaite et al., 2017;36

Markowitz et al., 2018; Klibaite and Shaevitz, 2019; Costa et al., 2019). Tools for automatically measuring37

animal movement represent a vital first step toward developing unified theories of behavior across scales38

(Berman, 2018; Brown and De Bivort, 2018). Therefore, technical factors like scalability, robustness, and usability39

are issues of critical importance, especially as researchers across disciplines begin to increasingly rely on these40

methods.41

Two of the latest contributions to the growing toolbox for quantitative behavioral analysis are fromMathis42

et al. (2018) and Pereira et al. (2019), who make use of a popular type of machine learning model called43

convolutional neural networks, or CNNs (LeCun et al. 2015; Appendix 1), to automatically measure detailed44

representations of animal posture—structural keypoints, or joints, on the animal’s body—directly from images45
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and without markers. While these methods offer a major advance over conventional methods with regard46

to data quality and detail, they have disadvantages in terms of speed and robustness, which may limit their47

practical applications. To address these problems, we introduce a new software toolkit, called DeepPoseKit, with48

methods that are fast, robust, and easy-to-use. We run experiments using multiple datasets to compare our new49

methods with those from Mathis et al. (2018) and Pereira et al. (2019), and we find that our approach offers50

considerable improvements. These results also demonstrate the flexibility of our toolkit for both laboratory and51

field situations and exemplify the wide applicability of our methods across a range of species and experimental52

conditions.53

Measuring animal movement with computer vision54

Collecting high-quality behavioral data is a challenging task, and while direct observations are important for55

gathering qualitative data about a study system, a variety of automatedmethods for quantifying movement have56

become popular in recent years (Dell et al., 2014; Anderson and Perona, 2014; Kays et al., 2015). Methods like57

video monitoring and recording help to accelerate data collection and reduce the effects of human intervention,58

but the task of manually scoring videos is time consuming and suffers from the same limitations as direct59

observation, namely observer bias and mental fatigue. Additionally, due to limitations of human observers’60

ability to process information, many studies that rely on manual scoring use relatively small datasets to estimate61

experimental effects, which can lead to increased rates of statistical errors. Studies that lack the statistical62

resolution to robustly test hypotheses (commonly called "power" in frequentist statistics) also raise concerns63

about the use of animals for research, as statistical errors caused by sparse data can impact researchers’ ability64

to accurately answer scientific questions. These limitations have led to the development of automated methods65

for quantifying behavior using advanced imaging technologies (Dell et al., 2014) as well as sophisticated tags and66

collars with GPS, accelerometry, and acoustic-recording capabilities (Kays et al., 2015). Tools for automatically67

measuring the behavior of individuals now play a central role in our ability to study the neurobiology and68

ecology of animals, and reliance on these technologies for studying animal behavior will only increase in the69

future.70

The rapid development of computer vision hardware and software in recent years has allowed for the use of71

automated image-based methods for measuring behavior across many experimental contexts (Dell et al., 2014).72

Early methods for quantifying movement with these techniques required highly-controlled laboratory conditions.73

However, because animals exhibit different behaviors depending on their surroundings (Strandburg-Peshkin74

et al., 2017; Francisco et al., 2019; Akhund-Zade et al., 2019), laboratory environments are often less than ideal75

for studying many natural behaviors. Most conventional computer vision methods are also limited in their ability76

to accurately track groups of individuals over time, but nearly all animals are social at some point in their life and77

exhibit specialized behaviors when in the presence of conspecifics (Strandburg-Peshkin et al., 2013; Rosenthal78

et al., 2015; Jolles et al., 2017; Francisco et al., 2019; Versace et al., 2019). These methods also commonly track79

only the animal’s center of mass, which reduces the behavioral output of an individual to a two-dimensional or80

three-dimensional particle-like trajectory. While trajectory data are useful for many experimental designs, the81

behavioral repertoire of an animal cannot be fully described by its aggregate locomotory output. For example,82

stationary behaviors, like grooming and antennae movements, or subtle differences in walking gaits cannot be83

reliably detected by simply tracking an animal’s center of mass (Berman et al., 2014a;Wiltschko et al., 2015).84

Together these factors have driven the development of software that can accurately track the positions of85

marked (Crall et al., 2015; Graving, 2017;Wild et al., 2018; Boenisch et al., 2018) or unmarked (Pérez-Escudero86

et al., 2014; Romero-Ferrero et al., 2019) individuals as well as methods that can quantify detailed descriptions87

of an animal’s posture over time (Stephens et al., 2011; Berman et al., 2014a; Wiltschko et al., 2015; Mathis88

et al., 2018; Pereira et al., 2019). Recently these advancements have been further improved through the89

use of deep learning, a class of machine learning algorithms that learn complex statistical relationships from90

data (LeCun et al., 2015). Deep learning has opened the door to accurately tracking large groups of marked91

(Wild et al., 2018; Boenisch et al., 2018) or unmarked (Romero-Ferrero et al., 2019) individuals and has made92

it possible to measure the body posture of animals in nearly any context—including in the wild (Nath et al.,93

2019)—by tracking the positions of user-defined body parts (Mathis et al., 2018; Pereira et al., 2019). These94

advances have drastically increased the quality and quantity, as well as the diversity, of behavioral data that are95

potentially available to researchers for answering scientific questions.96

Animal pose estimation using deep learning97

In the past, conventional methods for measuring posture with computer vision relied on species-specific algo-98

rithms (Uhlmann et al., 2017), highly-specialized or restrictive experimental setups (Mendes et al., 2013; Kain99

et al., 2013), attaching intrusive physical markers to the study animal (Kain et al., 2013), or some combination100

thereof. These methods also typically required expert computer-vision knowledge to use, were limited in the101
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Figure 1. An illustration of the workflow for DeepPoseKit. Multi-individual images are localized, tracked, and preprocessed into individual images, which is not required
for single-individual image datasets. An initial image set is sampled, annotated, and then iteratively updated using the active learning approach described by Pereiraet al. (2019) (see Appendix 2). As annotations are made, the model is trained (Figure 2) with the current training set and keypoint locations are initialized for
unannotated data to reduce the difficulty of further annotations. This is repeated until there is a noticeable improvement plateau for the initialized data—where the

annotator is providing only minor corrections—and for the validation error when training the model (Appendix Figure 8). New data from the full dataset are evaluated

with the model, and the training set is merged with new examples that are sampled based on the model’s predictive performance, which can be assessed with

techniques described byMathis et al. (2018); Nath et al. (2019) for identifying outlier frames and minimizing extreme prediction errors—shown here as the distribution
of confidence scores predicted by the model and predicted body part positions with large temporal derivatives—indicating extreme errors. This process is repeated as

necessary until performance is adequate when evaluating new data. The pose estimation model can then be used to make predictions for the full data set, and the data

can be used for further analysis.

Figure 1–video 1. A visualization of the posture data output for a group of locusts (5× speed) https://youtu.be/hCa2zaoUWhs.
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number or type of body parts that could be tracked (Mendes et al., 2013), involved capturing and handling102

the study animals to attach markers (Kain et al., 2013)—which is not possible for many species—and despite103

best efforts to minimize human involvement, often required manual intervention to correct errors (Uhlmann104

et al., 2017). All of these methods were built to work for a small range of conditions and typically required105

considerable effort to adapt to novel contexts.106

In contrast to conventional computer-vision methods, modern deep-learning–based methods can be used107

to achieve near human-level accuracy in almost any scenario by manually annotating data (Figure 1)—known as108

a training set—and training a general-purpose image-processing algorithm—a convolutional neural network or109

CNN—to automatically estimate the locations of an animal’s body parts directly from images (Figure 2). State-of-110

the-art machine learning methods, like CNNs, use these training data to parameterize a model describing the111

statistical relationships between a set of input data—i.e., images—and the desired output distribution—i.e.,112

posture keypoints. After adequate training, a model can be used to make predictions on previously-unseen113

data from the same dataset—inputs that were not part of the training set, which is known as inference. In other114

words, these models are able to generalize human-level expertise at scale after having been trained on only a115

relatively small number of examples. We provide more detailed background information on using CNNs for116

pose estimation in Appendices 1–5.117

Similar to conventional pose estimation methods, the task of implementing deep-learning models in software118

and training them on new data is complex and requires expert knowledge. However, in most cases, once the119

underlying model and training routine are implemented, a high-accuracy pose estimation model for a novel120

context can be built with minimal modification—often just by changing the training data. With a simplified121

toolkit and high-level software interface designed by an expert, even scientists with limited computer-vision122

knowledge can begin to apply these methods to their research. Once the barriers for implementing and training123

a model are sufficiently reduced, the main bottleneck for using these methods becomes collecting an adequate124

training set—a labor-intensive task made less time-consuming by techniques described in Appendix 2.125

Mathis et al. (2018) and Pereira et al. (2019) were the first to popularize the use of CNNs for animal pose126

estimation. These researchers built on work from the human pose estimation literature (e.g., Andriluka et al.127

2014; Insafutdinov et al. 2016; Newell et al. 2016) using a type of fully-convolutional neural network or F-CNN128

(Long et al. 2015; Appendix 3) often referred to as an encoder-decoder model (Appendix 3 Box 1). These models129

are used to measure animal posture by training the network to transform images into probabilistic estimates130

of keypoint locations, known as confidence maps (shown in Figure 2), that describe the body posture for one131

or more individuals. These confidence maps are processed to produce the 2-D spatial coordinates of each132

keypoint, which can then be used for further analysis.133

While these models typically need large amounts of training data, both Mathis et al. (2018) and Pereira134

et al. (2019) have demonstrated that near human-level accuracy can be achieved with few training examples135

(Appendix 2). In order to ensure generalization to large datasets, both groups of researchers introduced ideas136

related to iteratively refining the training set used for model fitting (Mathis et al., 2018; Pereira et al., 2019). In137

particular, Pereira et al. (2019) describe a technique known as active learning where a trained model is used138

to initialize new training data and reduce annotation time (Appendix 2). Mathis et al. (2018) describe multiple139

techniques that can be used to further refine training data and minimize errors when making predictions on the140

full dataset. Simple methods to accomplish this include filtering data or selecting new training examples based141

on confidence scores or the entropy of the confidence maps from the model output. Nath et al. (2019) also142

introduced the use temporal derivatives (i.e., speed and acceleration) and autoregressive models to identify143

outlier frames, which can then be labeled to refine the training set or excluded from further analysis on the final144

dataset (Figure 1).145

Pose estimation models and the speed-accuracy trade-off146

Mathis et al. (2018) developed their pose estimation model, which they call DeepLabCut, by modifying a147

previously-published model called DeeperCut (Insafutdinov et al., 2016). The DeepLabCut model (Mathis148

et al., 2018), like the DeeperCut model, is built on the popular ResNet architecture (He et al., 2016)—a state-of-149

the-art deep-learning model used for image classification. This choice is advantageous because the use of a150

popular architecture allows for incorporating a pre-trained encoder to improve performance and reduce the151

number of required training examples (Mathis et al., 2018), known as transfer learning (Pratt 1993; Appendix152

2)—although, as will be seen, our results suggest that transfer learning offers only a small improvement over a153

randomly-initialized model. However, this choice of of a pre-trained architecture is also disadvantageous as154

the model is overparameterized with >25 million parameters. Overparameterization allows the model to make155

accurate predictions, but this may come with the cost of slow inference. To alleviate these effects, work from156

Mathis and Warren (2018) showed that inference speed for the DeepLabCut model (Mathis et al., 2018) can be157

improved by decreasing the resolution of input images, but this is achieved at the expense of accuracy.158
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With regard to model design, Pereira et al. (2019) implement a modified version of a model called SegNet159

(Badrinarayanan et al., 2015), which they call LEAP (LEAP Estimates Animal Pose), that attempts to limit model160

complexity and overparameterization with the goal of maximizing inference speed (see Appendix 5)—however,161

the comparisons we make in this paper suggest this strategy achieved only limited success compared to the162

DeepLabCut model (Mathis et al., 2018). The LEAP model is advantageous because it is explicitly designed for163

fast inference but has disadvantages such as a lack of robustness to data variance, like rotations or shifts in164

lighting, and an inability to generalize to new experimental setups. Additionally, to achieve maximum perfor-165

mance, the training routine for the LEAP model introduced by Pereira et al. (2019) requires computationally166

expensive preprocessing that is not practical for many datasets, which makes it unsuitable for a wide range of167

experiments (see Appendix 5 for more details).168

Together the methods from Mathis et al. (2018) and Pereira et al. (2019) represent the two extremes of a169

phenomenon known as the speed-accuracy trade-off (Huang et al., 2017b)—an active area of research in the170

machine learning literature. Mathis et al. (2018) prioritize accuracy over speed by using a large overparam-171

eterized model (Insafutdinov et al., 2016), and Pereira et al. (2019) prioritize speed over accuracy by using a172

smaller less-robust model. While this speed-accuracy trade-off can limit the capabilities of CNNs, there has been173

extensive work to make these models more efficient without impacting accuracy (e.g., Chollet 2017; Huang et al.174

2017a; Sandler et al. 2018). To address the limitations of this trade-off, we apply recent developments from the175

machine learning literature and provide an effective solution to the problem.176

In the case of F-CNN models used for pose estimation, improvements in efficiency and robustness have177

been made through the use ofmulti-scale inference (Appendix 3 Box 1) by increasing connectivity between the178

model’s many layers across multiple spatial scales (Appendix 3 Figure 1). Multi-scale inference implicitly allows179

the model to simultaneously integrate large-scale global information, such as the lighting, image background,180

or the orientation of the focal individual’s body trunk; information from intermediate scales like anatomical181

geometry related to cephalization and bilateral symmetry; and fine-scale local information that could include182

differences in color, texture, or skin patterning for specific body parts. This multi-scale design gives the model183

capacity to learn the hierarchical relationships between different spatial scales and efficiently aggregate them184

into a joint representation when solving the posture estimation task (see Box 1 and Appendix 3 Figure 1 for185

further discussion)186

Individual vs. multiple pose estimation187

Most work on human pose estimation now focuses on estimating the pose of multiple individuals in an188

image (e.g., Cao et al. 2017). For animal pose estimation, the methods from Pereira et al. (2019) are limited189

to estimating posture for single individuals—known as individual pose estimation—while the methods from190

Mathis et al. (2018) can also be used to estimate posture for multiple individuals simultaneously—known as191

multiple pose estimation. However, the majority of work on multiple pose estimation, including Mathis et al.192

(2018), has not adequately solved the tracking problem of linking individual posture data across frames in a193

video, especially after visual occlusions—although recent work has attempted to address this problem (Iqbal194

et al., 2017; Andriluka et al., 2018). Additionally, as the name suggests, the task of multiple pose estimation195

requires exhaustively annotating images of multiple individuals—where every individual in the image must be196

annotated to prevent the model from learning conflicting information. This type of annotation task is even197

more laborious and time consuming than annotations for individual pose estimation and the amount of labor198

increases proportionally with the number of individuals in each frame, which makes this approach intractable199

for many experimental systems.200

Reliably tracking the position of individuals over time is important for most behavioral studies, and there201

are a number of diverse methods already available for solving this problem (Pérez-Escudero et al., 2014; Crall202

et al., 2015; Graving, 2017; Romero-Ferrero et al., 2019; Wild et al., 2018; Boenisch et al., 2018). Therefore, to203

avoid solving an already-solved problem of tracking individuals, and to circumvent the cognitively complex task204

of annotating data for multiple pose estimation, the work we describe in this paper is purposefully limited to205

individual pose estimation where each image contains only a single focal individual, which may be cropped from206

a larger multi-individual image after localization and tracking. We introduce a top-down posture estimation207

framework that can be readily adapted to existing behavioral analysis workflows, which could include any208

method for localizing and tracking individuals.209

The additional step of localizing and tracking individuals naturally increases the processing time for producing210

posture data from raw image data, which varies depending on the algorithms being used and the number of211

individuals in each frame. While tracking and localization may not be practical for all experimental systems,212

which could make our methods difficult to apply "out-of-the-box", the increased processing time from automated213

tracking algorithms is a reasonable trade-off for most systems given the costly alternative of increased manual214

labor when annotating data. This trade-off seems especially practical when considering that the posture data215
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Figure 2. An illustration of the model training process for our Stacked DenseNet model in DeepPoseKit (see Appendix 1 for details about training models). Input images
x (top-left) are augmented (bottom-left) with various spatial transformations (rotation, translation, scale, etc.) followed by noise transformations (dropout, additive
noise, blurring, contrast, etc.) to improve the robustness and generalization of the model. The ground truth annotations are then transformed with matching spatial

augmentations (not shown for the sake of clarity) and used to draw the confidence maps y for the keypoints and hierarchical posture graph (top-right). The images x
are then passed through the network to produce a multidimensional array g(f (x))—a stack of images corresponding to the keypoint and posture graph confidence
maps for the ground truth y. Mean squared error between the outputs for both networks g(f (x)) and f ′(x) and the ground truth data y is then minimized
(bottom-right), where f ′(x) indicates a subset of the output from f (x)—only those feature maps being optimized to reproduce the confidence maps for the purpose of
intermediate supervision (Appendix 4). The loss function is minimized until the validation loss stops improving—indicating that the model has converged or is starting

to overfit to the training data.

produced by most multiple pose estimation algorithms still need to be linked across video frames to maintain216

the identity of each individual, which is effectively a bottom-up method for achieving the same result. Limiting217

our methods to individual pose estimation also simplifies the pose detection problem as processing confidence218

maps produced by the model does not require computationally-expensive local peak detection and complex219

methods for grouping keypoints into individual posture graphs (e.g., Insafutdinov et al. 2016; Cao et al. 2017;220

Appendix 3). Additionally, because individual pose estimation is such a well-studied problem in computer vision,221

we can readily build on state-of-the-art methods for this task (see Appendices 3 and 4 for details).222

Methods and Results223

Here we introduce fast, flexible, and robust pose estimation methods, with a software interface—a high-level224

programming interface (API) and graphical user-interface (GUI) for annotations—that emphasizes usability.225

Our methods build on the state-of-the-art for individual pose estimation (Newell et al. 2016; Appendix 4),226

convolutional regression models (Jégou et al. 2017; Appendix 3 Box 1), and conventional computer vision227

algorithms (Guizar-Sicairos et al., 2008) to improve model efficiency and achieve faster, more accurate results228

on multiple challenging pose estimation tasks. We developed two model implementations—including a new229

model architecture that we call Stacked DenseNet—and a new method for processing confidence maps called230

subpixel maxima that provides fast and accurate peak detection for estimating keypoint locations with subpixel231

precision—even at low spatial resolutions. We also discuss a modification to incorporate a hierarchical posture232

graph for learning the multi-scale geometry between keypoints on the animal’s body, which increases accuracy233

when training pose estimation models. We ran experiments to optimize our approach and compared our new234

models to the models fromMathis et al. (2018) (DeepLabCut) and Pereira et al. (2019) (LEAP) in terms of speed,235

accuracy, training time, and generalization ability. We benchmark these models using three image datasets236

recorded in the laboratory and the field—including multiple interacting individuals that were first localized and237

cropped from larger, multi-individual images (see "Datasets" for details).238
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An end-to-end pose estimation framework239

We provide a full-featured, extensible, and easy-to-use software package that is written entirely in the Python240

programming language (Python Software Foundation) and is built on the popular Keras deep-learning package241

(Chollet et al., 2015)—using TensorFlow as a backend (Abadi et al., 2015). Our software is a complete, end-to-242

end pipeline (Figure 1) with a custom GUI for creating annotated training data with active learning similar to243

Pereira et al. (2019; Appendix 2), as well as a flexible pipeline for data augmentation (Jung 2018; Appendix 2;244

shown in Figure 2), model training and evaluation (Figure 2; Appendix 1), and running inference on new data.245

We designed our high-level programming interface using the same guidelines from Keras (Chollet et al., 2015)246

to allow the user to go from idea to result as quickly as possible, and we organized our software into a Python247

module called DeepPoseKit. The code, documentation, and examples for our entire software package are freely248

available at https://github.com/jgraving/deepposekit under a permissive open-source license.249

Our pose estimation models250

To achieve the goal of “fast animal pose estimation” introduced by Pereira et al. (2019), while maintaining251

the robust predictive power of models like DeepLabCut (Mathis et al., 2018), we implemented two fast pose252

estimation models that extend the state-of-the-art model for individual pose estimation introduced by Newell253

et al. (2016) and the current state-of-the art for convolutional regression from Jégou et al. (2017). Our model254

implementations use fewer parameters than both the DeepLabCut model (Mathis et al., 2018) and LEAP model255

(Pereira et al., 2019) while simultaneously removing many of the limitations of these architectures.256

In order to limit overparameterization while minimizing performance loss, we designed our models to allow257

for multi-scale inference (Appendix 3 Box 1) while optimizing our model hyperparameters for efficiency. Our258

first model is a novel implementation of FC-DenseNet from Jégou et al. (2017; Appendix 3 Box 1) arranged in a259

stacked configuration similar to Newell et al. (2016; Appendix 4). We call this new model Stacked DenseNet, and260

to the best of our knowledge, this is the first implementation of this model architecture in the literature—for261

pose estimation or otherwise. Further details for this model are available in Appendix 7. Our second model262

is a modified version of the Stacked Hourglassmodel from Newell et al. (2016; Appendix 4) with hyperparam-263

eters that allow for changing the number of filters in each convolutional block to constrain the number of264

parameters—rather than using 256 filters for all layers as described in Newell et al. (2016).265

Subpixel keypoint prediction on the GPU266

In addition to implementing our efficient pose estimation models, we developed a newmethod to process model267

outputs to allow for faster, more accurate predictions. When using a fully-convolutional posture estimation268

model, the confidencemaps produced by themodel must be converted into coordinate values for the predictions269

to be useful, and there are typically two choices for making this conversion. The first is to move the confidence270

maps out of GPUmemory and post-process them on the CPU. This solution allows for easy, flexible, and accurate271

calculation of the coordinates with subpixel precision (Insafutdinov et al., 2016;Mathis et al., 2018). However,272

CPU processing is not ideal because moving large arrays of data between the GPU and CPU can be costly, and273

computation on the CPU is generally slower. The other option is to directly process the confidence maps on the274

GPU and then move the coordinate values from the GPU to the CPU. This approach usually means converting275

confidence maps to integer coordinates based on the row and column index of the global maximum for each276

confidence map (Pereira et al., 2019). However, this means that, to achieve a precise estimation, the confidence277

maps should be predicted at the full resolution of the input image, or larger, which slows down inference speed.278

As an alternative to these two strategies, we introduce a new GPU-based convolutional layer that we call279

subpixel maxima. This layer uses the fast, efficient, image registration algorithm introduced by Guizar-Sicairos280

et al. (2008) to translationally align a centered two-dimensional Gaussian filter to each confidence map via281

Fourier-based convolution. The translational shift between the filter and each confidence map allows us to282

calculate the coordinates of the global maxima with high speed and subpixel precision. This technique allows283

for accurate predictions of keypoint locations even if the model’s confidence maps are dramatically smaller than284

the resolution of the input image.285

Learning multi-scale relationships between keypoints286

Minimizing extreme prediction errors is important to prevent downstream effects on any further behavioral287

analysis (Seethapathi et al., 2019)—especially in the case of analyses based on time-frequency transforms like288

those from Berman et al. (2014a, 2016); Klibaite et al. (2017); Todd et al. (2017); Klibaite and Shaevitz (2019)289

and Pereira et al. (2019) where high magnitude errors can cause inaccurate behavioral classifications. While290

effects of these extreme errors can be minimized using post-hoc filters and smoothing, these techniques291

can remove relevant high-frequency information from time-series data, so this is less than ideal. One way292

to minimize extreme errors when estimating posture is to incorporate multiple spatial scales when making293
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predictions (e.g. Chen et al. 2017). Our pose estimation models are implicitly capable of using information from294

multiple scales (see Appendix 3 Box 1), but there is no explicit signal that optimizes the model to take advantage295

of this information when making predictions.296

To remedy this, we modified the model’s output to predict, in addition to keypoint locations, a hierarchical297

graph of edges describing the multi-scale geometry between keypoints—similar to the part affinity fields298

described by Cao et al. (2017). This was achieved by adding an extra set of confidence maps to the output where299

edges in the postural graph are represented by Gaussian-blurred lines the same width as the Gaussian peaks in300

the keypoint confidence maps. Our posture graph output then consists of four levels: (1) a set of confidence301

maps for the smallest limb segments in the graph (e.g., foot to ankle, knee to hip, etc.; Figure 2), (2) a set of302

confidence maps for individual limbs (e.g., left leg, right arm, etc.; Figure 3), (3) a map with the entire postural303

graph, and (4) a fully-integrated map that incorporates the entire posture graph and confidence peaks for all of304

the joint locations (Figure 2). Each level of the hierarchical graph is built from lower levels in the output, which305

forces the model to learn correlated features across multiple scales when making predictions.306

Experiments and model comparisons307

We ran three main experiments to test and optimize our approach. First, we compared our new subpixel308

maxima layer to an integer-based global maxima with downsampled outputs ranging from 1× to 1
16× the input309

resolution using our Stacked DenseNet model. Next, we tested if training our Stacked DenseNet model to310

predict the multi-scale geometry of the posture graph improves accuracy. Finally, we compared our model311

implementations of Stacked Hourglass and Stacked DenseNet to the models from Pereira et al. (2019) (LEAP)312

and Mathis et al. (2018) (DeepLabCut), which we also implemented in our framework (see Appendix 7 for313

details). We assessed both the inference speed and prediction accuracy of each model as well as training time314

and generalization ability. When comparing these models we incorporated the relevant improvements from315

our experiments—including subpixel maxima and predicting multi-scale geometry between keypoints—unless316

otherwise noted (see Appendix 7).317

While we do make comparisons to the DeepLabCut model (Mathis et al., 2018) we do not use the same318

training routine asMathis et al. (2018) and Nath et al. (2019), who use binary cross-entropy loss for optimizing319

the confidence maps in addition to the location refinement maps described by Insafutdinov et al. (2016). We320

made this modification in order to hold the training routine for each model constant, while only varying the321

model itself. However, we find that these differences between training routines effectively have no impact on322

performance when the models are trained using the same dataset and data augmentations (Appendix 7 Figure323

1). We also provide qualitative comparisons to demonstrate that, when trained with our DeepPoseKit framework,324

our implementation of the DeepLabCut model (Mathis et al., 2018) appears to produce fewer prediction errors325

than the original implementation from Mathis et al. (2018); Nath et al. (2019) when applied to a novel video326

(Appendix 7 Figure 1-Figure supplements 1 and 2; Appendix 7 Figure 1-video 1).327

Datasets328

We performed experiments using the vinegar or "fruit" fly (Drosophila melanogaster) dataset (Figure 3-video 1)329

provided by Pereira et al. (2019), and to demonstrate the versatility of our methods we also compared model330

performance across two previously unpublished posture data sets from groups of desert locusts (Schistocerca331

gregaria) recorded in a laboratory setting (Figure 3-video 2), and herds of Grévy’s zebras (Equus grevyi) recorded332

in the wild (Figure 3-video 3). The locust and zebra datasets are particularly challenging for pose estimation333

as they feature multiple interacting individuals—with focal individuals centered in the frame—and the latter334

with highly-variable environments and lighting conditions. These datasets are freely-available from https:335

//github.com/jgraving/deepposekit-data (Graving et al., 2019).336

Our locust dataset consisted of a group of 100 locusts in a circular plastic arena 1-m in diameter. The337

locust group was recorded from above using a high-resolution camera (Basler ace acA2040-90umNIR) and338

video recording system (Motif, loopbio GmbH). Our zebra dataset consisted of variably sized groups in the339

wild recorded from above using a commercially-available quadcopter drone (DJI Phantom 4 Pro). Locusts were340

localized and tracked using 2-D barcode markers (Graving, 2017) attached to the thorax with cyanoacrylate glue,341

and any missing localizations (<0.02% of the total dataset) between successful barcode reads were interpolated342

with linear interpolation. Individual zebra were localized using custom deep-learning software based on Faster343

R-CNN (Ren et al., 2015) for predicting bounding boxes. The positions of each zebra were then tracked across344

frames using a linear assignment algorithm (Munkres, 1957) and data were manually verified for accuracy.345

After positional tracking, the videos were then cropped using the egocentric coordinates of each individual346

and saved as separate videos—one for each individual. The images used for each training set were randomly347

selected using the k-means sampling procedure (with k=10) described by Pereira et al. (2019) (Appendix 2).348

After annotating the images with keypoints, we rotationally and translationally aligned the images and keypoints349
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input image posture graph

keypoints
subpixel 
maxima 

Figure 3. A visualization of the datasets we used to evaluate our methods (Table 1). For each dataset, confidence maps for the keypoints (bottom-left) and posture
graph (top-right) are illustrated using different colors for each map. These outputs are from our Stacked DenseNet model at

1
4
× resolution.

Figure 3–video 1. A video of a behaving fly from Pereira et al. (2019) with pose estimation outputs visualized https://youtu.be/lsnex6k4NRs
Figure 3–video 2. A video of a behaving locust with pose estimation outputs visualized. https://youtu.be/b0DyyLP_Czk
Figure 3–video 3. A video of a behaving Grévy’s zebra with pose estimation outputs visualized. https://youtu.be/dSjaphoGHAY
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Table 1. Datasets used for model comparisons.
Name Species Resolution # Images # Keypoints Individuals Source

Vinegar fly Drosophila melanogaster 192×192 1500 32 Single Pereira et al. (2019)
Desert locust Schistocerca gregaria 160×160 800 35 Multiple This paper

Grévy’s zebra Equus grevyi 160×160 900 9 Multiple This paper

using the central body axis of the animal in each labeled image. This step allowed us to more easily perform350

data augmentations (see "Model training") that allow the model to make accurate predictions regardless of the351

animal’s body size and orientation (see Appendix 5). However, this preprocessing step is not a strict requirement352

for training, and there is no requirement for this preprocessing step when making predictions on new unlabeled353

data, such as with the methods described by Pereira et al. (2019) (Appendix 5). Before training each model we354

split each annotated dataset into randomly selected training and validation sets with 90% training examples355

and 10% validation examples, unless otherwise noted. The details for each dataset are described in Table 1.356

Model training357

For each experiment, we set our model hyperparameters to the same configuration for our Stacked DenseNet358

and Stacked Hourglass models. Both models were trained with
1
4× resolution outputs and a stack of two359

networks with two outputs where loss was applied (see Figure 2). Although our model hyperparameters could360

be infinitely adjusted to trade off between speed and accuracy, we compared only one configuration for each of361

our model implementations. These results are not meant to be an exhaustive search of model configurations as362

the best configuration will depend on the application. The details of the hyperparameters we used for each363

model are described in Appendix 7.364

To make our posture estimation tasks closer to realistic conditions and properly demonstrate the robustness365

of our methods to rotation, translation, scale, and noise, we applied various augmentations to each data set366

during training (Figure 2). All models were trained using data augmentations that included random flipping,367

or mirroring, along both the horizontal and vertical image axes with each axis being independently flipped by368

drawing from a Bernoulli distribution (with p = 0.5), random rotations around the center of the image drawn369

from a uniform distribution in the range [-180°, +180°), random scaling drawn from a uniform distribution in370

the range [90%, 110%] for flies and locusts and [75%, 125%] for zebras (to account for greater size variation371

in the data set), and random translations along the horizontal and vertical axis independently drawn from a372

uniform distribution with the range [-5%, +5%]—where percentages are relative to the original image size. After373

performing these spatial augmentations we also applied a variety of noise augmentations that included additive374

noise—i.e., adding or subtracting randomly-selected values to pixels; dropout—i.e., setting individual pixels375

or groups of pixels to a randomly-selected value; blurring or sharpening—i.e., changing the composition of376

spatial frequencies; and contrast ratio augmentations—i.e, changing the ratio between the highest value and377

lowest value in the image. These augmentations help to further ensure robustness to shifts in lighting, noise,378

and occlusions. See Appendix 2 for further discussion on data augmentation.379

We trained our models (Figure 2) using mean squared error loss optimized using the ADAM optimizer380

(Kingma and Ba, 2014) with a learning rate of 1 × 10−3 and a batch size of 16. We lowered the learning rate by a381

factor of 5 each time the validation loss did not improve by more than 1 × 10−3 for 10 epochs. We considered382

models to be converged when the validation loss stopped improving for 50 epochs, and we calculated validation383

error as the Euclidean distance between predicted and ground-truth image coordinates for only the best384

performing version of the model, which we evaluated at the end of each epoch during optimization. We385

performed this procedure five times for each experiment and randomly selected a new validation set for each386

replicate.387

Model evaluation388

Machine learning models are typically evaluated for their ability to generalize to new data, known as predictive389

performance, using a held-out test set—a subsample of annotated data that is not used for training or validation.390

However, when fitting and evaluating a model on a small dataset, using an adequately-sized validation and test391

set can lead to erroneous conclusions about the predictive performance of the model if the training set is too392

small (Kuhn and Johnson, 2013). Therefore, to maximize the size of the training set, we elected to use only a393

validation set for model evaluation.394

Generally a test set is used to avoid biased performance measures caused by overfitting the model hy-395

perparameters to the validation set. However, we did not adjust our model architecture to achieve better396

performance on our validation set—only to achieve fast inference speeds. While we did use validation error to397
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decide when to lower the learning rate during training and when to stop training, lowering the learning rate398

in this way should have no effect on the generalization ability of the model, and because we heavily augment399

our training set during optimization—forcing the model to learn a much larger image distribution than what is400

included in the training and validation sets—overfitting to the validation set is unlikely. We also demonstrate401

the generality of our results for each experiment by randomly selecting a new validation set with each replicate.402

All of these factors make the Euclidean error for the unaugmented validation set a reasonable measure of the403

predictive performance for each model.404

The inference speed for each model was assessed by running predictions on 100,000 randomly generated405

images with a batch size of 1 for real-time speeds and a batch size of 100 for offline speeds, unless otherwise406

noted. Our hardware consisted of a Dell Precision Tower 7910 workstation (Dell, Inc.) running Ubuntu Linux407

v18.04 with 2× Intel Xeon E5-2623 v3 CPUs (8 cores, 16 threads at 3.00GHz), 64GB of RAM, a Quadro P6000 GPU408

and a Titan Xp GPU (NVIDIA Corporation). We used both GPUs (separately) for training models and evaluating409

predictive performance, but we only used the faster Titan Xp GPU for benchmarking inference speeds and410

training time. While the hardware we used for development and testing is on the high-end of the current411

performance spectrum, there is no requirement for this level of performance, and our software can easily be412

run on lower-end hardware. We evaluated inference speeds on multiple consumer-grade desktop computers413

and found similar performance (±10%) when using the same GPU.414

Assessing prediction accuracy with Bayesian inference415

To more rigorously assess performance differences between models, we parameterized the Euclidean error416

distribution for each experiment by fitting a Bayesian linear model with a Gamma-distributed likelihood function.417

This model takes the form:418

p(y|X, �� , ��) ∼ Gamma(�, �)

� = �2�−1

� = ��−1

� = ℎ(X��)

� = ℎ(X��)

where X is the design matrix composed of binary indicator variables for each pose estimation model, ��419

and �� are vectors of intercepts, ℎ(⋅) is the softplus function (Dugas et al., 2001)—or ℎ(x) = log (1 + ex)—used to420

enforce positivity of � and �, and y is the Euclidean error of the pose estimation model. Parameterizing our421

error distributions in this way allows us to calculate the posterior distributions for the mean E[y] = ��−1 ≡ � and422

variance Var[y] = ��−2 ≡ �. This parameterization then provides us with a statistically rigorous way to assess423

differences in model accuracy in terms of both central tendency and spread—accounting for both epistemic424

uncertainty (unknown unknowns; e.g., parameter uncertainty) and aleatoric uncertainty (known unknowns; e.g.,425

data variance). Details of how we fitted these models can be found in Appendix 6.426

Subpixel prediction allows for fast and accurate inference427

We compared the accuracy of our subpixel maxima layer to an integer-based maxima layer using the fly dataset.428

We found significant accuracy improvements across every downsampling configuration (Appendix Figure 5).429

Even with confidencemaps at
1
8× the resolution of the original image, error did not drastically increase compared430

to full-resolution predictions. Making predictions for confidence maps at such a downsampled resolution allows431

us to achieve very fast inference >1000 Hz while maintaining high accuracy. We also provide speed comparisons432

with the other models we tested and find that our Stacked DenseNet model is faster than the DeepLabCut433

model (Mathis et al., 2018) for both offline (batch size = 100) and real-time speeds (batch size = 1). While we434

find that our Stacked DenseNet model is faster than the LEAP model (Pereira et al., 2019) for offline processing435

(batch size = 100), the LEAP model (Pereira et al., 2019) is significantly faster for real-time processing (batch436

size = 1). Our Stacked Hourglass model (Newell et al., 2016) is about the same or slightly faster than Stacked437

DenseNet for offline speeds (batch size = 100), but is much slower for real-time processing (batch size = 1).438

Achieving fast pose estimation using CNNs typically relies on massively parallel processing on the GPU with439

large batches of data or requires downsampling the images to increase speed, which increases error (Mathis and440

Warren, 2018). These factors make fast and accurate real-time inference challenging to accomplish. Our Stacked441

DenseNet model, with a batch size of one, can run inference at ∼30-110Hz—depending on the resolution of the442

predicted confidence maps (Appendix Figure 5b). These speeds are faster than the DeepLabCut model (Mathis443

et al., 2018) and could be further improved by downsampling the input image resolution or reconfiguring the444
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DeepLabCut 
(Mathis et al. 2018)

LEAP 
(Pereira et al. 2019)

Stacked DenseNet 
(DeepPoseKit) 

# initialize, train, and save a model
from deepposekit.io import TrainingGenerator
from deepposekit.models import StackedDenseNet

generator = TrainingGenerator(‘path/to/data.h5’)
model = StackedDenseNet(generator)
model.fit(batch_size=16, n_workers=8)
model.save(‘path/to/model.h5’)

# load the model and run inference on new data
from deepposekit.models import load_model

model = load_model(‘path/to/model.h5’)
new_data = load_new_data(‘path/to/new/data’)
predictions = model.predict(new_data)

a b

Figure 4. Our Stacked DenseNet model estimates posture at approximately 2×—or greater—the speed of the LEAP model (Pereira et al., 2019) and the DeepLabCut
model (Mathis et al., 2018) while also achieving similar accuracy to the DeepLabCut model (Mathis et al., 2018)—shown here as mean accuracy (1 + Euclidean error)−1 for
our most challenging dataset of multiple interacting Grévy’s zebras (E. grevyi) recorded in the wild (a). See Figure 4 supplement 1 for further details. Our software
interface is designed to be straightforward but flexible. We include many options for expert users to customize model training with sensible default settings to make

pose estimation as easy as possible for beginners. For example, training a model and running inference on new data requires writing only a few lines of code and

specifying some basic settings (b).
Figure 4–Figure supplement 1. Euclidean error distributions for each model across our three datasets. Letter-value plots (left) show the raw error distributions for
each model. Violinplots of the posterior distributions for the mean and variance (right) show statistical differences between the error distributions. Overall the LEAP
model (Pereira et al., 2019) was the worst performer on every dataset in terms of both mean and variance. Our Stacked Densenet model was the best performer for
the fly dataset, while our Stacked DenseNet model and the DeepLabCut model (Mathis et al., 2018) both performed equally well on the locust and zebra datasets. The
posteriors for the DeepLabCut model (Mathis et al., 2018) and our Stacked DenseNet model are highly overlapping for these datasets, which suggests they are not
statistically discernible from one another. Our Stacked Hourglass model (Newell et al., 2016) performed equally to the DeepLabCut model (Mathis et al., 2018) and our
Stacked DenseNet model for the locust dataset but performed slightly worse for the fly and zebra datasets.

model with fewer parameters. This allows our methods to be flexibly used for real-time closed-loop behavioral445

experiments with prediction errors similar to current state-of-the-art methods.446

Predicting multi-scale geometry improves accuracy and reduces extreme errors447

We find that training our Stacked DenseNet model to predict a hierarchical posture graph reduces keypoint448

prediction error (Appendix Figure 6), and because the feature maps for the posture graph can be removed449

from the final output during inference, this effectively improves prediction accuracy for free. Both the mean and450

variance of the error distributions were lower when predicting the posture graph, which suggests that learning451

multi-scale geometry both decreases error on average and helps to reduce extreme prediction errors. The452

overall effect size for this decrease in error is fairly small (<1 pixel average reduction in error), but based on the453

results from the zebra dataset, this modification more dramatically improves performance for datasets with454

higher-variance images and sparse posture graphs. Predicting the posture graph may be especially useful for455

animals with long slender appendages such as insect legs and antennae where prediction errors are likely to456

occur due to occlusions and natural variation in the movement of these body parts. These results also suggest457

that annotating multiple keypoints to incorporate an explicit signal for multi-scale information may help improve458

prediction accuracy for a specific body part of interest.459

Stacked DenseNet is fast and robust460

Finally, we benchmarked our new model implementations against the models (Pereira et al., 2019) andMathis461

et al. (2018). We find that our Stacked DenseNet model outperforms both the LEAP model (Pereira et al., 2019)462

and the DeepLabCut model (Mathis et al., 2018) in terms of speed while also achieving much higher accuracy463

than the LEAP model (Pereira et al., 2019) with similar accuracy to the DeepLabCut model (Mathis et al. 2018;464

Figure 4a). We found that both the Stacked Hourglass and Stacked DenseNet models outperformed the LEAP465

model (Pereira et al., 2019). Notably our Stacked DenseNet model achieved approximately 2× faster inference466

speeds with 3× higher mean accuracy. Not only were our models’ average prediction error significantly improved,467

but also, importantly, the variance was lower—indicating that our models produced fewer extreme prediction468

errors. At
1
4× resolution, our Stacked DenseNet model consistently achieved prediction accuracy nearly identical469

12 of 35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/620245doi: bioRxiv preprint 

https://doi.org/10.1101/620245
http://creativecommons.org/licenses/by-nc-nd/4.0/


to the DeepLabCut model (Mathis et al., 2018) while running inference at nearly 2× the speed and using only470

∼5% of the parameters—∼1.5 million ∼26 million vs ∼26 million. Detailed results of our model comparisons471

are shown in Figure 4 supplement 1. While our Stacked DenseNet model is already fast, inference speed could472

be further improved by using a
1
8× output without much increase in error (Appendix Figure 5) or by further473

adjusting the hyperparameters to constrain the size of the model. Our Stacked Hourglass implementation474

followed closely behind the performance of our Stacked DenseNet model and the DeepLabCut model (Mathis475

et al., 2018) but consistently performed more poorly than our Stacked DenseNet model in terms of prediction476

accuracy, so we excluded this model from further analysis. We were also able to reproduce the results reported477

by Pereira et al. (2019) that the LEAP model and the Stacked Hourglass model (Newell et al., 2016) have similar478

average prediction error for the fly dataset. However, we also find that the LEAP model (Pereira et al., 2019) has479

much higher variance, which suggests it is more prone to extreme prediction errors—a problem for further data480

analysis.481

Stacked DenseNet trains quickly and requires few training examples482

To further compare models, we used our zebra dataset to assess the training time needed for our Stacked483

DenseNet model, the DeepLabCut model (Mathis et al., 2018), and the LEAP model (Pereira et al., 2019) to484

reach convergence as well as the amount of training data needed for each model to generalize to new data485

from outside the training set. We find that our Stacked DenseNet model, the DeepLabCut model (Mathis et al.,486

2018), and the LEAP model (Pereira et al., 2019) all fully converge in just a few hours and reach reasonably high487

accuracy after only an hour of training (Appendix Figure 7). However, it appears that our Stacked DenseNet488

model tends to converge to a good minimum faster than both the DeepLabCut model (Mathis et al., 2018)489

and the LEAP model (Pereira et al., 2019). We also show that our Stacked DenseNet model achieves good490

generalization with few training examples and without the use of transfer learning (Appendix Figure 8). These491

results demonstrate that, when combined with data augmentation, as few as five training examples can be492

used as an initial training set for labelling keypoints with active learning (Figure 1). Additionally, because our493

analysis shows that generalization to new data plateaus after approximately 100 labeled training examples,494

it appears that 100 training examples is a reasonable minimum size for a training set—although the exact495

number will likely change depending the variance of the image data being annotated. To further examine the496

effect of transfer learning on model generalization, we compared performance between the DeepLabCut model497

(Mathis et al., 2018) initialized with weights pretrained on the ImageNet database (Deng et al., 2009) vs. the498

same model with randomly-initialized weights (Appendix Figure 8). As postulated byMathis et al. (2018), we find499

that transfer learning does provide some benefit to the DeepLabCut model’s ability to generalize. However, the500

effect is relatively small with a mean reduction in Euclidean error of <0.5 pixel. Together these results indicate501

that transfer learning is helpful, but not required, for deep learning models to achieve good generalization with502

limited training data.503

Discussion504

Here we have presented a new software toolkit, called DeepPoseKit, for estimating animal posture using deep505

learning models. We built on the state-of-the-art for individual pose estimation using convolutional neural506

networks to achieve fast inference without reducing accuracy or generalization ability. Our new pose estimation507

model, called Stacked DenseNet, offers considerable improvements (Figure 4a; Figure supplement 1) over the508

models from Mathis et al. (2018) (DeepLabCut) and Pereira et al. (2019) (LEAP), and our software framework509

also provides a simplified interface (Figure 4b) for using these advanced tools to measure animal behavior510

and locomotion. We tested our methods across a range of datasets from controlled laboratory environments511

with single individuals to challenging field situations with multiple interacting individuals and variable lighting512

conditions. We found that our methods performwell for all of these situations and require few training examples513

to achieve good predictive performance on new data—without the use of transfer learning. We ran experiments514

to optimize our approach and discovered that some straightforward modifications can greatly improve speed515

and accuracy. Additionally, we demonstrated that these modifications improve not the just the average error516

but also help to reduce extreme prediction errors—a key determinant for the reliability of subsequent statistical517

analysis.518

While our results offer a good-faith comparison of the available methods for animal pose estimation,519

there is inherent uncertainty that we have attempted to account for but may still bias our conclusions. For520

example, deep learning models are trained using stochastic optimization algorithms that give different results521

with each replicate, and the Bayesian statistical methods we use for comparison are explicitly probabilistic in522

nature. There is also great variability across hardware and software configurations when using these models523

in practice (Mathis and Warren, 2018), so performance may change across experimental setups and datasets.524

Additionally, we demonstrated that some models may perform better than others for specific applications525
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(Figure 4 supplement 1), and to account for this, our toolkit offers researchers the ability to choose the model526

that best suits their requirements—including the LEAP model (Pereira et al., 2019) and the DeepLabCut model527

(Mathis et al., 2018).528

We highlighted important considerations when using CNNs for pose estimation and reviewed the progress of529

fully-convolutional regression models from the literature. The latest advancements for these models have been530

driven mostly by a strategy of adding more connections between layers to increase performance and efficiency531

(e.g., Jégou et al. 2017). Future progress for this class of models may require better loss functions (Goodfellow532

et al., 2014; Johnson et al., 2016a; Chen et al., 2017) that more explicitly model the spatial dependencies within533

a scene, models that incorporate the temporal structure of the data (Seethapathi et al., 2019), and more534

mathematically-principled approaches (e.g., Weigert et al. 2018; Roy et al. 2018) such as the application of535

formal probabilistic concepts (Kendall and Gal, 2017) and Bayesian inference at scale (Tran et al., 2018).536

Measuring behavior is a critical factor for many studies in neuroscience (Krakauer et al., 2017). Understand-537

ing the connections between brain activity and behavioral output requires detailed and objective descriptions538

of body posture that match the richness and resolution neural measurement technologies have provided for539

years (Anderson and Perona, 2014; Berman, 2018; Brown and De Bivort, 2018), which our methods and other540

deep-learning–based tools provide (Mathis et al., 2018; Pereira et al., 2019). We have also demonstrated the541

possibility that our toolkit could be used for real-time inference, which allows for closed-loop experiments542

where sensory stimuli or optogenetic stimulation are controlled in response to behavioral measurements543

(e.g., Bath et al. 2014; Stowers et al. 2017). Using real-time measurements in conjunction with optogenetics or544

thermogenetics may be key to disentangling the causal structure of motor output from the brain—especially545

given that recent work has shown an animal’s response to optogenetic stimulation can differ depending on the546

behavior it is currently performing (Cande et al., 2018). Real-time behavioral quantification is also particularly547

important as closed-loop virtual reality is quickly becoming an indispensable tool for studying sensorimotor548

relationships in individuals and collectives (Stowers et al., 2017).549

Quantifying individual movement is essential for revealing the genetic (Kain et al., 2012; Brown et al., 2013;550

Ayroles et al., 2015) and environmental (Bierbach et al., 2017; Akhund-Zade et al., 2019; Versace et al., 2019)551

underpinnings of phenotypic variation in behavior—as well as the phylogeny of behavior (e.g., Berman et al.552

2014b). Measuring individual behavioral phenotypes requires tools that are robust, scaleable, and easy-to-use,553

and our approach offers the ability to quickly and accurately quantify the behavior of many individuals in554

great detail. When combined with tools for genetic manipulations (Ran et al., 2013; Doudna and Charpentier,555

2014), high-throughput behavioral experiments (Alisch et al., 2018; Javer et al., 2018;Werkhoven et al., 2019),556

and behavioral analysis (e.g., Berman et al. 2014a;Wiltschko et al. 2015), our methods could help to provide557

the data resolution and statistical power needed for dissecting the complex relationships between genes,558

environment, and behavioral variation.559

When used together with other tools for localization and tracking (e.g., Pérez-Escudero et al. 2014; Crall560

et al. 2015; Graving 2017; Romero-Ferrero et al. 2019; Wild et al. 2018; Boenisch et al. 2018), our methods561

are capable of reliably measuring posture for multiple interacting individuals. The importance of measuring562

detailed representations of individual behavior when studying animal collectives has been well established563

(Strandburg-Peshkin et al., 2013; Rosenthal et al., 2015; Strandburg-Peshkin et al., 2015, 2017). Estimating564

body posture is an essential first step for unraveling the sensory networks that drive group coordination, such565

as vision-based networks measured via raycasting (Strandburg-Peshkin et al., 2013; Rosenthal et al., 2015).566

Additionally, using body pose estimation in combination with computational models of behavior (e.g., Costa567

et al. 2019,Wiltschko et al. 2015) and unsupervised behavioral classification methods (e.g., Berman et al. 2014a,568

Pereira et al. 2019) may allow for further dissection of how information flows through groups by revealing the569

networks of behavioral contagion across multiple timescales and sensory modalities. While we have provided a570

straightforward solution for applying existing pose estimation methods to measure collective behavior, there571

still remain many challenging scenarios where these methods would fail. For example, tracking posture in a572

densely-packed bee hive or school of fish would require novel solutions to deal with the 3-D nature of individual573

movement, which includes maintaining individual identities and dealing with the resulting occlusions that go574

along with imaging these types of biological systems.575

When combined with unmanned aerial vehicles (UAVs; Schiffman 2014) or other field-based imaging (Fran-576

cisco et al., 2019), applying these methods to the study of individuals and groups in the wild can provide577

high-resolution behavioral data that goes beyond the capabilities of current GPS and accelerometry-based578

technologies (Nagy et al., 2010, 2013; Kays et al., 2015; Strandburg-Peshkin et al., 2015, 2017; Flack et al.,579

2018)—especially for species that impractical to study with tags or collars. Additionally, by applying these meth-580

ods in conjunction with 3-D habitat reconstruction—using techniques such as photogrammetry—field-based581

studies can begin to integrate fine-scale behavioral measurements with the full 3-D environment in which the582

behavior evolved (e.g., Strandburg-Peshkin et al. 2017; Francisco et al. 2019). Future advances will likely allow583
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for the calibration and synchronizaton of imaging devices across multiple UAVs. This would make it possible to584

measure the full 3-D posture of wild animals in scenarios where fixed camera systems (e.g. Nath et al. 2019)585

would not be tractable, such as during migratory or predation events. When combined, these technologies586

could allow researchers to address questions about the behavioral ecology of animals that were previously587

impossible to answer.588

Computer vision algorithms for measuring behavior at the scale of posture have rapidly advanced in a589

very short time; nevertheless, the task of pose estimation is far from solved. There are hard limitations to590

this current generation of pose estimation methods that are primarily related to the requirement for human591

annotations and user-defined keypoints—both in terms of the number of keypoints, the specific body parts592

being tracked, and the inherent difficulty of incorporating temporal information into the annotation and training593

procedure. Often the body parts chosen for annotation are an obvious fit for the experimental design and have594

reliably-visible reference points on the animal’s body that make them easy to annotate. However, in many cases595

the required number and type of body parts needed for data analysis may not so obvious—such as in the case596

of unsupervised behavior classification methods (Berman et al., 2014a; Pereira et al., 2019). Additionally, the597

reference points for labeling images with keypoints can be hard to define and consistently annotate across598

images, which is often the case for soft or flexible-bodied animals like worms and fish. Moreover, due to the599

laborious nature of annotating keypoints, the current generation of methods also rarely takes into account600

the natural temporal structure of the data, instead treating each video frame as a statistically independent601

event, which can lead to extreme prediction errors (reviewed by Seethapathi et al. 2019). Extending these602

methods to track the full three-dimensional posture of animals also typically requires the use of multiple603

synchronized cameras (Nath et al., 2019; Günel et al., 2019), which increases the cost and complexity of604

creating an experimental setup, as well as the manual labor required for annotating a training set, which must605

include labeled data from every camera view.606

These limitations make it clear that fundamentally-different methods may be required to move the field607

forward. Future pose estimation methods will likely replace human annotations with fully-articulated volumetric608

3-D models of the animal’s body (Zuffi et al., 2017), and the 3-D scene will be learned in an unsupervised way609

(e.g., Jaques et al. 2019), where the shape, position, and posture of the animal’s body, the camera position and610

lens parameters, and the background environment and lighting conditions will all be jointly learned directly from611

2-D images by a deep-learning model (Valentin et al., 2019). These inverse graphics models (Kulkarni et al., 2015;612

Sabour et al., 2017; Valentin et al., 2019) will likely take advantage of recently-developed differentiable graphics613

engines that allow 3-D rendering parameters to be straightforwardly controlled using computationally-efficient614

gradient-based optimization methods (Valentin et al., 2019). After optimization, the volumetric 3-D timeseries615

data predicted by the deep learning model could be used directly for behavioral analysis or specific keypoints or616

body parts could be selected for analysis post-hoc. In order to more explicitly incorporate the natural statistical617

properties of the data, these models will also likely rely on the use of perceptual (Johnson et al., 2016a) and618

adversarial (Goodfellow et al., 2014) loss functions that incorporate spatial dependencies within the scene619

rather than modelling each video frame as a set of statistically independent pixel distributions—as is the case620

with current methods when using pixel-wise mean squared error (e.g. Pereira et al. 2019) or cross-entropy loss621

(e.g. Mathis et al. 2018). Because there would be limited or no requirement for human-provided labels, these622

models could also be easily modified to incorporate the temporal structure of the data using autoregressive623

representations (Van den Oord et al., 2016; Oord et al., 2016; Kumar et al., 2019), rather than modeling the624

scene in each video frame as a statistically independent event. Together these advances could lead to larger,625

higher-resolution, more reliable behavioral datasets that could revolutionize our understanding of relationships626

between behavior, the brain, and the environment.627

In conclusion, we have presented a new toolkit, called DeepPoseKit, for automatically measuring animal628

posture from images. We combined recent advances from the literature to create methods that are fast, robust,629

and widely applicable to a range of species and experimental conditions. When designing our framework we em-630

phasized usability across the entire software interface, which we expect will help to make these advanced tools631

accessible to a wider range of researchers. The fast inference and real-time capabilities of our methods should632

also help further reduce barriers to previously intractable questions across many scientific disciplines—including633

neuroscience, ethology, and behavioral ecology—both in the laboratory and the field.634
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Appendix 0 Figure 5. Our subpixel maxima algorithm increases speed without decreasing accuracy. Prediction accuracy on the fly dataset is maintained across
downsampling configurations (a). Letter-value plots (a-top) show the raw error distributions for each configuration. Visualizations of the credible intervals (99%
highest-density region) of the posterior distributions for the mean and variance (a-bottom) illustrate statistical differences between the error distributions, where using
subpixel maxima decreases both the mean and variance of the error distribution. Inference speed is fast and can be run in real-time on single images (batch size = 1) at

∼30-110Hz or offline (batch size = 100) upwards of 1000Hz (b). Plots show the inference speeds for our Stacked DenseNet model across downsampling configurations
as well as the other models we tested for each of our datasets.
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Appendix 0 Figure 6. Predicting the multi-scale geometry of the posture graph reduces error. Letter-value plots (top) show the raw error distributions for each
experiment. Visualizations of the posterior distributions for the mean and variance (bottom) show statistical differences between the error distributions. Predicting the
posture graph decreases both the mean and variance of the error distribution.

Appendix 0 Figure 7. Training time required for our Stacked DenseNet model, the DeepLabCut model (Mathis et al., 2018), and the LEAP model (Pereira et al., 2019)
(n=15 per model) using our zebra dataset. Boxplots and swarm plots (left) show the total training time to convergence (<0.001 improvement in validation loss for 50
epochs). Line plots (right) illustrate the Euclidean error of the validation set during training, where error bars show bootstrapped (n=1000) 99% confidence intervals of
the mean. Fully training models to convergence requires only a few hours of optimization (left) with reasonable accuracy reached after only 1 hour (right) for our
Stacked DenseNet model.
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Appendix 0 Figure 8. A comparison of prediction accuracy with different numbers of training examples from our zebra dataset. The error distributions shown as
letter-value plots (top) illustrate the Euclidean error for the remainder of the dataset not used for training—with a total of 900 labeled examples in the dataset. Line
plots (bottom) show posterior credible intervals (99% highest-density region) for the mean and variance of the error distributions. We tested our Stacked DenseNet
model; the DeepLabCut model (Mathis et al., 2018) with transfer learning—i.e., with weights pretrained on ImageNet (Deng et al., 2009); the same model without
transfer learning—i.e., with randomly-initialized weights; and the LEAP model (Pereira et al., 2019). Our Stacked DenseNet model achieves high accuracy using few
training examples without the use the transfer learning. Using pretrained weights does slightly decrease overall prediction error for the DeepLabCut model (Mathiset al., 2018), but the effect size is relatively small.
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Appendix 1876

Convolutional neural networks (CNNs)877

Artificial neural networks like CNNs are complex, non-linear regression models that "learn" a hierar-
chically–organized set of parameters from real-world data via optimization. These machine learning

models are now commonplace in science and industry and have proven to be surprisingly effective for

a large number of applications where more conventional statistical models have failed (LeCun et al.,
2015). For computer vision tasks, CNN parameters typically take the form of two-dimensional convo-
lutional filters that are optimized to detect spatial features needed to model relationships between

high-dimensional image data and some related variable(s) of interest, such as locations in space—e.g.

posture keypoints—or semantic labels (Long et al., 2015; Badrinarayanan et al., 2015).

878

879
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Once a training set is generated (Appendix 2), a CNN model must be selected and optimized to

perform the prediction task. CNNs are incredibly flexible with regard to how models are specified and

trained, which is both an advantage and a disadvantage. This flexibility means models can be adapted

to almost any computer vision task, but it also means the number of possible model architectures and

optimization schemes is very large. This can make selecting an architecture and specifying hyperpa-

rameters a challenging process. However, most research on pose estimation has converged on a set of

models that generally work well for this task (Appendix 3).
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After selecting an architecture, the parameters of the model are set to an initial value and then

iteratively updated to minimize some objective function, or loss function, that describes the difference
between the model’s predictive distribution and the true distribution of the data—in other words,

the likelihood of the model’s output is maximized. These parameter updates are performed using a

modified version of the gradient descent algorithm (Cauchy 1847) known asmini-batch stochastic gradient
descent—often referred to as simply stochastic gradient descent or SGD (Robbins and Monro, 1951; Kiefer
et al., 1952). SGD iteratively optimizes the model parameters using small randomly-selected subsamples,
or batches, of training data. Using SGD allows the model to be trained on extremely large datasets
in an iterative "online" fashion without the need to load the entire dataset into memory. The model

parameters are updated with each batch by adjusting the parameter values in a direction that minimizes

the error—where one round of training on the full dataset is commonly referred to as an epoch. The
original SGD algorithm requires careful selection and tuning of hyperparameters to successfully optimize

a model, but modern versions of the algorithm, such as ADAM (Kingma and Ba, 2014), automatically
tune these hyperparameters, which makes optimization more straightforward.
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Themodel parameters are optimized until they reach a convergence criterion, which is somemeasure

of performance that indicates the model has reached a good location in parameter space. The most

commonly used convergence criterion is a measure of predictive accuracy—often the loss function

used for optimization—on a held-out validation set—a subsample of the training data not used for
optimization—that evaluates the model’s ability to generalize to new "out-of-sample" data. The model is

typically evaluated at the end of each training epoch to assess performance on the validation set. Once

performance on the validation set stops improving, training is usually stopped to prevent the model

from overfitting to the training set—a technique known as early stopping (Prechelt, 1998).
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Appendix 2915

Collecting training data916

Depending on the variability of the data, CNNs usually require thousands or tens of thousands of

manually-annotated examples in order to reach human-level accuracy. However, in laboratory settings,

sources of image variation like lighting and spatial scale can be more easily controlled, which minimizes

the number of training examples needed to achieve accurate predictions.

917

918

919

920

This need for a large training set can be further reduced in a number of ways. Two commonly used

methods include (1) transfer learning—using a model with parameters that are pre-trained on a larger
set of images, such as the ImageNet database (Deng et al., 2009), containing diverse features (Pratt,
1993; Insafutdinov et al., 2016;Mathis et al., 2018)— and (2) augmentation— artificially increasing data
variance by applying spatial and noise transformations such as flipping (mirroring), rotating, scaling, and

adding different forms of noise or artificial occlusions. Both of these methods act as useful forms of

regularization—incorporating a prior distribution—that allows the model to generalize well to new data
even when the training set is small. Transfer learning incorporates prior information that images from

the full dataset should contain statistical features similar to other images of the natural world, while

augmentation incorporates prior knowledge that animals are bilaterally symmetric, can vary in their

body size, position, and orientation, and that noise and occlusions sometimes occur.
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Pereira et al. (2019) introduced two especially clever solutions for collecting an adequate training
set. First, they cluster unannotated images based on pixel variance and uniformly sample images from

each cluster, which reduces correlation between training examples and ensures the training data are

representative of the entire distribution of possible images. Second, they use active learning where
a CNN is trained on a small number of annotated examples and is then used to initialize keypoint

locations for a larger set of unannotated data. These pre-initialized data are then manually corrected

by the annotator, the model is retrained, and the unannotated data are re-initialized. The annotator

applies this process iteratively as the training set grows larger until they are providing only minor

adjustments to the pre-initialized data. This “human-in-the-loop”-style annotation expedites the process

of generating an adequately large training set by reducing the cognitive load on the annotator—where

the pose estimation model serves as a “cognitive partner”. Such a strategy also allows the annotator to

automatically select new training examples based on the performance of the current iteration—where

low-confidence predictions indicate examples that should be annotated for maximum improvement

(Figure 1).
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Of course, annotating image data requires software made for this purpose. Pereira et al. (2019)
provide a custom annotation GUI written in MATLAB specifically designed for annotating posture using

an active learning strategy. Mathis et al. (2018) recently added a Python-based GUI in an updated
version of their software—including active learning and image sampling methods (see Nath et al. 2019).
Our framework also includes a Python-based GUI for annotating data with similar features toMathis
et al. (2018) and Pereira et al. (2019).
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Appendix 3952

Fully-convolutional regression953

For the task of pose estimation, a CNN is optimized to predict the locations of postural keypoints in an

image. One approach is to use a CNN to directly predict the numerical value of each keypoint coordinate

as an output. However, making predictions in this way removes real-world constraints on the model’s

predictive distribution by destroying spatial relationships within images, which negates many of the

advantages of using CNNs in the first place.
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CNNs are particularly good at transforming one image to produce another related image, or set

of images, while preserving spatial relationships and allowing for translation-invariant predictions—a

configuration known as a fully-convolutional neural network or F-CNN (Long et al., 2015). Therefore,
instead of directly regressing images to coordinate values, a popular solution (Newell et al., 2016;
Insafutdinov et al., 2016;Mathis et al., 2018; Pereira et al., 2019) is to optimize a F-CNN that transforms
images to predict a stack of output images known as confidence maps—one for each keypoint. Each
confidence map in the output volume contains a single, two-dimensional, symmetric Gaussian indicating

the location of each joint, and the scalar value of the peak indicates the confidence score of the

prediction—typically a value between 0 and 1. The confidence maps are then processed to produce the

coordinates of each keypoint.
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In the case ofmultiple pose estimation where an image contains many individuals, the global geom-
etry of the posture graph is also predicted by training the model to produce part affinity fields (Cao
et al., 2017)— directional vector fields drawn between joints in the posture graph—or pairwise terms
(Insafutdinov et al., 2016)—vector fields of the conditional distributions between posture keypoints
(e.g. p(foot|head)). This allows multiple posture graphs to be disentangled from the image using graph
partitioning as the vector fields indicate the probability of the connection between joints (see Cao et al.
2017 for details).
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Box 1. Encoder-decoder models976977

skip connections

{encoder {decoder

input output

978

Box 1 Figure 1. An illustration of the basic encoder-decoder design. The encoder converts the input images into spatial
features, and the decoder transforms spatial features to the desired output.
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980

A popular type of F-CNN (Appendix 3) for solving posture regression problems is known as an encoder-
decoder model (Figure 1), which first gained popularity for the task of semantic segmentation—a supervised
computer vision problem where each pixel in an image is classified into a one of several labeled categories

like “dog”, “tree”, or “road” (Long et al., 2015). This model is designed to repeatedly convolve and downsam-
ple input images in the bottom-up encoder step and then convolve and upsample the encoder’s output in
the top-down decoder step to produce the final output. Repeatedly applying convolutions and non-linear
functions, or activations, to the input images transforms pixel values into higher-order spatial features,
while downsampling and upsampling respectively increases and decreases the scale and complexity of

these features.
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Badrinarayanan et al. (2015) were the first to popularize a form of this model—known as SegNet— for
semantic segmentation. However, this basic design is inherently limited because the decoder relies solely

on the downsampled output from the encoder, which restricts the features used for predictions to those

with the largest spatial scale and highest complexity. For example, a very deep network might learn a

complex spatial pattern for predicting “grass” or “trees”, but because it cannot directly access information

from the earliest layers of the network, it cannot use the simplest features that plants are green and

brown. Subsequent work by Ronneberger et al. (2015) improved on these problems with the addition of
residual or skip connections between the encoder and decoder, where feature maps from encoder layers
are concatenated to those decoder layers with the same spatial scale. This set of connections then allows

the optimizer, rather than the user, to select the most relevant spatial scale(s) for making predictions.
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Jégou et al. (2017) are the latest to advance the encoder-decoder paradigm. These researchers introduced
a fully-convolutional version of Huang et al.’s (2017a) DenseNet architecture known as a fully-convolutional
DenseNet, or FC-DenseNet. FC-DenseNet’s key improvement is an elaborate set of feed-forward residual
connections where the input to each convolutional layer is a concatenated stack of feature maps from all

previous layers. This densely-connected design was motivated by the insight that many state-of-the-art

models learn a large proportion of redundant features. Most CNNs are not designed so that the final

output layers can access all feature maps in the network simultaneously, and this limitation causes these

networks to “forget” and “relearn” important features as the input images are transformed to produce

the output. In the case of the incredibly popular ResNet-101 (He et al., 2016) nearly 40% of the features
can be classified as redundant (Ayinde and Zurada, 2018). A densely-connected architecture has the
advantages of reduced feature redundancy, increased feature reuse, enhanced feature propagation from

early layers to later layers, and subsequently, a substantial reduction in the number of parameters needed

to achieve state-of-the-art results (Huang et al., 2017a). Recent work has also shown that DenseNet’s
elaborate residual connections have the pleasant side-effect of convexifying the loss landscape during

optimization (Li et al., 2018), which allows for faster optimization and increases the likelihood of reaching
a good optimum.
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Appendix 3 Figure 1. An illustration showing the progression of encoder-decoder architectures from the literature—ordered by performance from top to bottom (see
Appendix 3 Box 1 for further details). Most advances in performance have come from adding connections between layers in the network, culminating in FC-DenseNet

from Jégou et al. (2017). Lines in each illustration indicate connections between convolutional blocks with the thickness of the line indicating the magnitude of
information flow between layers in the network. The size of each convolution block indicates the relative number of feature maps (width) and spatial scale (height). The

callout for FC-DenseNet (Jégou et al. 2017; bottom-left) shows the elaborate set of skip connections within each densely-connected convolutional block as well as our
additions of bottleneck and compression layers (described by Huang et al. 2017a) to increase efficiency (Appendix 7)
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Appendix 41016

The state of the art for individual pose estimation1017

Many of the current state-of-the-art models for individual posture estimation are based on the design

from Newell et al. (2016) (e.g. Ke et al. 2018, Chen et al. 2017; also see benchmark results from An-
driluka et al. 2014), but employ various modifications that increase complexity to improve performance.
Newell et al. (2016) employ what they call a Stacked Hourglass network (Appendix 3 Figure 1), which con-
sists of a series of multi-scale encoder-decoder hourglassmodules connected together in a feed-forward
configuration (Figure 2). The main novelties these researchers introduce include (1) stacking multiple

hourglass networks together for repeated top-down-bottom-up inference, (2) using convolutional blocks

based on the ResNet architecture (He et al., 2016) with residual connections between the input and
output of each block, and (3) using residual connections between the encoder and decoder (similar to

Ronneberger et al. 2015) with residual blocks in between. Newell et al. (2016) also apply a technique
known as intermediate supervision (Figure 2) where the loss function used for model training is applied to
the output of each hourglass as a way of improving optimization across the model’s many layers. Recent

work by Jégou et al. (2017) has further improved on this encoder-decoder design (see Appendix 3 Box 1
and Appendix 3 Figure 1), but to the best of our knowledge, the model introduced by Jégou et al. (2017)
has not been previously applied to pose estimation.
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Appendix 51033

Overparameterization and the limitations of LEAP1034

Overparameterization is a key limitation for many pose estimation methods, and addressing this

problem is critical for high-performance applications. Pereira et al. (2019) approached this problem by
designing their LEAP model after the model from Badrinarayanan et al. (2015), which is a straighforward
encoder-decoder design (Appendix 3 Figure 1; Appendix 3 Box 1). They benchmarked their model on

posture estimation tasks for laboratory animals and compared performance with the more-complex

Stacked Hourglass model from Newell et al. (2016). They found their smaller, simplified model achieved
equal or better median accuracy with dramatic improvements in inference speed up to 185 Hz. However,

Pereira et al. (2019) first rotationally and translationally aligned each image to improve performance,
and their reported inference speeds do not include this computationally expensive preprocessing step.

Additionally, rotationally and translationally aligning images is not always possible when the background

is complex or highly-variable—such as in field settings—or the study animal has a non-rigid body. This

limitation makes the LEAP model (Pereira et al., 2019) unsuitable in many cases. While their approach is
simple and effective for a multitude of experimental setups, the LEAP model (Pereira et al., 2019) is also
implicitly limited in the same ways as Badrinarayanan et al.’s SegNet model (see Appendix 3 Box 1 for
details). The LEAP model cannot make predictions using multiple spatial scales and is not robust to data

variance such as rotations (Pereira et al., 2019).
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Appendix 61051

Linear model fitting with Stan1052

We estimated the joint posterior p(�� , ��|X, y) for each model using the No-U-Turn Sampler (NUTS;Hoffman and Gelman 2014), a self-tuning variant of the Hamiltonian Monte Carlo (HMC) algorithm
(Duane et al., 1987), implemented in Stan (Carpenter et al., 2017). We drew HMC samples using 4
independent Markov chains consisting of 1,000 warm-up iterations and 1,000 sampling iterations for

a total of 4,000 sampling iterations. To speed up sampling, we randomly subsampled 20% of the data
from each replicate when fitting each linear model, and we fit each model 5 times to ensure the results

were consistent. All models converged without any signs of pathological behavior. We performed a

posterior predictive check by visually inspecting predictive samples to assess model fit. For our priors

we chose relatively uninformative distributions �� ∼ Caucℎy(0, 5) and �� ∼ Caucℎy(0, 10), but we found
that the choice of prior generally did not have an effect on the final result due to the large amount of

data used to fit each model.
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Appendix 71064

Stacked DenseNet1065

Our Stacked DenseNet model consists of an initial 7×7 convolutional layer with stride 2, to efficiently
downsample the input resolution—following Newell et al. (2016)—followed by a stack of densely-
connected hourglass networks with intermediate supervision (Appendix 4) applied at the output of

each network. We also include hyperparameters for the bottleneck and compression layers described

by Huang et al. (2017a) to make the model as efficient as possible. These consist of applying a 1×1
convolution to inexpensively compress the number of feature maps before each 3×3 convolution as well
as when downsampling and upsampling (see Huang et al. 2017a and Appendix 3 Figure 1 for details).
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Model hyperparameters1073

For our Stacked Hourglass model we used a block size of 64 filters (64 filters per 3×3 convolution) with a
bottleneck factor of 2 (64/2 = 32 filters per 1×1 bottleneck block). For our Stacked DenseNet model we
used a growth rate of 48 (48 filters per 3×3 convolution), a bottleneck factor of 1 (1×growth rate = 48
filters per 1×1 bottleneck block), and a compression factor of 0.5 (feature maps compressed with 1×1
convolution to 0.5m when upsampling and downsampling, where m is the number of feature maps). For
our Stacked DenseNet model we also replaced the typical configuration of batch normalization and ReLU

activations (Goodfellow et al., 2016) with the more recently-developed self-normalizing SELU activation
function (Klambauer et al., 2017), as we found this modification increased inference speed. For the
LEAP model (Pereira et al., 2019) we used a 1× resolution output with integer-based global maxima
because we wanted to compare our more complex models with this model in the original configuration

described by Pereira et al. (2019). The LEAP model could be modified to output smaller confidence
maps and increase inference speed, but because there is no obvious "best" way to alter the model to

achieve this, we forgo any modification. Additionally, applying our subpixel maxima algorithm at high

resolution reduces inference speed compared to integer-based maxima, so this would bias our speed

comparisons.
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Our implementation of the DeepLabCut model1089

Because the DeepLabCut model fromMathis et al. (2018) was not implemented in Keras (a requirement
for our pose estimation framework), we re-implemented it. Implementing this model directly in our

framework is important to ensure model training and data augmentation are identical when making

comparisons between models. As a consequence, our version of this model does not exactly match the

description in the paper but is identical except for the output. Rather than using the location refinement

maps described by Insafutdinov et al. (2016) and post-processing confidence maps on the CPU, our
version of the DeepLabCut model (Mathis et al., 2018) has an additional transposed convolutional layer
to upsample the output to

1
4× resolution and uses our subpixel maxima algorithm.
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To demonstrate that our implementation of the DeepLabCut model matches the performance

described byMathis et al. (2018), we compared prediction accuracy between the two frameworks using
the odor-trail mouse dataset provided by Mathis et al. (2018) (downloaded from https://github.com/
AlexEMG/DeepLabCut/). This dataset consists of 116 images of a freely-moving individual mouse labeled

with four keypoints describing the location of the snout, ears, and the base of the tail. See Mathis
et al. (2018) for further details on this dataset. We trained both models using 95% training and 5%
validation data and applied data augmentations for both frameworks using the data augmentation

procedure described by Nath et al. (2019). We tried to match these data augmentations as best as
possible in DeepPoseKit; however, rather than cropping images as described by Nath et al. (2019), we
randomly translated the images independently along the horizontal and vertical axis by drawing from a

uniform distribution in the range [-100%, +100%]—where percentages are relative to the size of each

axis. Translating the images in this way should serve the same purpose as cropping them.
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We trained the original DeepLabCut model (Mathis et al., 2018) using the default settings and
recommendations from Nath et al. (2019) for 1 million training iterations. See Mathis et al. (2018);
Nath et al. (2019) for further details on the data augmentation and training routine for the original
implementation of the DeepLabCut model (Mathis et al., 2018). For our re-implementation of the
DeepLabCut model (Mathis et al., 2018) we trained the model with the same batch size and optimization
scheme described in the "Model training" section. We then calculated the the prediction accuracy on the
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full data set. We repeated this procedure five times for each model and fit a Bayesian linear model to a

randomly selected subset of the evaluation data to compare the results statistically (see Appendix 6).

1110

1111

1112

1113

1114

1115

1116

1117

These results demonstrate that our re-implementation of and modification to the DeepLabCut model

(Mathis et al., 2018) have little effect on prediction accuracy (Appendix 7 Figure 1). We also provide
qualitative comparisons of these results in Appendix 7 Figure 1-Figure supplement 1 and Appendix 7

Figure 1-video 1. For these qualitative comparisons, we also added an additional rotational augmentation

(drawing from a uniform distribution in the range [-180°, +180°)) when training our implementation

of the DeepLabCut model (Mathis et al., 2018) as we noticed this improved generalization to the
video for situations where the mouse rotated its body axis. To the best of our knowledge, rotational

augmentations are not currently available when using the software fromMathis et al. (2018); Nath et al.
(2019), which demonstrates the flexibility of the data augmentation pipeline (Jung, 2018) for DeepPoseKit.
The inference speed for the odor-trail mouse dataset using our implementation of the DeepLabCut

model (Mathis et al., 2018) is ∼49Hz with a batch size of 64 (offline speeds) and ∼35Hz with a batch
size of 1 (real-time speeds) at full resolution 640×480, which matches well with results from Mathis
and Warren (2018) of ∼47Hz and ∼32Hz respectively. This suggests our modifications did not affect the
speed of the model and that our speed comparisons are also reasonable. Because the training routine

could be changed for any underlying model—including the new models we present in this paper—this

factor is not relevant when making comparisons as long as training is identical for all models being

compared, which we ensure when performing our comparisons.
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Appendix 7 Figure 1. Prediction errors for the odor-trail mouse dataset fromMathis et al. (2018) using the original
implementation of the DeepLabCut model (Mathis et al., 2018; Nath et al., 2019) and our modified version of this model
implemented in DeepPoseKit. Mean prediction error is slightly lower for the DeepPoseKit implementation, but there is no

discernible difference in variance. These results indicate that the models achieve nearly identical prediction accuracy despite

modification. We also provide qualitative comparisons of these results in Appendix 7 Figure 1-Figure supplements 1 and 2, and

Appendix 7 Figure 1-video 1.

Figure 1–Figure supplement 1. Plots of the predicted output for Appendix 7 Figure 1-video 1 comparing our implementation
of the DeepLabCut model (Mathis et al., 2018) in DeepPoseKit vs. the original implementation fromMathis et al. (2018); Nath
et al. (2019). Note the many fast jumps in position for the original verison fromMathis et al. (2018), which indicates prediction
errors.

Figure 1–Figure supplement 2. Plots of the temporal derivatives of the predicted output for Appendix 7 Figure 1-video 1
comparing our implementation of the DeepLabCut model (Mathis et al., 2018) in DeepPoseKit vs. the original implementation
from Mathis et al. (2018); Nath et al. (2019). Note the many fast jumps in position for the original verison from Mathis et al.
(2018), which indicates prediction errors.
Figure 1–video 1. A video comparison of the tracking output of our implementation of the DeepLabCut model (Mathis
et al., 2018) in DeepPoseKit vs. the original implementation from Mathis et al. (2018); Nath et al. (2019). https://youtu.be/
YFmO5C0hUw4
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Appendix 81135

Depthwise-separable convolutions for memory-limited applications1136

In an effort to maximize model efficiency, we also experimented with replacing 3×3 convolutions in
our model implementations with 3×3 depthwise-separable convolutions—first introduced by Chollet
(2017) and now commonly used in fast, efficient “mobile” CNNs (e.g. Sandler et al. 2018). In theory this
modification should both reduce the memory footprint of the model and increase inference speed.

However we found that, while this does drastically decrease the memory footprint of our already

memory-efficient models, it slightly decreases accuracy and does not improve inference speed, so we

opt for a full 3×3 convolution instead. We suspect that this discrepancy between theory and application is
due to inefficient implementations of depthwise-separable convolutions in many popular deep learning

frameworks, which will hopefully improve in the near future. At the moment we include this option as

a hyperparameter for our Stacked DenseNet model, but we recommend using depthwise-separable

convolutions only for applications that require a small memory footprint such as training on a lower-end

GPU with limited memory or running inference on a mobile device.
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Figure 4–Figure supplement 1. Euclidean error distributions for each model across our three datasets. Letter-
value plots (left) show the raw error distributions for each model. Violinplots of the posterior distributions for
the mean and variance (right) show statistical differences between the error distributions. Overall the LEAP
model (Pereira et al., 2019) was the worst performer on every dataset in terms of both mean and variance.
Our Stacked Densenet model was the best performer for the fly dataset, while our Stacked DenseNet model

and the DeepLabCut model (Mathis et al., 2018) both performed equally well on the locust and zebra datasets.
The posteriors for the DeepLabCut model (Mathis et al., 2018) and our Stacked DenseNet model are highly
overlapping for these datasets, which suggests they are not statistically discernible from one another. Our

Stacked Hourglass model (Newell et al., 2016) performed equally to the DeepLabCut model (Mathis et al., 2018)
and our Stacked DenseNet model for the locust dataset but performed slightly worse for the fly and zebra

datasets.
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Figure 1–Figure supplement 1. Plots of the predicted output for Appendix 7 Figure 1-video 1 comparing our
implementation of the DeepLabCut model (Mathis et al., 2018) in DeepPoseKit vs. the original implementation
fromMathis et al. (2018); Nath et al. (2019). Note the many fast jumps in position for the original verison from
Mathis et al. (2018), which indicates prediction errors.
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Figure 1–Figure supplement 2. Plots of the temporal derivatives of the predicted output for Appendix 7 Figure
1-video 1 comparing our implementation of the DeepLabCut model (Mathis et al., 2018) in DeepPoseKit vs. the
original implementation fromMathis et al. (2018); Nath et al. (2019). Note the many fast jumps in position for
the original verison fromMathis et al. (2018), which indicates prediction errors.
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