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 15 

The cortico-striatal-pallidal-thalamic and limbic circuits are suggested to play a crucial role in 16 

the pathophysiology of depression. Stimulation of deep brain targets might improve 17 

symptoms in treatment-resistant depression. However, a better understanding of 18 

connectivity properties of deep brain structures potentially implicated in deep brain 19 

stimulation (DBS) treatment is needed. Using high-density EEG, we explored the directed 20 

functional connectivity at rest in 25 healthy subjects and 26 patients with moderate to severe 21 

depression within the bipolar affective disorder, depressive episode, and recurrent 22 

depressive disorder. We computed the Partial Directed Coherence on the source EEG signals 23 

focusing on the amygdala, anterior cingulate, putamen, pallidum, caudate, and thalamus. The 24 

global efficiency for the whole brain and the local efficiency, clustering coefficient, outflow, 25 

and strength for the selected structures were calculated. In the right amygdala, all the 26 

network metrics were significantly higher (p<0.001) in patients than in controls. The global 27 

efficiency was significantly higher (p<0.05) in patients than in controls, showed no correlation 28 

with status of depression, but decreased with increasing medication intake (R2 =29 

0.59 and p = 1.52e − 05). The amygdala seems to play an important role in neurobiology of 30 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2020. ; https://doi.org/10.1101/620252doi: bioRxiv preprint 

https://doi.org/10.1101/620252
http://creativecommons.org/licenses/by/4.0/


2 

 

depression. Practical treatment studies would be necessary to assess the amygdala as a 31 

potential future DBS target for treating depression. 32 

 33 

Affective disorders belong to the most common and most serious psychiatric disorders 1. A 34 

crucial role of the cortico-striatal-pallidal-thalamic and limbic circuits in the neurobiology of 35 

depression was repeatedly reported 2 3 4. Magnetic resonance imaging, functional magnetic 36 

resonance imaging (fMRI), magnetoencephalographic, and electroencephalographic (EEG) 37 

studies have confirmed that depressive patients show structural impairments and functional 38 

disbalances of brain networks that involve structures engaged in a) emotions, i.e. amygdala, 39 

subgenual anterior cingulate, caudate, putamen and pallidum 5 3 6 7 8 9 10 11 12; b) self-referential 40 

processes, i.e. medial prefrontal cortex, precuneus, and posterior cingulate cortex 13 14; c) 41 

memory, i.e. hippocampus, parahippocampal cortex 15; d) visual processing, i.e. fusiform 42 

gyrus, lingual gyrus, and lateral temporal cortex 16; and e) attention, i.e. dorsolateral prefrontal 43 

cortex, anterior cingulate cortex (ACC), thalamus, and insula 17 10 11 12. Moreover, post-mortem 44 

morphometric measurements revealed smaller volumes of the hypothalamus, pallidum, 45 

putamen and thalamus in patients with affective disorders 18. 46 

Many depressive patients fail to respond to pharmacological therapy resulting in 1 – 3% 47 

prevalence of treatment-resistant depression (TRD) 19. One of the newest therapeutic 48 

approaches for TRD is an invasive direct electrical stimulation of relevant deep brain structures 49 

20. Both unipolar and bipolar depression patients might benefit from deep brain stimulation 50 

(DBS) treatment 21, although an optimal approach, including selection of an optimal target 51 

structure, has yet to be established. Selection of the brain structures, that are currently being 52 

tested as DBS targets for treating depression 20,  is mostly supported with the evidence from 53 

lesional 22 23, animal 24 25 26 27 28 29 30 , and neuroimaging 31 32 33 34 35 36 37 38 studies. The latter 54 

approach provides evidence from a network perspective 39 40 showing dysbalances in the 55 

intrinsic functional architecture of the brain. During a resting state, patients with depression as 56 

compared to healthy controls show hyperconnectivity within the default mode network 13 33 38, 57 

hypoconnectivity within the frontoparietal network 41 42,  hyperconnectivity between the 58 

default mode and frontoparietal networks 43, and dysbalances in connectivity within the 59 

salience 44 45 and dorsal attention 46 networks. Functional connectivity anomalies between the 60 

hippocampus, cortical and subcortical regions 47 similar to those observed in humans with 61 

depression, were also observed in a genetic rat model of major depression. The 62 
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pathophysiological basis of depression, however, still remains incompletely understood. 63 

Particularly, better understanding of the connectivity properties of deep brain structures 64 

potentially implicated in DBS treatment could have an important value.  65 

Neuroimaging techniques, such as fMRI and EEG, allow to investigate the integration of 66 

functionally specialized brain regions in a network. Inferring the dynamical interactions among 67 

simultaneously recorded brain signals can reveal useful information in abnormal connectivity 68 

patterns due to pathologies.  69 

The connectivity studies based on fMRI are usually based on correlation analyses without 70 

providing knowledge about the direction of the information flow between the examined 71 

regions. Understanding the directionality is, however, crucial when searching for suitable DBS 72 

targets for treating TRD, because the antidepressant effect of DBS treatment might be caused 73 

by changes in the activity of remote structures that receive inputs from the stimulated region. 74 

For example, it has been hypothesized that DBS applied in the nucleus accumbens might 75 

influence the activity in the ventral (subgenual ACC, orbitofrontal and insular cortices) and 76 

dorsal (dorsal ACC, prefrontal and premotor cortices) subnetworks of the depression 77 

neurocircuitry 48. Causal link between a functional inhibition of the lateral habenula and 78 

reduction of the default mode network hyperconnectivity was shown on a rat model of 79 

depression 30, which might explain the therapeutic effect of the lateral habenula DBS in TRD 80 

patients  49. In other words, the functional inhibition of a deep brain structure via DBS might 81 

cure depression through reduction of the hyperconnectivity in the large-scale brain network. 82 

Another example of a particular role of the stimulated structure in the large-scale neural 83 

communication is the ACC, whose possible integrative role in cognitive processing 50 51 might 84 

explain the most recently reported high efficacy of DBS to subgenual ACC in treating 85 

depression 52.  86 

The growing  interest in investigating the dynamical causal interactions that characterize 87 

resting-state or task-related brain networks has increased the use of adaptive estimation 88 

algorithms during recent years. Particularly, Granger causality based on adaptive filtering 89 

algorithms is a well suited procedure to study dynamical networks consisting of highly non-90 

stationary neural signals such as EEG signals 53 54. The adaptive filtering enables to deal with 91 

time-varying multivariate time-series and test direct causal links among brain regions. A signal 92 

𝑥 is said to Granger-cause another signal 𝑦 if the history of  𝑥 contains information that helps 93 

to predict 𝑦 above and beyond the information contained in the history of 𝑦 alone 55.  94 
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Aberrant functional EEG-based connectivity in depressive patients was reported in studies 95 

where network metrics were computed directly between sensor recordings 56 57 58 59 60 61. Since 96 

each EEG channel is a linear mixture of simultaneously active neural and other 97 

electrophysiological sources, whose activities are volume conducted to the scalp electrodes, 98 

the utility of such observations on the sensor level is limited 62 63. This limitation is particularly 99 

remarkable in connectivity studies which aim to identify the real active relations between brain 100 

regions. Connectivity analysis performed in the source space enables to partially overcome this 101 

issue 62.  Indeed, Partial Directed Coherence estimators do not take into account zero-lag 102 

interactions that describe the instantaneous propagation of activity, considering the zero-phase 103 

connectivity as noise added to lagged connectivity patterns of interest. For this reason, directed 104 

functional connectivity analysis based on electrical source imaging proved to be a promising 105 

tool to study the dynamics of spontaneous brain activity in healthy subjects and in various brain 106 

disorders 64 65 66. Despite this fact, the electromagnetic imaging has not been yet used in patients 107 

with depression to study the directed connectivity of resting-state networks. 108 

In the current study, we explored the directed functional connectivity at rest in depression using 109 

high-density EEG. We computed the Partial Directed Coherence on the source EEG signals 110 

focusing on the role of the amygdala, anterior cingulate, putamen, pallidum, caudate, and 111 

thalamus in large-scale brain network activities. We hypothesized that the resting-state directed 112 

functional connectivity in these deep brain structures might be disrupted in patients with 113 

depression compared to healthy controls.  114 

 115 

Results 116 

In line with the aim of the study we focused on resting-state electrophysiological activity of 117 

twelve regions of interest (ROIs) of selected deep brain structures. Further details on results on 118 

the ROIs of the whole brain are reported in the Supplementary Information. 119 

Power spectra. We found an overall increase in power in theta and alpha frequency bands in 120 

patients compared to controls at both the population and single-subject levels. At the 121 

population level, significantly higher power (p<0.05) in patients was found in all investigated 122 

subcortical regions in both frequency bands (see Figure 1). At the single-subject level, a 123 

significantly higher power (p<0.05) in patients than in controls was observed in the [4-12] Hz 124 

frequency range bilaterally in the thalamus, pallidum, putamen, and caudate. Moreover, a 125 
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significant left-lateralized power increase (p<0.05) in patients vs controls was observed in the 126 

anterior cingulate and amygdala in this frequency range (see Figure 2b).  127 

We found a significantly decreased power in delta [1-4] Hz  and beta [12-18] Hz frequency 128 

bands in patients compared to controls in all investigated ROIs, when evaluating the results at 129 

the population level (Figure 1). At the single-subject level, delta power was significantly 130 

decreased in patients vs controls in the right caudate, putamen, and pallidum (Figure 2a). There 131 

was no significant difference in beta power between the two groups in any investigated ROI at 132 

the single-subject level (see Figure 2c). 133 

Network metrics. The connectivity network measures that we performed in the [4-12] Hz 134 

frequency range, showed increased values in patients compared to controls at both levels. At 135 

the population level, the local efficiency measured in patients was higher than in controls in all 136 

examined subcortical ROIs (see Figure 3). At the single-subject level, the global efficiency was 137 

significantly higher (p<0.05) in patients (mean ± standard deviation:  0.0129 ±0.0021) than in 138 

controls (mean ± standard deviation:  0.0126±0.0019). Considering all brain regions, the local 139 

efficiency tended to be higher in patients compared to controls (see Supplementary Fig. S2 140 

online) but the significant differences corresponded only to the right precentral, amygdala and 141 

caudate regions (p<0.05). We observed significant correlations between the local efficiency 142 

and power in the [4-12] Hz frequency range in subcortical ROIs but it was not generalized 143 

among all twelve subcortical ROIs (see Supplementary Fig. S3 online). No significant 144 

correlations were found between the local efficiency and power in delta and beta bands. All the 145 

network measures computed on the twelve selected ROIs showed significantly higher values 146 

in patients than in controls in the right amygdala. The strength, local efficiency, and clustering 147 

coefficient of the right caudate were significantly higher in patients than controls, while there 148 

was no significant difference between the groups in the outflow from this ROI. There were no 149 

significant differences in any network metric in the anterior cingulate, thalamus, pallidum, or 150 

putamen (see Figure 4). 151 

There were no statistical differences in the network metrics estimated between the left and right 152 

hemisphere in each subject. The laterality indices showed that neither controls, nor patients had 153 

a lateralization in connectivity results of the six investigated deep brain structures. No 154 

significant differences in the laterality indices were observed comparing controls and patients. 155 

Effect of medication on network impairments. We found no correlation of the connectivity 156 

results with the intake of benzodiazepines, while there was a significant relationship between 157 
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the global efficiency as predictor of the intake of AD/AP/MS medication (AD/AP/MS ~ 1 + 158 

GE + GE2; Root Mean Squared Error: 0.716; 𝑅2 = 0.59; F-statistic vs. constant model: 159 

18.7, p = 1.52e − 05). The global efficiency decreased with increasing medication score (see 160 

Figure 5). We observed no significant correlation (𝑅2 < 0.05 and p > 0.8) between the 161 

connectivity results and any of the parameters that describe the status of depression (MADRS 162 

score, CGI score, illness duration, and the number of episodes) or the demographic profile (age 163 

and education level). 164 

 165 

Figure 1 166 

 167 

 168 
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Figure 2 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2020. ; https://doi.org/10.1101/620252doi: bioRxiv preprint 

https://doi.org/10.1101/620252
http://creativecommons.org/licenses/by/4.0/


8 

 

Figure 3 177 

 178 

 179 

Figure 4180 

 181 
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Figure 5 182 

183 

Discussion 184 

In this study, we investigated resting-state network alterations using iPDC on source signals of 185 

high-density EEG in patients with depression compared to healthy controls. We explored the 186 

directed functional connectivity of the amygdala, anterior cingulate, putamen, pallidum, 187 

caudate, and thalamus, among them and with all the other brain regions in the time and 188 

frequency domain. We exploited the Kalman filter algorithm 67 assuming that resting state EEG 189 

segments were multiple realizations of the same process. Although we collapsed the temporal 190 

dimension to evaluate the network metrics, we decided to use a time-varying adaptive 191 

algorithm instead of a stationary autoregressive model to take into account the possible non-192 

stationarity of the EEG signal and to more accurately capture this variability before collapsing 193 

the time with a summary measure, e.g., the median. 194 

To sum up, we demonstrated that in patients with moderate to severe depression: (1) the 195 

directed functional connectivity was significantly increased compared to controls in the right 196 

amygdala and the right caudate; (2) the power in theta and alpha frequency bands was 197 

significantly increased compared to controls in all investigated brain anatomical structures; (3) 198 

higher medication intake was associated with lower overall driving from the investigated 199 

regions. 200 

Increased right amygdala directed functional connectivity in depression. The most robust 201 

finding in our study was an abnormally increased directed functional connectivity in the right 202 
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amygdala during resting-state in depressive patients. Even though the left-right asymmetry was 203 

not demonstrated by the laterality indices, a right-lateralized hyper-connectivity, as revealed 204 

with all the computed network metrics, was observed in the amygdala. We observed an increase 205 

in outgoing connections from the right amygdala as reflected with significantly higher outflow 206 

and strength in patients compared to controls. Moreover, we found a hyper-connectivity in the 207 

local networks of the right amygdala as reflected with significantly higher local efficiency and 208 

clustering coefficient in patients compared to controls. 209 

We also found a significantly higher global efficiency in patients compared to healthy controls. 210 

This network feature had the same trend at the population level. Namely, we observed 211 

abnormally increased local efficiency of all examined deep brain structures in depressive 212 

patients. The efficiency measures the ability of a neural network to integrate and combine 213 

information. The deeper regions have a key role as hubs of the large-scale brain networks, so 214 

changes in their local connectivity properties might have also led to connectivity changes in 215 

the whole brain.  216 

The amygdala is involved in processing salient stimuli 68 69 and has been implicated as one of 217 

the central hubs within the affective salience network 70 71 72. There is converging evidence 218 

from the neuroimaging studies that points to an abnormally increased connectivity and 219 

heightened activation of the amygdala in major depressive disorder (MDD) patients 73 74, 220 

Reduced connectivity 75 76 and anomalous  subregional functional resting-state connectivity of 221 

the amygdala 77 were also reported. Distinct network dysfunctions in MDD were suggested to 222 

underlie adult-specific amygdala resting-state fMRI connectivity impairment within the 223 

affective network, presumably reflecting an emotional dysregulation in MDD 76. 224 

Hyperconnectivity between the amygdala, default mode network and salience network was also 225 

found to be related to depressive symptoms suggesting to underlie the poststroke depression in 226 

temporal lobe lesions 78. Unfortunately, the directionality of connections, which might be of 227 

interest when considering a structure as a potential DBS-target for treatment of TRD, cannot 228 

be inferred from these functional studies. There are only rare EEG-based connectivity studies 229 

focusing on depressive symptoms 58 59 60 79 that are, however, conducted only on a non-clinical 230 

population 79 or with connectivity parameters calculated at the sensor level 57 58 59 60 61.  Authors 231 

of one of these studies 79 suggested an inability of the left dorsolateral prefrontal cortex to 232 

modulate the activation of the left temporal lobe structures to be a crucial condition for 233 

ruminative tendencies. Interestingly, in the current study we demonstrated an abnormal 234 

increase in directed functional connectivity arising from the right amygdala. This increased 235 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2020. ; https://doi.org/10.1101/620252doi: bioRxiv preprint 

https://doi.org/10.1101/620252
http://creativecommons.org/licenses/by/4.0/


11 

 

connectivity in depressive patients could reflect an abnormal functioning of the right amygdala. 236 

Such dysfunction might represent an impaired bottom-up signaling for top-down cortical 237 

modulation of limbic regions, leading to an abnormal affect regulation in depressive patients.  238 

The increased functional connectivity in amygdala is likely related to structural changes 239 

observed in depression. Enlarged amygdala volumes was found in first-episode depressive 240 

patients that positively correlated with severity of depression 80. Higher grey matter volume 241 

was detected in bilateral amygdala of TRD patients compared to non-TRD patients, irrespective 242 

whether the patients presented bipolar or unipolar features and was suggested to reflect 243 

vulnerability to chronicity, revealed by medication resistance 81. Larger right amygdala volume 244 

was, however, also suggested to be associated with greater chances of remission in bipolar 245 

disorder 82. 246 

In our study we aimed to investigate the directed functional connectivity in amygdala to 247 

provide knowledge on neurobiology of depression that is needed to evaluate this structure as a 248 

possible candidate for DBS treatment in depression. Despite myriad of DBS targets for treating 249 

depression tested in humans 20, the amygdala is not among them. The possible safety and utility 250 

of DBS in the amygdala could only be inferred from studies, in which the amygdala-DBS was 251 

performed for other neuropsychiatric diagnoses, such as epilepsy 83 84 85 86, post-traumatic stress 252 

disorder 87 88, and autism 89. In one of these studies transient stimulation-related positive shift 253 

in mood was observed 84. Particularly, the stimulation of the right amygdala induced a transient 254 

decrease in the negative affective bias, i.e. the tendency to interpret ambiguous or positive 255 

events as relatively negative. In this case study, an epileptic patient with MDD rated the 256 

emotional facial expressions as more positive with stimulation than without. The stimulation 257 

effect might have been associated with a transient normalization of likely impaired function of 258 

the right amygdala in that patient. We can only speculate, whether this dysfunction was in terms 259 

of hyper-connectivity similar to that observed in our study and whether it was temporally 260 

decreased by inhibitory effect of the stimulation.  261 

Increased right caudate directed functional connectivity in depression. We demonstrated 262 

that during resting state, patients had significantly higher right caudate directed functional 263 

connectivity than healthy controls.  Despite no significant difference between groups in the 264 

caudate outflow, we observed an abnormally increased strength of outgoing connections from 265 

the right caudate in patients. Moreover, we found a hyper-connectivity in the local networks of 266 

the right caudate as reflected with significantly higher local efficiency and clustering 267 

coefficient in patients compared to controls. Caudate hyperactivation and increased caudate-268 
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amygdala and caudate-hippocampus fMRI connectivity during stress was previously reported 269 

in remitted individuals with recurrent depression 90. The here observed EEG-based functional 270 

caudate hyperconnectivity suggests striatal dysfunction even during resting-state in depressed 271 

patients. Our finding is consistent with a compelling evidence directly associating cortico-basal 272 

ganglia functional abnormalities with primary bipolar and unipolar spectrum disorders 91. 273 

Deficits in resting-state default-mode network connectivity with the bilateral caudate were 274 

suggested to be an early manifestation of MDD 92. Reduced grey matter volume in the bilateral 275 

caudate 93 94 95 12, diffusion tensor imaging-based hypoconnectivity between the right caudate 276 

and middle frontal gyrus 96, and altered functional connectivity of the right caudate with the 277 

frontal regions 94 was observed in MDD patients. In a post-mortem morphometric study in late-278 

life depressive subjects, reduction in neuronal density was found in both the dorsolateral and 279 

ventromedial areas of the caudate nucleus 97. Associations between increased white matter 280 

lesion volumes and a decreased right caudate volume in the late-life depression was reported 281 

98. In mild to moderately depressed patients no change in caudate gray matter volumes were 282 

found 99 suggesting inverse correlation between the caudate volume and severity of depression.  283 

We found no significant differences in any network metric in the putamen, pallidum, thalamus, 284 

and anterior cingulate. It is possible, however, that examining these structures as a whole might 285 

be insensitive to different changes in their relevant subregions. Only the medial part of the 286 

thalamus is expected to play a role in the experience of affect 73 100. Reduced activity in the 287 

dorsal ACC but increased activity in the subgenual ACC have been found in acute depression 288 

in functional imaging studies 101 102. Moreover, we must take into account the limitations of 289 

our methodological approach, i.e. the source localization of the EEG activity in the subcortical 290 

regions. We have to keep in mind that the spatial resolution in detecting and distinguishing 291 

neighboring brain regions is about 24 mm 103. Therefore, our results in the caudate, putamen 292 

and pallidum are probably overlapping due to smearing of the sources. Keeping in mind these 293 

limitations and with respect to the lower robustness of our findings in the caudate, we can just 294 

encourage researchers to further investigate the neuropathophysiology of depression associated 295 

with the caudate nucleus functioning. More evidence from neuroimaging studies is needed to 296 

provide arguments for the next caudate-DBS tests in treating TRD. In an early case study, DBS 297 

of the ventral caudate nucleus markedly improved symptoms of depression in a patient with 298 

MDD and comorbid obsessive-compulsive disorder 104. No change in depressive symptoms, 299 

however, was recently observed during the stimulation of the caudate in a study of three TRD 300 
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patients 105 and authors concluded the caudate to be less promising DBS target than the nucleus 301 

accumbens. 302 

Increased theta and alpha powers in depression. We found a significantly higher power in 303 

the theta and alpha frequency bands in the depressed compared to the healthy control group in 304 

all the investigated subcortical structures consistently at both the population and single-subject 305 

levels. The power decrease in the beta and delta frequency bands was observed only in the right 306 

striatum at both levels.  307 

Our findings might be in line with previous observations in the sensor space of the scalp EEG. 308 

Abnormally high power in alpha 106 107 108 and theta 106 109 108 frequency bands in parietal and 309 

occipital regions were found in depressed patients, lower than normal beta and delta power 310 

were also reported 108. Recent evidence points, however, to opposite power changes showing 311 

that theta and alpha power might decrease, while beta power increases in depression 110. 312 

Moreover, the same study reported negative association of the posterior alpha power with the 313 

depression severity. While changes in cortical theta and alpha activity were suggested to be 314 

inversely related to the level of cortical activation, enhancement of the cortical beta power was 315 

suggested to reflect higher level of anxiety symptoms in depressed patients 106. To the best of 316 

our knowledge there is only one study that directly recorded electrophysiological activity in 317 

subcortical structures in depressive patients.  In this study, a larger alpha activity in MDD 318 

patients compared with obsessive compulsive disorder was found in the limbic DBS targets 319 

(the anterior cingulate and the bed nucleus of the stria terminalis) 111. Moreover, in the same 320 

study, the increased alpha power correlated with severity of depressive symptoms. 321 

Nevertheless, in spite of parallels with prior reports, the current link between the power changes 322 

in subcortical structures and depression awaits replication. 323 

Lower network impairments with more medication. We found an inverse relationship 324 

between the intake of medication and the impairment of the investigated networks. Particularly, 325 

increased intake of antidepressants, antipsychotics, and mood stabilizers was associated with 326 

reduction of the global efficiency. This finding might be related to the pharmacological effect 327 

on the brain activity, i.e. a change towards the normalization of the hyper-connectivity in the 328 

cortico-striatal-pallidal-thalamic and limbic networks. The low sample size and great 329 

variability in medication made it, however, impossible to examine any potential influence of 330 

medication on the network impairments by comparing patients receiving a specific drug with 331 

those not receiving it. To summarize the various medications, an ordinal variable was used that 332 

is only a rough measurement of medication usage. Moreover, the duration of the illness rather 333 
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than the duration of the specific drug intake was considered in our study. Only doses of 334 

medication actually taken at the time of experiment were taken into consideration.  The possible 335 

accumulated effect of specific drugs on connectivity results, thus, cannot be assessed. 336 

Therefore, the observed relationship between the global efficiency and medication should be 337 

viewed with caution. Interestingly, we have not found significant correlation between the 338 

global efficiency and intake of benzodiazepines. This negative finding suggests that even 339 

though benzodiazepines are known to have an effect on electrophysiological correlates of brain 340 

functions, the network properties might not be influenced. There were no significant 341 

correlations between the connectivity results and depressive symptom severity or other 342 

parameters describing the status of depression within the patient group. We suppose that 343 

heterogeneity of our dataset, in which patients with different disorders were included, might 344 

underlie this observation. We also found no relation between the connectivity results and 345 

education level or age. This finding suggests independence of the observed impairment on 346 

these demographic variables, however, the current sample size might be insufficient for such 347 

investigations. 348 

Limitations of the study 349 

We here report sources of scalp-recorded electrophysiological brain activity in deep brain 350 

structures. We are aware of the limitations of EEG in sensing deep brain structures. However, 351 

previous work using simulations and source reconstruction provided indirect evidence for the 352 

detectability of subcortical sources in non-invasive EEG and magnetoencephalographic 353 

recordings 112 113 114 115. Moreover, recent simultaneous scalp and intracranial recordings 354 

directly demonstrated that activity in deep brain structures spread to the scalp 103 116. While 355 

Seeber and colleagues 103 used individual head models that improve source localization 356 

precision, a generic head model was used in the magnetoencephalographic study by Pizzo et 357 

al. 116, similar to the approach used in our study. Nevertheless, the results that we report have 358 

to be interpreted with caution and need further validation by intracranial recordings in future 359 

studies. 360 

 361 

Conclusions 362 

We found an overall increase in power in theta and alpha frequency bands in depressive patients 363 

compared to healthy controls in the subcortical regions constituting the cortico-striatal-pallidal-364 

thalamic and limbic circuits. The network measures showed a higher than normal functional 365 
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connectivity arising from the right amygdala in depressive patients. The amygdala seems to 366 

play an important role in neurobiology of depression. Resting-state EEG directed functional 367 

connectivity is a useful tool for studying abnormal brain activity in depression. 368 

 369 

Methods 370 

Subjects. Data were collected from 26 depressive patients and 25 healthy controls. The two 371 

groups were matched by gender and there were no significant differences in age or education 372 

(see Table 1). On a subsample of this dataset we recently showed that the severity of depressive 373 

symptoms correlates with resting-state microstate dynamics117. The patients were recruited at 374 

the Department of Psychiatry, Faculty of Medicine, Masaryk University and University 375 

Hospital Brno, Czech Republic. The diagnostic process had two steps and was determined 376 

based on the clinical evaluation by two board-certified psychiatrists. First, the diagnosis was 377 

made according to the criteria for research of the International Classification of Disorders 378 

(ICD-10). Second, the diagnosis was confirmed by the Mini International Neuropsychiatric 379 

interview (M.I.N.I.) according to the Diagnostic and Statistical Manual (DSM-V). All patients 380 

were examined in the shortest time period after the admission and before the stabilization of 381 

treatment, typically during their first week of hospitalization. All patients met the criteria for 382 

at least a moderate degree of depression within the following affective disorders: bipolar 383 

affective disorder (F31), depressive episode (F32), recurrent depressive disorder (F33). 384 

Exclusion criteria for patients were any psychiatric or neurological comorbidity, IQ < 70, 385 

organic disorder with influence on the brain function, alcohol dependence or other substance 386 

dependence. All patients were in the on-medication state with marked interindividual 387 

variability in specific medicaments received. Control subjects were recruited by general 388 

practitioners from their database of clients. Control subjects underwent the M.I.N.I. by board-389 

certified psychiatrists, to ensure that they had no previous or current psychiatric disorder 390 

according to the DSM-V criteria.  The scores on the Montgomery-Åsberg Depression Rating 391 

Scale (MADRS), a specific questionnaire validated for patients with mood disorders 118 and 392 

the Clinical Global Impression (CGI) 119, a general test validated for mental disorders,  were 393 

used to evaluate the severity of depressive symptoms in patients. The status of depression was 394 

further described with life time count of depressive episodes and illness duration. Medication 395 

in 24 hours preceding the EEG examination was also recorded (see Table 2). This study was 396 

carried out in accordance with the recommendations of Ethics Committee of University 397 

Hospital Brno with written informed consent from all subjects.  398 
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EEG - data acquisition and pre-processing steps. Subjects were sitting in a comfortable 399 

upright position in an electrically shielded room with dimmed light. They were instructed to 400 

stay as calm as possible, to keep their eyes closed and to relax for 15 minutes. They were asked 401 

to stay awake. All participants were monitored by the cameras and in the event of signs of 402 

nodding off or EEG signs of drowsiness detected by visual inspection, the recording was 403 

stopped. The EEG was recorded with a high density 128-channel system (EGI System 400; 404 

Electrical Geodesic Inc., OR, USA), fs = 1kHz, and Cz as acquisition reference. 405 

Five minutes of EEG data were selected and visually assessed. Noisy channels with abundant 406 

artifacts were identified. EEG signal was band-pass filtered between 1 and 40 Hz with a 2nd-407 

order Butterworth filter avoiding phase-distortion. Subsequently, in order to remove 408 

physiological artifacts, e.g. ballistocardiogram and oculo-motor artifacts, infomax-based 409 

Independent Component Analysis 120 was applied on all but one or two noisy channels. Only 410 

components related to ballistocardiogram, saccadic eye movements, and eye blinking were 411 

removed based on the waveform, topography and time course of the component. Then, the 412 

cleaned EEG recording was down-sampled at fs = 250 Hz and the previously identified noisy 413 

channels were interpolated using a three-dimensional spherical spline 121, and re-referenced to 414 

the average reference. For the following analyses, thirty 2-s EEG epochs free of artifacts were 415 

selected per subject. All the pre-processing steps were done using the freely available Cartool 416 

Software 3.70, programmed by Denis Brunet 122 and custom functions in MATLAB R2018b.  417 

EEG source estimation. We applied the LAURA algorithm implemented in Cartool 122 to 418 

compute the source reconstruction taking into account the patient’s age to calibrate the skull 419 

conductivity 123 124 125. The method restricts the solution space to the gray matter of the brain. 420 

Then, the cortex was parcellated into the 90 Automated Anatomical Labeling brain regions 126. 421 

The dipoles in each ROI were represented with one unique time-series by a singular-value 422 

decomposition 127. 423 

Time-variant multivariate autoregressive modeling. The cortical waveforms computed after 424 

applying the singular-value decomposition, were fitted against a time-variant (tv) multivariate 425 

(MV) autoregressive (AR) model to overcome the problem of non-stationarity of the EEG data. 426 

If the EEG data are available as several trials of the same length, the cortical waveforms 427 

computed from the EEG data generates a collection of realizations of a multivariate stochastic 428 

process which can be combined in a multivariate, multi-trial time series 127 128 67. The tv-MVAR 429 

matrices containing the model coefficients were computed in the framework of a MATLAB 430 

toolbox (code available upon reasonable request to the authors) that implements the adaptive 431 
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Kalman filtering  and information Partial Directed Coherence (iPDC) in the source space 67 129 432 

130. The model order of the tv-MAR and the Kalman filter adaptation constant were chosen 433 

applying the method proposed by Rubega and colleagues 128, i.e., evaluating the partial 434 

derivatives of a residual minimization function obtained varying simultaneously both p (p ꞓ [1, 435 

15]) and c (c ꞓ [0, 0.03]). By means of the model coefficients, we computed the parametric 436 

spectral power density and the iPDC absolute values for each subject. For each patient, we 437 

obtained a 4-dimensional matrix [ROIs x ROIs x frequency x time] that represented the directed 438 

information flow from one ROI to another for each frequency at each time sample. In this way 439 

we performed the analysis on the single-subject level to compare the two groups quantitatively. 440 

Since the features in the power spectra were consistent among subjects in the same population 441 

(patients vs controls), we also performed the analysis on the population level. A population 442 

subject was built by estimating the tv-MVAR model, where each trial in the input was a 443 

different subject. One power spectral density matrix and one connectivity matrix [ROIs x ROIs 444 

x frequency x time] were obtained for each group (controls and patients). In other words, 445 

subjects were combined as trials, assuming respectively humans as multiple realizations of 446 

their own brain processes, with the purpose to show that the two approaches, i.e., single subject 447 

and population, give equivalent results in differentiating patients vs controls. In the last decade, 448 

population-based approaches were successfully exploited in computer simulations engineered 449 

to evaluate the safety and limitations of closed-loop control treatment algorithms 131 132. 450 

Population-based approaches for MVAR/PDC modelling are currently lacking and this might 451 

be considered a first attempt justified by the consistent features estimated in the frequency 452 

domain among subjects belonging to the same population (patients vs controls). Further details 453 

on the connectivity estimation are reported in the Supplementary Information. 454 

Network metrics. In order to study the peculiarities of the brain network in patients vs controls, 455 

the brain was represented as a digraph defined by a collection of nodes and directed links 456 

(directional edges). Nodes in the brain network represent brain regions, i.e., the 90 ROIs, while 457 

the directed links represent the values computed by iPDC. Thus, the weight of such link can 458 

vary in the interval [0-1] and it represents the amount of mutual information flowing between 459 

ROIs. We defined twelve ROIs, including the bilateral amygdala, anterior cingulum, thalamus, 460 

putamen, caudate, and pallidum, to examine the directed functional connectivity between these 461 

seeds and the whole brain. Significant differences in power between patients and controls were 462 

observed in the single-subject level in alpha and theta frequency bands in all these six 463 

anatomical structures. Therefore, we restricted the network analysis to this [4-12] Hz frequency 464 
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range. To evaluate how much the system is fault tolerant and how much the communication is 465 

efficient, the global efficiency for the whole brain and the local efficiency, clustering 466 

coefficient, strength and outflow for each of these twelve investigated ROIs were computed. 467 

To compute all the graph measures, the scripts and functions implemented on the freely 468 

available MATLAB toolbox 133 were customized. 469 

Global efficiency. Global efficiency is defined as the average minimum path length between 470 

two nodes in the network. This measure is inversely related to topological distance between 471 

nodes and is typically interpreted as a measure of the capacity for parallel information transfer 472 

and integrated processing 134.  473 

Local efficiency. Local efficiency is defined as the average efficiency of the local subgraphs 474 

135, i.e. the global efficiency computed on the neighborhood of the node. It reflects the ability 475 

of a network to transmit information at the local level. This quantity plays a role similar to the 476 

clustering coefficient since it reveals how much the system is fault tolerant, i.e., it shows how 477 

efficient the communication is between the first neighbors of 𝑖 when 𝑖 is removed. 478 

𝐸𝑙𝑜𝑐
⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

1

2𝑛
∑

∑ (𝑎𝑖𝑗+𝑎𝑗𝑖)(𝑎𝑖ℎ+𝑎ℎ𝑖)([𝑑𝑗ℎ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑁𝑖)]
−1

+[𝑑ℎ𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑁𝑖)]
−1

)𝑗,ℎ∈𝑁,𝑗≠𝑖

(𝑘𝑖
𝑜𝑢𝑡+𝑘𝑖

𝑖𝑛)(𝑘𝑖
𝑜𝑢𝑡+𝑘𝑖

𝑖𝑛−1)−2∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑗∈𝑁
𝑖∈𝑁  (1) 479 

where   𝑘𝑖
𝑜𝑢𝑡 is the out-degree of node 𝑖, 𝑘𝑖

𝑖𝑛 is the in-degree of node 𝑖, and 𝑎𝑖𝑗 is the connection 480 

status between node 𝑖 and node 𝑗, i.e.,  𝑎𝑖𝑗 = 1 if the link between 𝑖 and 𝑗 exists, 𝑎𝑖𝑗 = 0  481 

otherwise. 𝑁 is the set of nodes in the network. 𝑛 is the number of nodes and 𝑑𝑗ℎ
⃗⃗ ⃗⃗  ⃗(𝑁𝑖) is the 482 

length of the shortest directed path between  𝑗 (any node in the network) and ℎ (any node that 483 

neighbors with 𝑖). 484 

 485 

Clustering coefficient. Clustering coefficient reflects the prevalence of clustered connectivity 486 

around an individual brain region 136: 487 

𝑐𝑐𝑖 =
2𝑡𝑖

𝑘𝑖(𝑘𝑖−1)
 (2) 488 

where 𝑡𝑖 are the number of triangles around the node 𝑖, and 𝑘𝑖 is the degree of node 𝑖, i.e., the 489 

number of links connected to node 𝑖. In our case of a weighted directed network, a weighted 490 

directed version of clustering coefficient was used 137: 491 
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𝑐𝑐𝑖⃗⃗⃗⃗  ⃗ =
𝑡𝑖⃗⃗⃗  

(𝑘𝑖
𝑜𝑢𝑡+𝑘𝑖

𝑖𝑛)(𝑘𝑖
𝑜𝑢𝑡+𝑘𝑖

𝑖𝑛−1)−2∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑗∈𝑁
  (3) 492 

where 𝑡𝑖⃗⃗  are the number of directed triangles around the node 𝑖,   𝑘𝑖
𝑜𝑢𝑡 is the out-degree of node 493 

𝑖, 𝑘𝑖
𝑖𝑛 is the in-degree of node 𝑖, and 𝑎𝑖𝑗 is the connection status between the nodes 𝑖 and 𝑗, i.e.,  494 

𝑎𝑖𝑗 = 1 if the link between 𝑖 and 𝑗 exists, 𝑎𝑖𝑗 = 0  otherwise. 𝑁 is the set of nodes in the 495 

network. 496 

Strength and outflow. Finally, the connectivity patterns between the different cortical regions 497 

were summarized by representing the strength that quantifies for each node the sum of weights 498 

of all links connected to the node and the total outflow from a region toward the others, 499 

generated by the sum of all the statistically significant links obtained by application of the 500 

iPDC. The greatest amount of information outflow depicts the ROI as one of the main sources 501 

(drivers) of functional connections to the other ROIs  502 

138.  503 

Laterality. For all the network metrics explained in the previous paragraph, we also computed 504 

a laterality index, which is defined as  
𝐿𝑒𝑓𝑡𝑚𝑒𝑡𝑟𝑖𝑐−𝑅𝑖𝑔ℎ𝑡𝑚𝑒𝑡𝑟𝑖𝑐

𝐿𝑒𝑓𝑡𝑚𝑒𝑡𝑟𝑖𝑐+𝑅𝑖𝑔ℎ𝑡𝑚𝑒𝑡𝑟𝑖𝑐
  to test if the measures significantly 505 

differentiate between the two hemispheres. Laterality index and all network metrics were 506 

calculated for both groups. 507 

Statistical analysis. To assess whether or not the changes in the network metrics were 508 

statistically significant between patients and controls, paired Student's t-tests were computed 509 

under the hypothesis of normal distribution of samples (Lilliefors test), otherwise Wilcoxon 510 

rank-sign tests were considered. To test whether the age and education level predict the values 511 

of the spectral power distribution and the network metrics in patients, a multiple linear 512 

regression was performed. We also tested the influence of the clinical data on the connectivity 513 

results. A multiple linear regression was performed exploiting correlation of the connectivity 514 

results with four variables describing the status of depression and two variables describing the 515 

medication status in terms of the intake of benzodiazepines (BZP), antidepressants, 516 

antipsychotics, and mood stabilizers (AD/AP/MS). These six clinical variables are provided 517 

for each patient in Table 2. We checked through the following multiple linear regression 518 

models (4) (5), if the response variable Y depends on a number of predictor variables 𝑋𝑖:  519 

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯𝛽𝑘𝑋𝑘 + 𝜀  (4) 520 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 + 𝜀  (5) 521 
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where the 𝜀 are the residual terms of the model and β0, β1, β2, ..., βk are the k regression 522 

coefficients. Both the clinical data and the power and network metrics were used once as 523 

predictors and once as response variables. 524 

Ethics statement. All participants gave their written informed consent prior to the experiment 525 

and the study received the approval of the Ethics Committee of University Hospital Brno in 526 

Brno, Czech Republic. All experiments of this study were performed in accordance with 527 

relevant guidelines and regulations.  528 

 529 
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Table legends 886 

Table 1. aEducation was classified into three levels: 1 = no high school, 2 = high school, 3 = 887 

university studies 888 

Table 2. F31.3 - Bipolar affective disorder, current episode mild or moderate depression; F31.4 889 

- Bipolar affective disorder, current episode severe depression without psychotic symptoms; 890 

F31.5 - Bipolar affective disorder, current episode severe depression with psychotic symptoms; 891 

F32.1 - Moderate depressive episode; F32.2 - Severe depressive episode without psychotic 892 

symptoms; F32.3 - Severe depressive episode with psychotic symptoms; F33.1 - Recurrent 893 

depressive disorder, current episode moderate; F33.2 - Recurrent depressive disorder, current 894 

episode severe without psychotic symptoms; F33.3 - Recurrent depressive disorder, current 895 

episode severe with psychotic symptoms; BZD: benzodiazepine equivalent dose 139 AD - 896 

antidepressants (mirtazapine, citalopram, venlafaxine, vortioxetine, sertraline, trazodone); AP 897 

- antipsychotics (risperidone, olanzapine, quetiapine, amisulpride, aripiprazole); MS - mood 898 

stabilizers (valproate, lamotrigine, carbamazepine); AD/AP/MS medication scale: 1 – one 899 

medication in sub-therapeutic doses, 2 – one medication in therapeutic doses, 3 – combination 900 

of medications with one in therapeutic doses, 4 – combination of medications with more than 901 

one in therapeutic doses; MADRS (Montgomery–Åsberg Depression Rating Scale): score is 902 

between 0 and 60, the higher the score the higher the depressive symptom severity; CGI 903 

(Clinical Global Impression scale): healthy (1) – most extremely ill (7). Four patients were 904 

undergoing the first (patient 3) and second (patient 4 and 9) week of electroconvulsive therapy 905 

and the first week of repetitive transcranial magnetic stimulation (patient 5). No clinical effect 906 

of these neurostimulation treatments was apparent. 907 

 908 

Table 1. Demographic data 909 

Characteristic Patients 

(n = 26) 

Controls 

(n = 25) 

t-value df p-

value 

Age: mean ± SD 51.9 ± 9.1 49.5 ± 8.7 0.97 49 0.34 

Gender: female, n 11 10    

Educationa: mean ± SD 1.9 ± 0.9   2.3 ± 0.7  -1.70 49 0.10 

 910 

 911 

Table 2. Patient characteristics 912 
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Patient 
ICD-10 

diagnose 

Number 

of 

episodes 

Illness 

duration 

(years) 

MADRS 

score 

CGI 

score 
BZD ADP/AP/MS 

AD/AP/MS 

medication 

scale  

1 F31.4 3 2 27 4 2 AD, AP, MS 3 

2 F32.2 1 0.5 24 5 0 AD 2 

3 F32.1 1 1 15 4 2 AD 2 

4 F31.5 5 20 39 6 0 AP 2 

5 F33.1 3 7 18 4 0 AD 1 

6 F33.1 2 8 9 3 1.33 AD 1 

7 F32.1 1 1 24 4 1.33 AD, AP 3 

8 F31.4 4 27 29 5 2 AP 2 

9 F33.3 2 5 36 6 1 AD, AP 4 

10 F33.1 3 19 21 4 1 AD 1 

11 F33.3 2 2 38 5 6 AD, AP 4 

12 F33.2 2 1 39 5 3 AD, AP 4 

13 F32.3 1 0.08 21 5 2 AD, AP 4 

14 F33.2 5 21 32 5 0 AD, AP 3 

15 F33.3 2 2 38 6 3 AD, AP 4 

16 F32.3 1 0.08 37 6 2 AD, AP 4 

17 F33.1 3 4 18 4 0 AD, AP 4 

18 F31.3 2 16 28 4 0 AP, MS 4 

19 F31.3 11 24 23 4 1 AP, MS 4 

20 F32.2 0 0,17 23 4 1 AD, AP 4 

21 F33.1 1 9 34 5 2 AD 2 

22 F32.3 0 0,04 37 6 1 AD, AP 4 

23 F33.3 1 11 49 6 3 AD, AP 4 

24 F33.1 3 20 23 4 0 AD 2 

25 F33.1 5 24 26 4 2 AD, AP, MS 4 

26 F32.1 0 0,17 23 4 3 AD, AP 3 

 913 

Figure legends 914 

Figure 1 Parametric power spectral density (PSD) of the population subjects representing 915 

controls (A) vs patients (B) in the subcortical regions of interest. Power significantly increases 916 

within the interval [4-12] Hz (indicated with vertical dashed lines) in theta ([4-8] Hz) and alpha 917 
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([8-12] Hz) bands and decreases in delta ([1-4] Hz) and beta ([12-18] Hz) bands in patients 918 

compared to controls (p<0.05) in the subcortical regions of interest. Continuous and dashed 919 

lines indicate the results for structures in the right and left hemispheres, respectively. 920 

Figure 2 Boxplots to graphical illustrate the distribution of power of controls (green boxes) and 921 

patients (red boxes) in (a) [1-4] Hz, (b) [4-12] Hz and (c) [12-18] Hz. One star (*) stands for 922 

significant statistical difference with p<0.05 and two stars (**) for p<0.001. Power in [4-12] 923 

Hz significantly increases in patients compared to controls in all examined anatomical brain 924 

structures. 925 

Figure 3 Local efficiency computed in the two population subjects representing (a) controls 926 

and (b) patients. Note that all subcortical regions of interest (ROIs) revealed higher values for 927 

patients than controls corresponding to the same tendency observed in all ROIs of the brain at 928 

the  single-subject level (see Supplementary Fig. S1 – S2 online). The efficiency for each ROI 929 

is represented by a sphere centered on the cortical region, whose radius is linearly related to 930 

the magnitude. Such information is also coded through a color scale. 931 

Figure 4 Boxplots to graphically illustrate the distribution of (a) local efficiency, (b) clustering 932 

coefficient, (c) strength, and (d) outflow in controls (green boxes) and patients (red boxes). 933 

One star (*) stands for significant statistical difference with p<0.05 and two stars (**) for 934 

p<0.001. All network metrics that refer to the right amygdala significantly differ between 935 

controls and patients (p<0.001), applying the Bonferroni correction (p<0.05/12  p<0.0042). 936 

Figure 5 Relationship between the intake of antidepressants/antipsychotics/mood stabilizers 937 

(AD/AP/MS) and the global efficiency (GE). Note that higher medication intake is associated 938 

with lower GE. The orange dotted line stands for the predicted value of AD/AP/MS for each 939 

patient using GE as predictor. For values of the AD/AP/MS medication scale the reader is 940 

referred to the legend of Table 2. 941 
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