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1 Abstract
LFPy is an open-source tool for calculating brain signals such as extracellular poten-
tials and magnetic signals from simulated activity in multicompartment neuron models,
ranging from single cells to large neuronal networks. The tool is provided as a Python
package, and relies on the NEURON simulation environment.

2 Introduction
Electric extracellular measurements of neuronal activity in brain tissue has been one of
the main workhorses in experimental neuroscience for several decades. Although such
measurements are relatively easy to carry out, the large number of contributing sources
to the measured signals renders the interpretation of the experimental data difficult. On
the macroscopic scale, such as for measurements of the electric potential on the scalp,
that is, electroencephalography (EEG) (Nunez and Srinivasan, 2006), or measurements
of magnetic fields outside the head itself, that is, magnetoencephalography (MEG)
(Hämäläinen et al., 1993), the interpretation is further complicated by the fact that
the measurements are performed some distance from the neural tissue itself. EEG
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signals are also affected by the different electric conductivities of tissue between the
brain and the electrodes (cerebral spinal fluid – CSF, bone and soft tissues) (Nunez and
Srinivasan, 2006).

The availability of biophysics-based forward-modeling tools is important for hy-
pothesis testing with precisely defined mathematical models, where the experimen-
tal system, including neurons and measurement devices, are mimicked in the virtual
model and simulated on a computer. Construction and improvements to inverse anal-
ysis methods applied to experimental data (that is, inferring underlying neural activity
from measurements) also calls for improved forward-modeling tools. Inverse methods
are required to better understand and analyze the link between measured brain signals
and the underlying neural activity. Forward-modeling tools allows for models of mea-
surements with known underlying neural activity, ‘ground truth’, that inverse methods
can be validated against.

LFPy (LFPy.readthedocs.io) implements different established forward models for
extracellularly recorded potentials and magnetic fields, stemming from activity in mul-
ticompartment neuron models (De Schutter and Van Geit, 2009). Extracellular poten-
tials in vicinity of the neurons are computed as distance-weighted sums of contributions
from the transmembrane currents of the simulated neurons, while magnetic fields are
either calculated from axial currents within the neurons or via the so-called current
dipole moment calculated from the associated transmembrane currents. The current
dipole moment is also used for EEG predictions. The corresponding electrostatic and
magnetostatic forward models are derived using the appropriate volume-conductor the-
ory (Hämäläinen et al., 1993; Nunez and Srinivasan, 2006; Einevoll et al., 2013).

3 Application
The first version of LFPy (Lindén et al., 2014, v1.0) incorporated the well-established
scheme for extracellular potentials pioneered by Holt and Koch (1999), where trans-
membrane currents of multicompartment models are first computed using a domain-
specific software (NEURON Simulation Environment, Carnevale and Hines (2006)).
Then the extracellular potential is computed as the distance-weighted sum over each
current contribution, with weights derived using theory for an infinite homogeneous,
isotropic and ohmic volume conductor model.

This numerical scheme has been applied to predictions of the local field potential
(LFP), that is, the low-frequency part of the extracellular potential (Pettersen et al.,
2008; Lindén et al., 2010, 2011; Gratiy et al., 2011; Makarova et al., 2011; Schomburg
et al., 2012; Łęski et al., 2013; Reimann et al., 2013; Martín-Vázquez et al., 2013, 2015;
Głąbska et al., 2014; Mazzoni et al., 2015; Tomsett et al., 2015; Sinha and Narayanan,
2015; Taxidis et al., 2015; Hagen et al., 2016; Głąbska et al., 2016; Ness et al., 2016,
2018; Hagen et al., 2017; McColgan et al., 2017), as well as extracellular spike wave-
forms which carry more power at high frequencies (Holt and Koch, 1999; Gold et al.,
2006, 2007; Pettersen and Einevoll, 2008; Pettersen et al., 2008; Franke et al., 2010;
Schomburg et al., 2012; Thorbergsson et al., 2012; Reimann et al., 2013; Ness et al.,
2015; Hagen et al., 2015; Miceli et al., 2017; Cserpán et al., 2017; Luo et al., 2018;
Buccino et al., 2018, 2019).

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/620286doi: bioRxiv preprint 

https://LFPy.readthedocs.io
https://doi.org/10.1101/620286


Since LFPy 2.0 (Hagen et al., 2018), the tool has been extended to also support
forward-model predictions accounting for anisotropic media, that is, with different con-
ductivity in different directions (Goto et al., 2010), and discontinuous media where the
conductivity is piecewise constant in a single direction. The latter can for example be
used to mimic in vitro experimental setups using microelectrode arrays (MEAs) (Ness
et al., 2015), or to mimic in vivo conditions where a jump in conductivity can be ex-
pected such as at the boundary between the brain and CSF. Furthermore, LFPy now
incorporates calculations of axial currents across the neuronal morphology for estimat-
ing the magnetic field nearby the neuron (Blagoev et al., 2007). Hence, corresponding
experiments using magnetic detection devices directly in neural tissue (Barbieri et al.,
2016; Caruso et al., 2017) can be mimicked.

LFPy also features calculations of current dipole moments from transmembrane
currents (Lindén et al., 2010), which is used for calculation of both EEG and MEG
signals. For EEG predictions LFPy incorporates the analytical 4-sphere head model
(Nunez and Srinivasan, 2006), which was corrected by Næss et al. (2017), to account
for the different conductivities of brain, CSF, skull and scalp. The computed current
dipole moments can also be used with more complex head models (see e.g., Huang
et al. (2016)). MEG signal predictions in a spherically-symmetric head model rely
on a special form of the magnetostatic Biot-Svart law (ignoring effects of magnetic
induction) (Nunez and Srinivasan, 2006, Appendix C).

Finally, in contrast to its first release where the tool only supported simulations
with a single cell instantiation at the time, LFPy also supports networks of synapti-
cally interconnected neurons. Such network simulations can be executed on a single
physical machine, but larger network simulations is better executed in parallel on high-
performance computing (HPC) facilities (Hagen et al., 2018).

4 Architecture
LFPy is a Python package that presently (Hagen et al., 2018) provides different high-
level class definitions which represent cells, populations and networks of cells, synapses,
intracellular stimulation devices (current and voltage clamps) and extracellular record-
ing devices (representing both invasive and noninvasive equipment). LFPy’s class defi-
nitions rely internally on NEURON’s Python interface (Hines et al., 2009). As many il-
lustrative LFPy usage examples are provided online (github.com/LFPy/LFPy/examples),
we here only briefly summarize the main classes and their intended use, and provide a
simple use case below. The best way to learn the tool is by going through the various
example files. More detailed technical documentation is available online1.

The most basic neuron representation in LFPy is provided by the LFPy.Cell
class. A Cell object is typically instantiated with a chosen morphology, either on the
form of a morphology file with instructions NEURON can digest (with file endings
‘.hoc’, ‘.asc’, ‘.swc’ or ‘.xml’), or a NEURON SectionList instance filled with
Section references. A number of optional arguments can be used to set the passive
parameters of the cell model, additional routines to distribute for example active ion

1LFPy.readthedocs.io
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channels to different parts of the neuron, rules for spatial discretization of the corre-
sponding cable model, and simulation settings (temporal duration and discretization).
After instantiation, the cell object has several public methods that can be used to posi-
tion and align the cell in space, return indices of different compartments of the model,
and run the simulation.

Two additional classes are defined using inheritance from class Cell, named TemplateCell
and NetworkCell. These can be used with existing ‘network-ready’ single-cell
models that uses NEURON’s template definitions which allows for multiple concur-
rent instantiations of individual neurons. In LFPy however, the TemplateCell’s in-
tended use is still for handling single-neuron simulations (serially), while NetworkCell
objects are instantiated in neuronal network populations.

After a cell’s instantiation, it can be instrumented with synapses by the creation of
an arbitrary number of instances of class LFPy.Synapse. The main parameters of
the synapse class is a reference to the cell object itself, the compartment index where
the synapse is located, and synapse type with synapse-specific parameters (time con-
stants, weight, reversal potential etc.). The synapse current and postsynaptic potential
can optionally be recorded during the course of a simulation. The instantiated synapse
has public methods to set its activation times, to either explicit values or determined
stochastically using NEURON’s NetStim class.

Intracellular stimulation devices (current and voltage clamps) can be set up using
LFPy’s StimIntElectrode class. The class is instantiated similar to synapses, but
the name of point-process type has to be defined as well as its specific parameters.
Recording of stimulation current and corresponding compartment membrane voltage
can optionally be enabled.

The creation of networks, or simply different populations of concurrent NetworkCell
instantiations, is in LFPy incorporated through its Network class. Its main parame-
ters are the temporal discretization and duration of the simulation, the globally shared
initial voltage for compartments and simulation temperature which affects the active
ion-channel dynamics. The network instance contains a public method to create pop-
ulations of the same cell type (through class Population), that is, with the same
parameters being passed to the NetworkCell instances upon their creation. The
network also contains a public method to connect pre- and postsynaptic populations
using shared synaptic parameters. Values for connection weights, delays and synaptic
locations can however be drawn randomly from desired function declarations such as
np.random.normal with corresponding parameters, or be set to constant values.

4.1 Example code
Here, we demonstrate how to set up a simple LFPy simulation in Python. We define a
simplified neuron representation with an active soma compartment and passive apical
dendrite which receives strong synaptic input at the terminating end of the dendrite,
with simultaneous calculation of the extracellular potential alongside the neuron. We
first create a ‘ball and stick’ morphology file, with a passive dendrite and active soma
using NEURON’s HOC syntax from Python:

morphology = 'BallAndStick.hoc'
with open(morphology, 'w') as f:
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f.writelines('''// Create sections:
create soma[1]
create apic[1]
// Add 3D information:
soma[0] {

pt3dadd(0, 0, -15, 30) // x,y,z,d in um
pt3dadd(0, 0, 15, 30)

}
apic[0] {

pt3dadd(0, 0, 15, 3)
pt3dadd(0, 0, 1015, 3)

}
// Connect section end points:
connect apic[0](0), soma[0](1)
// Set biophysical parameters:
forall {

Ra = 100. // ohm*cm
cm = 1. // uF/cm2

}
soma { insert hh }
apic {

insert pas
g_pas = 0.0002 // S/cm2
e_pas = -65. // mV

}''')

We then proceed to set up the simulation of the model, by first importing different
classes from LFPy and also other packages we may need:

from LFPy import Cell, Synapse, RecExtElectrode
import numpy as np
import matplotlib.pyplot as plt

First we instantiate the cell model, providing the name of the morphology file as
well as simulation duration and resolution, and initial voltage for all compartments:

cell = Cell(morphology=morphology,
tstop=100., # ms
dt=0.05, # ms
v_init=-65. # mV
)

Next we instantiate the synapse with compartment index information, parameters
for the chosen synapse mechanism, and set synaptic activation times:

synapse = Synapse(cell=cell,
idx=cell.get_idx(section='apic')[-1],
syntype='ExpSyn',
weight=0.05, # uS
tau=5., # ms
e=0., # mV
record_current=True)

synapse.set_spike_times(np.array([10., 15., 20., 25., 60.])) # ms

Then we instantiate the extracellular recording device, with a chosen value for the
homogeneous extracellular conductivity and locations for the electrode contact points
in space:
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z = np.linspace(-100, 1100, 25) # um
electrode = RecExtElectrode(sigma=0.3, # S/m

x=np.zeros(z.size)+10,
y=np.zeros(z.size),
z=z)

Finally, we can simulate the model and predict the resulting extracellular potential:
cell.simulate(electrode=electrode)

The ‘simulate’ method of the cell does not return any data for storing, visualization
etc., but sets various attributes of the instantiated class objects. For the present example,
these are ‘cell.tvec’, ‘cell.somav’, ‘synapse.i’ and ‘electrode.LFP’. These are all numpy
array types which can easily be plotted using matplotlib for example (see model output
in Figure 1). The membrane depolarizations caused by the synapse current (Isyn) result
in action potentials at the soma (Vsoma). Both synaptic input and action potentials results
in traveling features in the extracellular potential (image plot), towards the soma for
synaptic input and from the soma for action potentials. These features are governed by
the passive dendritic cable properties.
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Figure 1: Single-cell example output. The morphology, synapse site (red dot) and
recording locations (black dots) are shown on the left. The respective synapse current
(Isyn), soma potential (Vsoma) and extracellular potential (φ ) are shown as function of
time from top to bottom.

4.2 Electrostatic forward models
As the different electrostatic and magnetostatic forward models in LFPy are described
in detail in Hagen et al. (2018), we here briefly summarize their main assumptions.
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The relation between extracellular potentials and transmembrane currents are gov-
erned by volume conductor theory (Nunez and Srinivasan, 2006; Einevoll et al., 2013).
At frequencies relevant for neuronal processes (below ten thousand hertz or so), the
derivation of the volume conductor theory from first principles is simplified by appli-
cation of the so-called quasistatic approximation to Maxwell’s equations (Hämäläinen
et al., 1993, p. 426). The extracellular medium is in all cases assumed to be ohmic,
which implies a linear and frequency-independent relation between currents and elec-
tric potentials (Pettersen et al., 2012; Einevoll et al., 2013; Miceli et al., 2017). Then,
the simplest possible case is that of an infinite homogeneous (same in all locations) and
isotropic (same in all directions) volume conductor (see e.g., Hagen et al. (2018, Sec.
2.2.1)). The medium can then be simply represented by a scalar extracellular conduc-
tivity, which assumes that local variations throughout the tissue from glia, dendrites,
axons, cell bodies etc., are negligible when estimating the extracellular potential. This
assumption of homogeneity appears valid for simulations mimicking recordings in for
instance cortical gray matter (Goto et al., 2010).

For simple, analytically tractable circumstances, LFPy may also account for both
inhomogeneous and anisotropic extracellular media. Inhomogeneities on the macro-
scopic level may arise at the interface between different tissue types such as white and
gray matter, or between the gray matter and the conductive CSF on top of cortex. For
such cases, LFPy can account for the effects of a discontinuous jump in conductivity
by use of the so-called method of images (MoI), see Hagen et al. (2018, Sec. 2.2.2) for
details. Another application of the MoI has been to mimic in vitro experimental setups,
where jumps in conductivity occur between the petri dish, the tissue sample and saline
layer covering the sample (Ness et al., 2015).

LFPy also supports forward-model predictions with homogeneous and anisotropic
media, meaning that the electric conductivity may depend on direction but not loca-
tion. This functionality may be utilized to mimic anisotropy in cortex (Goto et al.,
2010), assuming that the typical orientation of dendritic and axonal fibers may affect
the conductivity. For details on the implementation, see Hagen et al. (2018, Sec. 2.2.3).

In order to predict EEG signals, LFPy provides the analytically tractable 4-sphere
head model (Nunez and Srinivasan, 2006; Næss et al., 2017). This simplified head rep-
resentation assumes radial symmetry, and that the different electric conductivities of
brain, CSF, skull and scalp are accounted for by corresponding concentric shells with
homogeneous and isotropic conductivity. Neuronal sources assumed to be some dis-
tance away from the measurement site are represented by their current dipole moment,
computed from the transmembrane currents in the neurons, see Hagen et al. (2018, Sec.
2.3.1).

The very same current dipole moment is utilized in order to compute distal MEG
signals, computed using a special form of the corresponding magnetostatic Biot-Savart
law (Nunez and Srinivasan (2006, Appendix C);Hagen et al. (2018, Eq. 16 in Sec.
2.3.5)). When computing magnetic fields in proximity to the neurons, the axial currents
computed from the membrane voltage in each compartment are used instead of the
current dipole moment. In both cases, negligible contributions from volume currents
to magnetic signals are assumed, that is, axial currents within neurons are the main
contributors to magnetic measures of brain activity (Hämäläinen et al., 1993).
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4.3 Extensions to LFPy
As LFPy is written in Python, a transparent and easy-to-learn programming language,
LFPy’s areas of application may with relative ease be extended to other measurement
modalities or different forward models. Geometrically complicated variations in ex-
tracellular conductivity (including those introduced by the electrode device) can be
accounted for using finite-element modeling (FEM (Logg et al., 2012; Lempka and
McIntyre, 2013; Ness et al., 2015; Næss et al., 2017; Buccino et al., 2019)) in order
to map transmembrane currents to extracellular signals. In a similar manner, current
dipole moments computed using LFPy can be used with detailed head models con-
structed from MRI data (Bangera et al., 2010; DeMunck et al., 2012; Vorwerk et al.,
2014; Huang et al., 2016). Frequency dependent conductive media may be accounted
for by treating each Fourier component of recorded signals independently as pursued
in Miceli et al. (2017).

One specific extension of the forward modeling scheme in LFPy is the so-called
hybrid scheme for LFP predictions from point-neuron networks (Hagen et al., 2016).
There, the simulation of ongoing spiking activity is first conducted offline using sim-
plified neuron representations. The resulting spikes are used as activation times of
synapses distributed onto geometrically detailed multicompartment neuron models, be-
fore each individual cell’s contribution to the LFP is simulated independently before
summing up all contributions. Thus, the prediction of extracellular signals (LFP, EEG,
MEG, etc.) of large neuronal networks is simplified by its disentanglement from sim-
ulations of recurrent network activity. Furthermore, the arduous effort of fine tuning
parameters of recurrently connected networks of biophysically detailed neuron models
is avoided.

Another extension to LFPy is detailed models of extracellular electric stimulation
of neurons. LFPy do not include forward models for the effect of electrode stimula-
tion currents onto neurons per se, but such can easily be constructed using the same
assumptions as discussed above. These models will in fact be closely related to for-
ward models mapping transmembrane current contributions to measured electrode po-
tentials (through reciprocity). Given a prediction of the extracellular potential across
the neuron’s outer surface, it can already be set as a cable-equation boundary condi-
tion using the Cell.insert_v_extmethod, which relies internally on NEURON’s
extracellular mechanism.

4.4 Deployability and documentation
LFPy is freely available (General Public License v3), runs on most common desktop
computer operating systems (Linux, Unix, MacOS and Windows), and is presently
tested with multiple versions of Python (2.7, 3.4-3.7). The software is made to run on
computers ranging from laptops to HPC facilities. Its main dependencies upon instal-
lation are NEURON2 installed with bindings to Python (Hines et al., 2009), NumPy3,

2neuron.yale.edu
3numpy.org
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SciPy4, h5py5, mpi4py6 and Cython7.

4.5 Installation
NEURON can usually be installed using precompiled installers directly from its home-
page (neuron.yale.edu), but certain systems (e.g., non-standard operating system con-
figurations and HPC systems) may require compilation from source. More detailed
instructions for installing both LFPy and NEURON on different common operating
systems are provided through LFPy’s online documentation8.

The easiest way of installing stable releases of LFPy and its dependencies (except
NEURON) is from the Python Package Index using the pip utility, by issuing in the
terminal:
pip install LFPy --user

An existing installation can be upgraded by issuing:
pip install --upgrade --no-deps LFPy --user

Here, the --no-deps option disables attempts to update also other installed depen-
dencies. The software can be removed by issuing:
pip uninstall LFPy

Alternatively, LFPy can be installed from source code hosted at GitHub.com/LFPy/LFPy.
This repository contains the entire development history of LFPy using Git9. Installation
of LFPy from source can be executed as follows:
cd <where to put LFPy sources>
git clone https://github.com/LFPy/LFPy.git
cd LFPy
pip install requirements.txt --user
python setup.py install --user

The GitHub homepage also offers the option to directly download compressed (zip or
tar.gz) files with the source codes of LFPy.

In addition to the above requirements also matplotlib10 and the Jupyter Notebook11

are required to run all the example simulation scripts provided with LFPy. The different
example files are provided with the LFPy source codes in the folder named examples.

4.6 Development and documentation
Active development and bug/issue tracking related to LFPy is conducted in public at
GitHub.com/LFPy/LFPy. Fixes and new features are usually handled through Pull Re-
quests, with automated build testing using Travis CI (travis-ci.org/LFPy/LFPy), and

4scipy.org
5h5py.org
6bitbucket.org/mpi4py/mpi4py
7cython.org
8lfpy.readthedocs.io
9https://git-scm.com

10matplotlib.org
11jupyter.org
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test coverage testing using Coveralls (coveralls.io/github/LFPy/LFPy). The full docu-
mentation for LFPy is provided at Read the Docs (lfpy.readthedocs.io).
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