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Abstract 
The primary auditory cortex processes acoustic sequences for the perception of 

behaviorally meaningful sounds such as speech. Sound information arrives at its input 

layer 4 from where activity propagates to associative layer 2/3. It is currently not known 

whether there is a particular organization of neuronal population activity that is stable 

across layers and sound levels during sound processing. We used in vivo 2-photon 

imaging of pyramidal neurons in cortical layers L4 and L2/3 of mouse A1 to characterize 

the populations of neurons that were active spontaneously, i.e. in the absence of a sound 

stimulus, and those recruited by single-frequency tonal stimuli at different sound levels. 

Single-frequency sounds recruited neurons of widely ranging frequency selectivity in both 

layers. We defined neural ensembles as neurons being active within or during successive 

temporal windows at the temporal resolution of our imaging. For both layers, neuronal 

ensembles were highly variable in size during spontaneous activity as well as during 

sound presentation. Ensemble sizes distributed according to power laws, the hallmark of 

neuronal avalanches, and were similar across sound levels. Avalanches activated by 

sound were composed of neurons with diverse tuning preference, yet with selectivity 

independent of avalanche size.  Thus, spontaneous and evoked activity in both L4 and 

L2/3 of A1 are composed of neuronal avalanches with similar power law relationships. 

Our results demonstrate network principles linked to maximal dynamic range, optimal 

information transfer and matching complexity between L4 and L2/3 to shape population 

activity in auditory cortex. 
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Introduction 
 
The primary auditory cortex (A1) is central to encoding sound sequences (Nelken et al., 

2003; Bartho et al., 2009; Francis et al., 2018), yet several major aspects of sound 

processing in A1 are currently not well understood. First, the selectivity of single A1 

neurons to stimulus features such as sound frequency changes with sound level, i.e. 

across the dynamic range, while perceptual discrimination performance is largely level-

invariant (Jesteadt et al., 1977; Wier et al., 1977; Bernstein and Oxenham, 2006). 

Second, responses of A1 neurons can be unreliable over repeated trials despite robust 

behavioral outcome (Deweese and Zador, 2004). It was recently shown that auditory 

stimuli are encoded by populations of A1 neurons (Bathellier et al., 2012; Francis et al., 

2018). Here we sought to identify characteristics of active populations in A1. 

Identifying population dynamics central to sound processing needs to take into 

account that A1 is composed of several cortical layers each transforming incoming 

information (Atencio and Schreiner, 2009; Atencio et al., 2009). Specifically, sensory 

inputs arriving in layer 4 (L4) are relayed to layers 2/3 (L2/3) via divergent and 

heterogeneous feed-forward projections (Meng et al., 2017). In this hierarchy, it is not well 

understood how population dynamics in L4 contributes to neuronal responses in L2/3 

raising the general question of how neural representations of sensory stimuli are reliably 

transmitted through multilayer networks. At least two lines of evidence suggest that 

ensemble dynamics could support level-independent reliable sound encoding across 

networks of neurons. First, network dynamics that support a large dynamic range, i.e. that 

differentiate sounds at both high and low levels, should be of particular interest to auditory 

processing where sound amplitude can vary over many orders of magnitude. Simulations 

(Kinouchi and Copelli, 2006; Shriki and Yellin, 2016) and experiments in vivo (Gautam et 

al., 2015) and in vitro (Shew et al., 2009; Shew et al., 2010; Shew et al., 2011; Shew and 

Plenz, 2013) have shown that cortical networks that display neuronal avalanches (Beggs 

and Plenz, 2003; Petermann et al., 2009; Shriki et al., 2013; Bellay et al., 2015) maximize 

their dynamic range for input processing as well as their information capacity (for review 

see (Chialvo, 2010; Shew and Plenz, 2013)). Neuronal avalanches are identified by 

power law relationships for the size and duration of activity in neuronal groups which 

naturally links to a second line of evidence identifying conditions for which information 
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transmission between complex networks is maximized. Theory suggests that complex 

networks exchange maximal information if their complexity, quantified by their respective 

power law relationships, is matched (West et al., 2008; Aquino et al., 2010; Aquino et al., 

2011). Accordingly, we hypothesize that if A1 population dynamics are governed by 

avalanche statistics, these statistics would be similar for L4 and L2/3. 

Here, using in vivo 2-photon imaging of pyramidal neurons in mouse A1, we 

identify common dynamical principles in sound encoding for both layers that allow for the 

encoding of sounds in neuronal populations in line with predictions for neuronal 

avalanches.  

 

Methods 

All procedures were approved by the University of Maryland Institutional Animal Care and 

Use Committee. Mice were housed under a reversed 12 h-light/12 h-dark light cycle with 

ad libitum access to food and water. Imaging experiments were generally performed near 

the end of the light and beginning of the dark cycle. Age range at the time of experiments 

extended from P46-P100 (75 ± 21 days, mean ± std). Mice of both sexes were used 

(n=12, 8 Male, 4 Female) based on their availability not by any biased selection. 

 
Animals: 

Mice used for this study expressed the genetically encoded calcium indicator (GCaMP6s) 

(Chen et al., 2013). GCaMP6s was introduced in one of the following ways. In a first line 

of experiments, we injected an adeno-associated virus (AAV1) into primary auditory 

cortex (A1) of C57/BL6 mice (n=5) for delivery of a calcium indicator with co-expression 

of a structural marker mRuby2 (Rose et al., 2016). Both proteins were under control of 

the synapsin promoter. Virus (AAV1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40; 

titer: 3x1013) was obtained from the University of Pennsylvania Vector Core. Observed 

expression in these mice was primarily limited to supragranular and infragranular layers 

and was mostly absent in L4. Only data acquired from L2/3 in these animals was included. 

In a second line of experiments, we used transgenic mice that expressed GCaMP6s 

either under the Thy1 promoter (Dana et al., 2014, Jax: 024274, GP4.3) or a transgenic 
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mouse line that conditionally expresses GCaMP6s when crossed to a mouse driver line 

expressing Cre recombinase under the control of Emx1 (Gorski et al., 2002; Madisen et 

al., 2015, GCaMP6s mouse: Jax: 024115; Emx1-Cre mouse: Jax: 005628). Both L2/3 

and L4 datasets were acquired from the transgenic mice. The transgenic L2/3 and L4 

data sets were always obtained sequentially in the same mouse, meaning the experiment 

(sound presentations) was conducted in one layer and then sequentially conducted in the 

other layer. The two transgenic lines exhibited robust indicator expression in both L4 and 

L2/3. We found no significant differences of indicator expression within layers when we 

compared across transgenic mouse lines and animals with viral expression and thus 

combined the data from different sources according to laminar position.  

 
Surgery and animal preparation 

Mice were given a subcutaneous injection of dexamethasone (5mg/kg) at least 2 hours 

prior to surgery to reduce potential inflammation and edema from surgery. Mice were 

deeply anesthetized using isoflurane (5% induction, 2% for maintenance) and given 

subcutaneous injections of atropine (0.2 mg/kg) and cefazolin (500 mg/kg). Internal body 

temperature was maintained at 37.5 °C using a feedback-controlled heating blanket. The 

scalp fur was trimmed using scissors and any remaining fur was removed using Nair. The 

scalp was disinfected with alternating swabs of 70% ethanol and betadine. A patch of skin 

was removed, the underlying bone was cleared of connective tissue using a bone curette, 

the temporal muscle was detached from the skull and pushed aside, and the skull was 

thoroughly cleaned and dried. A thin layer of cyanoacrylate glue (VetBond) adhesive was 

applied to the exposed skull surface and a custom machined titanium head plate (based 

on the design described in Guo et al. (2014) was affixed to the skull overlying the auditory 

cortex using VetBond followed by dental acrylic (C&B Metabond). A circular craniotomy 

(~3 mm diameter) was made in the center opening of the head plate and the patch of 

bone was removed. For wild-type mice, virus (AAV1-syn-mRuby2-GC6s) was loaded into 

beveled glass pipettes and injected slowly into the areas corresponding to primary 

auditory cortex in 3-5 sites (~30 nL/site; ~250 – 300 μm from the surface; ~2 – 3 

minutes/each injection site). Pipettes were left in place for at least 5 minutes after 

completion of each injection to prevent backflow. Then, a chronic imaging window was 
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implanted. The window consisted of a stack of 2 – 3 mm diameter coverslips glued with 

optical adhesive (Norland 71, Edmund Optics) to a 5 mm diameter coverslip.  The edges 

of the window between the glass and the skull were sealed with a silicone elastomer 

(Kwik-Sil) and then covered with dental acrylic. The entire implant except for the imaging 

window was then coated with black dental cement created by mixing standard white 

powder (Dentsply) with iron oxide powder (AlphaChemical, 3:1 ratio) (Goldey et al., 2014). 

Meloxicam (0.5 mg/kg) and a supplemental dose of dexamethasone were provided 

subcutaneously as a post-operative analgesic. Animals were allowed to recover for at 

least 1 week prior to the beginning of experiments. 

 
Acoustic stimulation 

Sound stimuli were synthesized in MATLAB using custom software (courtesy of P. 

Watkins, UMD), passed through a multifunction processor (RX6, TDT), attenuated (PA5, 

Programmable Attenuator), and delivered via ES1 speaker placed ~5 cm directly in front 

of the mouse. The sound system was calibrated between 2.5 and 80 kHz and showed a 

flat (±3 dB) spectrum over this range. Overall sound pressure level (SPL) at 0 dB 

attenuation was ∼90 dB SPL (for tones). Sounds were played at three sound levels (40, 

60, and 80 dB SPL). Auditory stimuli consisted of sinusoidal amplitude-modulated (SAM) 

tones (20 Hz modulation, cosine phase), ranging from 3 – 48 kHz. For wide-field imaging, 

the frequency resolution of the stimuli was 1 tone/octave; for 2-photon imaging, the 

frequency resolution was 2 tones/octave (0.5 octave spacing). Each of these tonal stimuli 

was repeated 5 times with a 4 – 6 s interstimulus interval for a total of either 75 (wide-

field) or 135 (2-photon) iterations.  

 
Wide-field imaging 

In order to construct sound-evoked response maps using wide-field imaging, awake mice 

were placed into a plastic tube with a head restraint system similar to that described by 

Guo et al. (2014). Blue excitation light was provided by an LED (470 nm, Thorlabs) or 

xenon-arc lamp (Lambda LS, Sutter Instruments) equipped with an excitation filter (470 

nm CWL, 40 nm FWHM; Chroma ET470/40x) and directed toward the cranial window. 

Emitted light was collected through a tandem lens combination (Ratzlaff and Grinvald, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2019. ; https://doi.org/10.1101/620781doi: bioRxiv preprint 

https://doi.org/10.1101/620781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

1991) consisting of a 55 mm lens and 85 mm lens affixed to the camera and passed 

through a longpass (495 nm cutoff, Chroma Q495lp) followed by a bandpass emission 

filter (525 nm CWL; 50 nm FWHM; Chroma HQ525/50). Images were acquired using 

StreamPix software (NorPix) controlling a CoolSNAP HQ2 CCD camera (Photometrics). 

After acquiring an image of the surface vasculature, the focal plane was advanced to a 

depth corresponding to ~300 – 400 μm below the brain surface. One trial of stimulation 

consisted of ~1 – 2 s of quiet, followed by sound onset (3 – 48 kHz frequency; 1 octave 

spacing; 1 s duration; 20 Hz modulation rate; 40, 60, 80 dB SPL) then 1 – 2 s of quiet. 

Each frequency-level combination was randomly repeated 5 times for a total of 75 

iterations. Inter-trial interval was ~10 – 15  s. Acquisition of each frame was individually 

triggered and synchronized with the sound presentation using the Ephus software suite 

(http://www.ephus.org) (Suter et al., 2010).  

 

2-photon imaging 

To study cellular neuronal activity using 2-photon imaging, we used a scanning 

microscope (Bergamo II series, B248, Thorlabs) coupled to a pulsed femtosecond 

Ti:Sapphire 2-photon laser with dispersion compensation (Vision S, Coherent). The 

microscope was controlled by ThorImageLS software. The laser was tuned to a 

wavelength of λ = 940 nm in order to simultaneously excite GCaMP6s and mRuby2. Red 

and green signals were collected through a 16× 0.8 NA microscope objective (Nikon). 

Emitted photons were directed through 525/50-25 (green) and 607/70-25 (red) band pass 

filters onto GaAsP photomultiplier tubes. The field of view was 370x370 μm2. Imaging 

frames of 512×512 pixels (0.52 μm2 pixel size) were acquired at 30 Hz by bi-directional 

scanning of an 8 kHz resonant scanner. Beam turnarounds at the edges of the image 

were blanked with a Pockels cell. The average power for imaging in both L2/3 and L4 was 

<~70 mW, measured at the sample plane.  

Data Analysis 

Wide-field image sequences were analyzed using custom routines written in Matlab 

(Mathworks). Images were parsed into trial-based epochs in which each frame sequence 

represented a single trial consisting of the presentation of a single sound frequency-
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intensity combination. For each trial, response amplitude (ΔF/F0) as a function of time 

was determined for each pixel using the formula ((F – F0)/ F0) where F corresponds to the 

time varying fluorescence signal at a given pixel and F0 was estimated by averaging the 

fluorescence values over 4 frames (~1 s) prior to sound onset for a given trial and pixel. 

For construction of sound-evoked response maps, the amplitude of the ΔF/F0 pixel 

response during 1 s after stimulus onset (~4 frames) was averaged across time and 

repetitions yielding an average response magnitude that was assigned to each pixel. 

Responsive areas in the average response maps were defined on a pixel-by-pixel basis 

as pixels in which the average brightness of the pixel during the 1 s after stimulus onset 

exceeded 2 standard deviations of the pixel brightness during the 1 s before the stimulus 

across stimulus repetitions.  

 
2-photon image analysis 

Image sequences were corrected for x-y drifts and movement artifacts using either the 

TurboReg in ImageJ (Thevenaz et al., 1998; Schindelin et al., 2012) or discrete Fourier 

transform registration (Guizar-Sicairos et al., 2008) implemented in Matlab (Mathworks) 

taking advantage of mRuby2 labeled neurons. Neurons were identified manually from the 

average image of the motion corrected sequence. Ring-like regions of interest (ROI) 

boundaries were drawn based on the method described in Chen et al. (Chen et al., 2013). 

Overlapping ROI pixels (due to closely juxtaposed neurons) were excluded from analysis. 

For each labeled neuron, a raw fluorescence signal over time (F) was extracted from the 

ROI overlying the soma. The mean fluorescence for each neuron was calculated across 

frames and converted to a relative fluorescence measure (ΔF/F0), where ΔF = (F – F0). 

F0 was estimated by using a sliding window that calculated the average fluorescence of 

points less than the 50th percentile during the previous 10-second window (300 frames). 

Neuropil (NP) subtraction was performed on all soma ROIs (Peron et al., 2015). In short, 

the neuropil ROI was drawn based on the outer boundary of the soma ROI and extended 

from 1 pixel beyond the soma ROI outer boundary to 15 μm excluding any pixels assigned 

to neighboring somata. Thus, the final ΔF/F0 used for analysis was calculated as ΔF/F0 = 

(ΔF/F0)soma – (α x (ΔF/F0)NP), where we used α = 0.9 (Peron et al., 2015) to reduce 

fluorescence contamination from the neuropil. Neurons in which the ΔF/F0 signal was 
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significantly modulated by sound presentation were defined by ANOVA (p < 0.01) across 

baseline (pre-stimulus) and all sound presentation periods. Extraction of spikes from 

neuropil-corrected ΔF/F0 traces was performed using the Suite2P implementation of 

OASIS without an L1 penalty (Pachitariu, 2017). Suite2P generates a spike probability for 

each neuron in each imaging frame (λ). This continuous variable was then thresholded 

(λthr) to yield a spike raster. Single neuron receptive fields (RF) were determined as the 

average ΔF/F0 response to each frequency-intensity combination across 5 stimulus 

repetitions during the stimulus window (1 s). Best frequency (BF) for each neuron was 

determined as the center of mass of the RF. 

 

Neuronal ensemble and avalanche analysis 

Neuronal ensembles were defined based on contiguous frames in which at least 1 neuron 

was active (Figure 3b) following the approach by Bellay et al. (Bellay et al., 2015).  Thus, 

ensembles were bounded by periods of silence in the population activity. Ensembles 

typically contained a varying number of active pyramidal neurons which could be active 

for only one or numerous frames within an ensemble. Ensemble size was defined as the 

number of neurons active summed over the number of frames each neuron was active. 

Ensemble duration, also called ensemble lifetime was defined as the number of frames 

constituting an ensemble. We note that similar to thresholding in electrophysiological 

recordings the specific value of λthr determines the number of spatiotemporal activity 

ensembles. If λthr is very low, most neurons are deemed active all the time, resulting in a 

small number of very large activity ensembles. Conversely, if λthr is very high, most 

neurons are considered inactive, again reducing the number of ensembles. Following the 

approach by Bellay (Bellay et al., 2015), we set λthr for each experiment to maximize the 

number of ensembles. Our results were not affected by small variations of λthr as 

demonstrated previously (Bellay et al., 2015). For analysis of evoked responses, 

ensembles were assigned to the temporal window when they initiated. Thus, an ensemble 

that initiated during the 1s stimulus window, even when it continued after stimulus offset, 

was categorized as an evoked ensemble. 

To test if ensembles exhibit statistical properties of neuronal avalanches, we 

analyzed the probability distributions of both ensemble size and ensemble duration. First, 
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the distributions for both size and duration were binned logarithmically, and probability 

density functions were obtained. For both the size and duration, we fit a power law or 

exponential distribution. We compared these fits and estimated parameters by calculating 

the log-likelihood ratio (LLR) by likelihood maximization as described previously (Clauset 

et al., 2009; Klaus et al., 2011). Slopes of the power law distributions (alpha values) were 

obtained using Kolmogorov-Smirnov goodness-of-fit to minimize the KS distance 

between the empirical distribution and a theoretical distribution for a range of alpha values 

(Clauset et al., 2009; Klaus et al., 2011). For controls, shuffled ensemble distributions 

were calculated from thresholded and shuffled spike density rasters using the same 

analysis outlined above. For shuffled rasters, each neuron separately had its spike 

probability estimates randomly permuted in time. This means the per-frame spike 

probabilities were maintained for each neuron, therefore maintaining the total number of 

active frames for each neuron. However, the individual temporal shuffling of neurons 

abolishes any temporal correlations between neurons. The shuffling process was 

repeated 10 times and the shuffled raster that produced the maximum number of 

ensembles was used. 

Pairwise cross-correlation analysis was computed using zero-lag correlation of the 

λ estimates for all active neurons across the entire imaging session. 

 

Results 
To compare responses of single neurons and neuronal ensembles, i.e. groups of groups, 

to auditory stimuli, we used in vivo 2-photon intracellular calcium imaging to sequentially 

measure activity of primarily pyramidal neurons expressing GCaMP6s in layer 2/3 (L2/3) 

and layer 4 (L4) in awake mice (n = 12 mice; Fig. 1a). Throughout the experiment the 

awake animal rested under the microscope while listening passively to semi-random 

presentation of 1 s short tonal sounds at 9 frequencies (3 – 48 kHz, two tones/octave) 

and 3 different sound pressure levels (40, 60, 80 dB) separated by 4 – 6 s. Each stimulus 

was repeated 5 times over the course of the experiment. We identified primary auditory 

cortex (A1) using widefield imaging (Fig. 1b). We then imaged the activity of neurons in 

L4 and L2/3 by imaging in different focal planes (Fig. 1c, d). For each neuron we extracted 

spike trains using standard methods (Pachitariu, 2017).  
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 First, we characterized single neuron receptive fields (RF) from the responses to 

single tones. Many neurons recorded in each layer were responsive to sound, i.e. showed 

an increase in firing during the stimulus period. Figure 1e shows three examples of RFs 

from A1 quantifying the change in stimulus specificity as a function of sound level. 

Stimulus specificity was found to broaden with an increase in sound volume (Fig. 1e, left), 

to exist only at a particular sound level (Fig. 1e, middle), or to broaden with a decrease in 

sound volume (Fig. 1e, right). Simultaneously imaged neurons in both layers showed 

heterogeneity of tuning in their responses (Fig. 1e) as reported previously in anesthetized 

and awake mice (Bandyopadhyay et al., 2010; Rothschild et al., 2010; Winkowski and 

Kanold, 2013; Maor et al., 2016; Liu et al., 2019). 

 

Population activity in A1 shows high variability 

Given that observed local tuning heterogeneity of the imaged population is based 

on time-averaged measures, we sought to gain insight into statistical characteristics of 

the active neurons at a finer temporal scale. We first analyzed the properties of neuronal 

populations during ongoing activity in the absence of sound presentation. Ongoing activity 

could show periods of relative quiescence and periods of higher activity (Fig. 2a). On 

average ongoing activity was largely similar in both layers. Average firing rate was ~ 1.5 

spikes/s (L4: 1.8 ± 1.11; L2/3: 1.83 ± 1.08; p>0.84). Firing in both layers was highly 

irregular as indicated by CVs between 1 – 2, with most irregular firing found in L4 neurons 

(Fig. 2a). Despite this irregularity, the distributions of pairwise cross-correlation were 

heavy-tailed with higher correlations found in L2/3 (Fig. 2c). These positive correlations 

indicate that neurons share common input and/or interact over distances during ongoing 

activity. These results are consistent with in vitro studies showing common inputs and 

connections in L2/3 of A1 (Oswald et al., 2009; Levy and Reyes, 2012; Watkins et al., 

2014; Meng et al., 2017).  

Presence of a tonal stimulus increased firing rates and evoked rates were higher 

in L4 than L2/3 (Fig. 2d) consistent with electrophysiological recordings (Atencio and 

Schreiner, 2010). Evoked activity in both layers also showed high CV and heavy-tailed 

cross-correlations (Fig. 2e, f). The heavy-tailed nature of the correlation distribution 
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suggests that despite the overall high variability observed during both ongoing and 

evoked activities, at least some neurons show relatively strong coordinated firing. 

 

Ongoing ensemble activity in A1 organizes as neuronal avalanches 

To better understand the highly variable, yet seemingly coordinated organization of 

neuronal population activity, we grouped neurons based on the temporal association of 

their firing with other neuronal firings irrespective of spatial location.  

We identified neuronal ensembles as groups of neurons active over successive 

imaging frames. Specifically, at a frame rate of 30 Hz, each frame defined a time bin of 

~33 ms. Ensembles were bound by time bins that did not contain any active neuron, i.e. 

they exhibited successive time intervals in which at least 1 neuron was active (Fig. 3b). 

The total number of active neurons could vary between time bins with individual neurons 

becoming active and inactive, as long as contiguous population activity was maintained. 

Thus, ensembles could range from very small (a single neuron firing once within just one 

time bin) to large (many neurons firing over many successive time bins). To gain insight 

into the variability of ensembles, we quantified their sizes by summing the number of 

spikes (binarized) for each active neuron in each time bin. We then calculated the 

probability density function of ensemble sizes (Fig. 3c), for which qualitative inspection 

revealed a high probability of occurrence of small ensembles and a smaller probability of 

occurrence of very large ensembles. These probability distributions appeared linear in a 

logarithmic plot suggestive of a power law distribution. Indeed, the probability density 

distributions of ensemble size were significantly better fit by a power law compared to an 

exponential function (Fig. 3c,e; LLRL4 = 480.0 to 1251.9; LLRL2/3 = 551.8 to 1243.8; p<10-

13; FOVL4 = 9; FOVL2/3 = 10). These power laws were abolished by temporal shuffling (Fig. 

3c; LLRL4-shuff = -690.9 to -175.1; LLRL2/3-shuff = -424.9 to -108.8; p<10-8, favors exponential 

over power law) indicating that the temporal structure of ensemble activity is important in 

imparting the power law distribution of ensemble size.  

We next quantified the temporal duration of each ensemble by summing the 

number of consecutive time bins the ensemble was active. The distribution of ensemble 

duration also obeyed a power law distribution over an exponential (Fig. 3d,e; LLRL4 = 

353.9 to 796.7; LLRL2/3 = 381.8 to 849.9; p<10-34), which was once again abolished by 
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temporal shuffling (Fig. 3d; LLRL4-shuff = 232.3 to 586.4; LLRL2/3-shuff = 57.2 to 459.4; 

p<0.01, favors exponential over power law).  

The presence of power-law distributions for ensemble size and duration suggests 

that ongoing ensembles in L4 and L2/3 organize as scale-invariant neuronal avalanches 

similar to ongoing activity in other cortical regions (Bellay et al., 2015).  

 

Evoked ensemble activity in A1 organizes as neuronal avalanches 

We next investigated how the presence of a sound stimulus alters ensemble activity in 

A1. During an auditory stimulus, more A1 neurons fire and are thus recruited into ongoing 

active ensembles. Accordingly, sound evoked ensembles could deviate from a power law 

organization of avalanches by selectively increasing the incidence of large ensembles. 

Alternatively, sound evoked A1 ensemble activity could maintain scale-invariant 

organization by increasing the incidence of ensembles of all sizes. 

From the event structure, we defined evoked ensembles as initiated during the 1s 

of sound presentation (Fig. 4). We then characterized the size and duration (lifetime) of 

the evoked ensembles by plotting the probability distributions of ensemble size and 

duration. Since varying sound levels potentially recruit different populations of neurons 

we separately analyzed ensemble activity at the three sound levels. All probability 

distributions appeared linear in a logarithmic plot suggestive of a power law distribution. 

Indeed, the probability density distributions of ensemble size for all sound levels were 

significantly better fit by a power law compared to an exponential function (Fig. 4b,d; 

Supp. Table 2). These power laws were abolished by temporal shuffling (Fig. 4b; Supp. 

Table 2; favors exponential over power law). We next quantified the temporal duration of 

each activity ensemble, which is the number of consecutive time bins for each ensemble. 

The distribution of ensemble durations also obeyed a power-law distribution (Fig. 4c,d; 

Supp. Table 2), which was once again abolished by temporal shuffling (Fig. 4c; Supp. 

Table 2, favors exponential over power law). The presence of power law distributions for 

ensemble size and duration suggests that evoked activity in L4 and L2/3 organizes as 

scale-invariant neuronal avalanches across different sound amplitudes. These results 

indicate that activity patterns are obeying the same statistical rules, however given the 

increase in activity of single neurons by sound stimulation it is expected that there are 
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specific changes in the activity patterns due to the sensory stimulus. We thus calculated 

the average size and duration of evoked ensembles and found that both increased 

systematically with sound level (i.e., input strength) (Fig. 5a,b). Thus, while evoked 

ensembles in L4 and L2/3 remained power-law distributed in both size and duration (Fig. 

4b,c, Supplemental Table 1, 2) the specific range from this distribution from which 

ensembles are chosen varies with sound level. Thus, scale-invariant avalanche dynamics 

in both layers L4 and L2/3 are preserved even in the presence of distinct sound input to 

A1 and across different sound amplitudes.  

 

Evoked avalanches in A1 recruit neurons with widely varying tuning preference 

Most behaviorally relevant sound stimuli are suprathreshold and thus recruit neurons with 

varying tuning preference (e.g. see Fig. 1e). Since we observe a wide range of ensemble 

sizes and duration we sought to determine if the range of frequency preference varied 

with ensemble size and duration. We thus quantified the tuning diversity in each evoked 

ensemble by measuring the interquartile range of BFs (IQRBF) from each active cell in the 

ensemble. We find that IQRBF systematically increases with both ensemble size and 

duration (Fig. 6b, c) indicating that neurons of widely varying tuning preference are 

recruited into neuronal avalanches. 

A neuron’s BF gives a limited description of a neuron’s overall receptive field. We 

thus also determined the compound receptive field of the evoked ensemble by averaging 

the receptive fields of the neurons active in the ensemble, weighted according to the 

amount of time each cell was active (Fig. 6a). The use of a weighted average is on the 

basis that the activity level of a neuron corresponds to its importance for encoding. We 

then determined the bandwidth of the ensemble receptive field. We find that ensemble 

bandwidth is not altered with respect to the size or duration of ensembles (Fig. 6d, e), 

indicating that stimulus selectivity is scale-invariant in the population activity. 

Furthermore, the bandwidth of the recruited ensemble did not vary with sound level 

indicating that ensemble receptive fields are sound level invariant, unlike many single-cell 

receptive fields. 
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Discussion 
We identified several fundamental properties of how A1 reliably represents stimuli in its 

spatiotemporal population response. First, we demonstrated that A1 represents even 

simple sound stimuli as temporally varying activity across distributed populations of 

diversely tuned pyramidal neurons. Second, pyramidal group activity in both layers obey 

similar statistical laws in that the size and duration of ongoing and sound evoked neuronal 

ensembles shows scale-invariance, the hallmark of neuronal avalanches. Finally, by 

introducing a novel approach of ensemble tuning, we found that neuronal ensembles 

recruit neurons of increasingly diverse tuning preference yet maintain constant selectivity 

with respect to ensemble size. 

Our finding that both ongoing and evoked activities show signatures of neuronal 

avalanches is in line with experiment and theory associating avalanches with the 

optimization of numerous aspects of information processing such as dynamic range, 

information processing and transmission within layers (Shew et al., 2009; Shew et al., 

2010; Shew et al., 2011; Shew and Plenz, 2013; Gautam et al., 2015) and between layers 

(West et al., 2008; Aquino et al., 2010; Aquino et al., 2011). Avalanche organization being 

maintained during stimulus presentation extends previous findings in ex vivo turtle visual 

cortex based on the local field potential demonstrating a return to avalanche organization 

after visual stimulation (Shew et al., 2015; Clawson et al., 2017). The existence of  

avalanche organization suggest that the network is poised to process incoming sensory 

stimuli with maximal dynamic range (Kinouchi and Copelli, 2006). The selective labeling 

of pyramidal groups in our experiments also specifically links avalanche dynamics to 

pyramidal groups, thereby extending previous reports on evoked avalanches in mice 

using a non-selective bulk labeling approach (Karimipanah et al., 2017). In summary, our 

work firmly suggests that A1 networks across layers and stimulus presentation optimize 

transmission of sound information by maintaining neuronal avalanche organization. 

The reported statistics of neuronal ensembles are sensitive to sampling conditions. 

Spatial subsampling, in which only a small percentage of the population is measured, will 

change an expected power law distribution to an exponential form, an effect clearly visible 

at subsampling below 10% or more as shown in simulations (Priesemann et al., 2009; 

Ribeiro et al., 2010; Ribeiro et al., 2014; Levina and Priesemann, 2017). Subsampling 
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might be the main reason why avalanches have not been observed in spike recordings 

using microelectrode arrays representing much lower subsampling conditions 

(Petermann et al., 2009; Ribeiro et al., 2010; Touboul and Destexhe, 2010). 2-photon 

imaging at cellular resolution allows for much higher neuronal sampling conditions and 

has been used previously to identify neuronal avalanches (Bellay et al., 2015; Seshadri 

et al., 2018) using non-negative deconvolution (Vogelstein et al., 2010). In the present 

study, we combined 2-photon imaging with an advanced, yet robust spike density 

estimation (Pachitariu et al., 2018) providing further support that spatiotemporal activity 

in spiking pyramidal groups organizes as neuronal avalanches.  We also note that spiking 

between pyramidal neurons is significantly correlated, excluding models for the 

generation of power laws that feature no interaction between neurons (Martinello et al., 

2017; Touboul and Destexhe, 2017). Our findings of robust power laws even under non-

stationary conditions, i.e. evoked responses, are in line with previous reports in non-

human primates based on the local field potential (Yu et al., 2017). We conclude that 2-

photon imaging of cortical layers at cellular resolution in combination with robust spike 

density estimates allows for the clear identification of scale-invariant activity in ongoing 

and evoked population activity in primary auditory cortex.  

We further demonstrate that avalanche organization and the population 

representation of stimulus information is largely independent of sound level. We introduce 

an ensemble RF measure that shows selectivity invariance with respect to stimulus sound 

level, in contrast to the widening of single-cell RFs across many auditory structures with 

increasing sound level (e.g. see Fig. 1e). This in vivo demonstration of a large dynamic 

range for A1 network activity matches reports on level-invariant perceptual discrimination 

performances (Jesteadt et al., 1977; Wier et al., 1977; Bernstein and Oxenham, 2006). It 

suggests that population coding of sound information might underlie level-invariant 

performances. Furthermore, we find that large activity ensembles recruit a diverse range 

of tuning preference, suggesting that BF does not fully represent a neuron’s role in 

population encoding. 

In summary, our work reveals several key aspects of auditory cortical dynamics 

and in general cortical sensory coding. Even simple sensory stimuli are represented 

across distributed populations of diversely tuned neurons organized as scale-invariant 
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spatiotemporal avalanches. We suggest that avalanche dynamics maximize information 

transmission between and within layers while providing an ordered framework for 

diversely tuned groups of neurons for which the relative timing of neuronal firing might be 

an important contributor to neuronal population encoding.  
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Figures 
 

 
Figure 1. Imaging A1 population activity in the awake mouse.  
a, Cartoon of awake mouse under the microscope. b, Wide-field functional imaging 

identifies A1. Average activation maps from 4 different sound frequencies and 

thresholded activity overlaid on image of brain surface. Tonotopic gradient indicates 

location of A1. Scale bar = 1 mm. c, Imaging L4 and L2/3. Histogram shows distribution 

of imaging plane depths across all experiments. d, Representative fields of view from 

L2/3 (left) and L4 (right) showing GCaMP6s expression present in both layers. Scale 

bar: 100µm. e, Sound evoked intracellular calcium responses for 3 pyramidal neurons in 

A1 to 9 different frequencies (column) and 3 sound levels (row). Each black line 

indicates a single trial; 5 repeats per condition, red line indicates sound stimulus onset. 

Right: Frequency response areas. 
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Figure 2. A1 activity is variable and correlated.  
a, Cumulative probability distributions of average spike rate for all recorded neurons in 

L2/3 (blue) and L4 (orange) during ongoing activity (prate>0.84, ranksum). b, 
Corresponding cumulative probability distribution of inferred CV inter-spike interval (CVISI) 

for all neurons in L4 (orange) and L2/3 (blue) (pCV<10-20, ranksum). c, Probability 

distribution of pairwise cross-correlation values for all neurons and experiments for L4 

(orange) and L2/3 (blue) (pCC<10-65, ranksum). d-f, Average spike rate, CVISI, and 

pairwise cross-correlation for evoked neuronal activity (prate<10-55, pCV<10-20, pCC<10-301, 

ranksum). 
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Figure 3. Imaging neuronal ensemble activity in awake mouse A1.  
a, Top: Binarized raster plot of ongoing activity recorded from L2/3 pyramidal neurons 

with corresponding population activities (black). Middle: Expanded view of raster plot 

revealing variable ongoing activity with population activities. b, Schematic depicting 

definition of activity ensembles from a neuronal activity raster. Activity from successive 

time bins/frames in which at least one neuron is firing (black rectangles) is concatenated 

into an activity ensemble (shading; 5 ensembles shown). Ensembles are separated by at 
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least 1 frame with no activity. Vertical gray lines indicate boundaries of frame acquisition 

(∆t, 33 ms). Ensemble sizes defined as the number of spikes in each ensemble are 

indicated below. c, Probability density distributions of ensemble sizes from individual 

experiments in L4 and in L2/3. Gray lines indicate distributions from shuffled data. d, 

Probability distributions of activity ensemble duration of ongoing activity from all 

experiments in L2/3 and in L4. Gray lines indicate distributions from shuffled data. Faded 

lines indicate individual experiments. e, Boxplots showing slopes of probability 

distributions in ensemble size (top) and ensemble duration (bottom) for each individual 

experiment in L4 (orange) and L2/3 (blue), Size: αL2/3: –2.23 ± 0.39, αL4: –2.33 ± 0.52, 

Duration: αL2/3: –2.47 ± 0.49, αL4: –2.46 ± 0.26, mean±std p>0.65, unpaired two-sample 

t-test. 
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Figure 4. Neuronal ensembles in A1 during ongoing activity organize as neuronal 
avalanches. a, Activity raster of simultaneously recorded L4 (left) and L2/3 (right) 

neurons to brief auditory inputs (arrow heads). Middle: Corresponding population 

activities summed over all neurons. Bottom: Enlarged views revealing variable, transient 

evoked responses. b, c, Probability density distributions of ensemble sizes and ensemble 

duration reveal power laws for the evoked responses and different sound intensity in L4 

(left) and L2/3 (right). Dashed lines indicate probability density distributions from shuffled 
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data sets. d, Boxplots showing slopes of probability distributions in ensemble size (top) 

and ensemble duration (bottom) for each individual experiment in L4 (orange) and L2/3 

(blue), Size: αL2/3:-1.93±0.25, αL4:-1.95±0.20, Duration: αL2/3:-2.20±0.26, αL4:-2.08±0.25, 

mean±std; psize>0.84, pdur>0.29, unpaired two-sample t-test. 
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Figure 5. Average activity ensemble size and duration depend on sound level.  
a, Boxplots showing average ensemble size in L2/3 (left; p<0.04) and L4 (right) as a 

function of sound level. b, Conventions as in a, but for average ensemble duration (L2/3 

p<0.04, L4 p<0.03). 
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Figure 6. BF variability increases with ensemble size and duration, but bandwidth 
stays constant.  
a, Illustration showing the assembly of the ensemble RF from the weighted average of 

the RFs of individual neurons active in the ensemble. b-c, Ensemble IQRBF as function of 

ensemble size (b) or duration (c). IQRBF are binned according to logarithmically spaced 

bins of size and duration. Solid lines indicate mean. Dashed lines indicate one standard 

deviation. d-e, Conventions as in (b-c), but for ensemble bandwidth. 
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Supplemental Tables 
 

 
Supplemental Table 1. Statistical comparisons of the log-likelihood ratio values of 

avalanche size distributions and shuffled avalanche size distributions. 

 

 

 
 
Supplemental Table 2. Statistical comparisons of the log-likelihood ratio values from 

avalanche duration distributions and shuffled avalanche duration distributions. 

  

 
L2/3  

80 dB 
L2/3  

60 dB 
L2/3  

40 dB 
L4 

80 dB 
L4 

60 dB 
L4 

40 dB 
LLR Actual 2573.9 2448.7 2094.4 1357.4 1480.3 1213.9 

Mean shuff -0.3 14.2 3.6 104.3 99.8 115.5 

std shuff 40.1 50.6 47.1 39.3 35.3 39.5 

Test 't-test' 't-test' 't-test' 't-test' 't-test' 't-test' 

P-Value 5.90 x10-181 1.40 x10-168 3.66 x10-165 7.05 x10-151 1.19 x10-159 4.52 x10-145 

 
L2/3  

80 dB 
L2/3  

60 dB 
L2/3  

40 dB 
L4  

80 dB 
L4  

60 dB 
L4  

40 dB 
LLR Actual 1361.4 1337.9 1246.8 824.0 946.8 817.5 
Mean shuff 356.8 381.0 360.9 422.9 423.8 433.2 

std shuff 36.6 41.5 42.0 35.3 36.6 35.9 
Test 't-test' 't-test' 't-test' 't-test' 't-test' 't-test' 

P-Value 1.56 x10-144 4.72 x10-137 3.25 x10-133 9.89 x10-107 1.75 x10-116 3.30 x10-104 
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