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Abstract: 
Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene 
expression. A useful description of the TRN would decompose the transcriptome into targeted 
effects of individual transcriptional regulators. Here, we applied unsupervised learning to a 
compendium of high-quality Escherichia coli RNA-seq datasets to identify 70 statistically 
independent signals that modulate the expression of specific gene sets. We show that 50 of these 
transcriptomic signals represent the effects of currently characterized transcriptional regulators. 
Condition-specific activation of signals was validated by exposure of E. coli to new 
environmental conditions. The resulting decomposition of the transcriptome provided: (1) a 
mechanistic, systems-level, network-based explanation of responses to environmental and 
genetic perturbations, (2) a guide to gene and regulator function discovery, and (3) a basis for 
characterizing transcriptomic differences in multiple strains. Taken together, our results show 
that signal summation forms an underlying principle that describes the composition of a model 
prokaryotic transcriptome. 
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Main: 
The transcriptional regulatory network (TRN) senses and integrates complex 

environmental and intracellular information to coordinate gene expression of a cell. Reverse 
engineering the TRN informs how an organism responds to diverse stresses and unfamiliar 
environments1–3. A fully characterized TRN would enable the prediction and mechanistic 
explanation of an organism’s dynamic adaptation to environmental or genetic perturbations. 

 
Reconstruction of a genome-scale TRN requires a substantial number of experiments to 

integrate the binding sites for each regulator and characterize their activities4,5. Unlike eukaryotic 
TRNs, which contain highly-connected co-associations6, prokaryotic TRNs exhibit a simpler 
structure; over 75% of genes in the model bacteria Escherichia coli are known targets of two or 
fewer TFs7 (Fig. S1a).  

 
The TRN structure is encoded in the genome as regulator binding sites and is invariant to 

environmental dynamics. However, environmental and genetic perturbations alter the activity 
states of transcriptional regulators to change their DNA binding affinity, which in turn modulates 
the transcriptome in a condition-specific manner. Thus, a measured expression profile reflects a 
combination of the activity of all transcriptional regulators under the examined condition, posing 
a fundamental deconvolution challenge. 
 

Compendia of expression profiles have been leveraged to infer TRNs by identifying 
shared patterns across gene expression profiles, rather than using direct DNA-TF binding 
information8,9. Many inference methods define groups of genes, or modules, with similar 
expression profiles that are often functionally related or co-expressed. A recent review showed 
that independent component analysis (ICA), a signal deconvolution algorithm, outperformed 
most other module detection algorithms in identifying groups of coregulated genes10.  

 
ICA is a blind source separation algorithm used to deconvolute mixed signals into their 

individual sources and determine their relative strengths11. Prior application of ICA to 
microarray expression data12 has identified co-expressed, functionally-related gene sets13–15 that 
often map to metabolic pathways16,17. The overall expression levels, or activities, of the gene sets 
have been leveraged to classify tumor samples18,19 and connect transcriptional modules to disease 
states20. 

 
A current challenge for analyzing transcriptional regulation is to separate the condition-

invariant network structure from its condition-dependent expression state on a genome scale. 
Here, we overcome this limitation for the E. coli TRN by simultaneously extracting its structure 
and regulator activities from a transcriptomics compendium. This approach relies on: (1) the 
availability of high-quality, self-consistent, and condition-rich expression profiling datasets; (2) 
the use of ICA to concurrently identify regulator targets and activities; and (3) validation through 
the association of inferred regulator targets with observed molecular interactions. The elucidated 
TRN structure deconvolutes transcriptomic responses of E. coli into a summation of condition-
specific effects of individual transcriptional regulators. 
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Results: 
 
Independent Component Analysis (ICA) Extracts Regulatory Signals from Expression 
Data 

In order to extract regulatory interactions from expression data, diverse conditions must 
be profiled to discriminate between the effects of transcriptional regulators. Previous studies 
have compiled transcriptomics data from independent research groups to study the 
transcriptional states and regulation of E. coli21–24. Even after resolving the significant 
normalization challenge with such disparate datasets, many sources of variation remain that 
obscure biological signals25–27. These datasets mostly contain microarray data; RNA sequencing 
(RNA-seq) data yields higher quality data with less noise and larger dynamic range28. 

 
We therefore compiled PRECISE, a Precision RNA Expression Compendium for 

Independent Signal Exploration. This high-fidelity expression profile compendium (median R2 = 
0.98 between biological replicates, see Fig. S1b) comprises 190 RNA-seq datasets across 113 
unique experimental conditions of Escherichia coli K-12 MG1655 and BW25113 generated 
from a single laboratory and obtained using a standardized protocol (Supplemental Dataset 1). 
PRECISE accounts for over 15% of publicly available RNA-seq data in NCBI GEO29 for E. coli 
K-12 MG1655 and BW25113 (Fig. S1c). 
 

We applied ICA to identify independent sources of variation in gene expression in 
PRECISE. The traditional use of ICA as a signal decomposition algorithm is illustrated in Fig. 
1a. When applied to transcriptomics data, ICA decomposes a collection of expression profiles 
(X) into (1) a set of components, which represent underlying biological signals (S), and (2) the 
components’ condition-specific activities (A) (Fig. 1b,c). Each component, represented by a 
column of S, contains a coefficient for each gene that represents the effect of a particular 
underlying signal on the gene’s expression level. Components do not contain information on the 
condition-specific transcriptomic state. Conversely, ICA computes activity levels for each 
component across every condition in the dataset, represented by a row of A, to account for 
condition-dependent expression changes (Fig. 1d). Each expression profile is represented by the 
summation over all components, each scaled by its condition-specific activity (Fig. 1e).  

 
ICA of PRECISE produced 70 robust components that explained 80% of the expression 

variation (Fig. S1d). Most gene coefficients in a component were near zero, indicating that each 
component affects a small number of significant genes (Fig. 1f). We removed genes with 
coefficients below a threshold, resulting in a set of significant genes for each component. We 
defined these condition-invariant sets of genes as “i-modulons”, since these genes were 
independently modulated at constant ratios across every condition in the database. We note that 
a gene may appear in multiple i-modulons if its expression is dependent on multiple underlying 
biological signals (Fig. S1e). 

 
The 70 resulting i-modulons are listed in Table 1. We hypothesized that each i-modulon 

was controlled by a particular transcriptional regulator, and that the i-modulon activity 
represented the condition-dependent activation state of the corresponding transcriptional 
regulator. To test this hypothesis, we examined the consistency between i-modulons and reported 
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regulons, defined as the set of genes targeted by a common regulator, using a database of over 
7,000 experimentally-derived regulatory interactions for E. coli 4 (Fig. S1f).  

 
We identified significant overlaps between regulons and 50 of the 70 i-modulons. We 

defined these 50 i-modulons as “regulatory i-modulons”. Three regulatory i-modulons were 
linked to a single sigma factor (rpoS, rpoH, fliA), four were linked to transcriptional attenuation 
(including the thiamine riboswitch)30–32, and 45 were linked to TFs. Sixteen regulatory i-
modulons were associated with multiple regulators, as described in Table 1. Of the 20 non-
regulatory i-modulons, six i-modulons were associated with distinct genetic changes, such as 
gene knock-outs and strain-specific differences, and eight of the remaining i-modulons were 
enriched in a specific biological function or process (Fig. 1g). 

 
I-modulons were labeled by their associated regulator (e.g., the MetJ i-modulon) or 

biological function (e.g., the Pyruvate i-modulon). The majority of regulatory i-modulons (30 of 
50) mapped to metabolic pathways (Fig. S2a), as previously noted16. The remaining regulatory i-
modulons represented diverse cellular responses (Fig. S2b,c). Detailed information for selected i-
modulons, including gene composition, regulon enrichments, activity levels, and upstream 
regulator binding motifs, is available in Supplemental Dataset 2. 

 
Validation of I-modulon-Regulator Relationships 

On average, 75% of genes in a regulatory i-modulon were reported targets of the linked 
transcriptional regulator(s) (Fig. 2a,b). This precision was significantly higher than the precision 
observed for other sparse decomposition methods and ICA applied to microarray datasets (Fig. 
S3a,b). We hypothesized that the remaining genes in each i-modulon were actually regulated by 
the associated regulator, but the binding sites were not experimentally determined. We tested this 
claim by performing ChIP-exo33 to locate binding sites for the TFs MetJ and CysB (Tables S1,2), 
which regulate methionine biosynthesis and sulfate assimilation, respectively. 

 
We identified MetJ binding sites upstream of 17 of the 18 genes in the MetJ i-modulon 

using ChIP-exo, increasing the i-modulon precision from 61% to 94% (Fig. 2c). The CysB 
regulon was split into the CysB i-modulon and the jointly regulated Cbl+CysB i-modulon (Fig. 
S3c). We identified CysB binding sites upstream of all genes in both i-modulons (Fig. 2d). TF 
binding was not detected near 10 of the 11 genes that were in the reported MetJ or CysB 
regulons but not in their respective i-modulons, potentially indicating inconsistencies in previous 
regulon definitions. 
 

Although MetJ is a repressor, all MetJ i-modulon gene coefficients were positive. 
Increased repression by MetJ was therefore represented by negative i-modulon activities. Some 
TFs act as dual regulators, with the ability to activate certain genes and repress others. We 
evaluated the sign consistency of eight i-modulons linked to dual regulators (Fig. 2e). The 
regulation mode was previously reported for 56% of genes in the eight i-modulons. The majority 
of genes in five of the eight i-modulons were reported to be repressed, indicating that the linked 
TFs were primarily repressors. The remaining three TFs were primarily activators. Using these 
designations, the i-modulon gene coefficients were sign-consistent for 98% of genes with known 
regulation modes. 
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Application of ICA also extracted the condition-specific activities of i-modulons, 
providing an additional source of validation. I-modulon activities were normalized such that all i-
modulon activities were zero for a baseline condition (See Methods). Thus, i-modulon activities 
under a particular condition represented the relative up- or down-regulation of the i-modulon 
genes compared to the baseline condition. 

 
 In order to validate that media perturbations predictably altered specific i-modulon 

activities, we designed 10 expression profiling experiments to conditionally activate 20 
regulators. We confirmed 75% (15/20) of predicted activations through 13 i-modulons (Fig. 2f). 
The sign of the i-modulon activity revealed whether the effector resulted in a net activation or 
repression of i-modulon genes, which was consistent with known mechanisms for the TFs. The 
additional data introduced six new i-modulons, while maintaining the previously computed i-
modulon structure (Fig. S3d). 

 
Seven of the ten experiments included dual perturbations to simultaneously activate two 

regulators. In two cases, the two regulatory effects were recognized as a single signal, resulting 
in the combined i-modulons NagC/TyrR and GntR/TyrR (Fig. S3e,f). Cytidine supplementation 
did not activate the cytidine-binding transcription factor CytR; however, the previously-
identified PurR-2 i-modulon was activated. Although four media additions did not activate their 
related i-modulons over the reference condition, the i-modulon structure of the TRN proved 
robust to additional data and displayed predictive capabilities. 
 
ICA Reveals Independent Modulation of Genes Within the PurR Regulon 
 In order to gain a detailed understanding of the biological roles of individual i-modulons, 
we programmatically generated a summary of characteristics for each i-modulon (See 
Supplemental Dataset 2). Figure 3 demonstrates these characteristics for two exemplary i-
modulons enriched with genes in the PurR regulon, named PurR-1 and PurR-2, respectively. 
 

PurR is a repressor of nucleotide biosynthetic genes and is activated by the purines 
guanine and hypoxanthine34. The PurR-1 i-modulon contained 15 significant genes with both 
positive and negative coefficients, of which 13 were related to purine metabolism (See Fig. S2a). 
The PurR-2 i-modulon contained nine genes, of which eight were in the pyrimidine biosynthetic 
pathway (Fig. 3a). Together, the two PurR-related i-modulons accounted for 19 of the 36 genes 
in the reported PurR regulon (Fig. 3b). Segmentation of regulons into multiple constituent i-
modulons was found for other global regulators such as Fur (Fig. S4a) and Crp (Fig. S4b). 
 

The 13 genes with positive coefficients in the PurR-1 i-modulon were associated with 
purine biosynthesis, with 12 genes confirmed to be regulated by PurR. We detected the PurR 
motif upstream of the missing gene, suggesting that it is regulated by PurR (Fig. 3c). Similar 
analysis identified 68 previously unidentified regulator binding sites across 18 regulatory i-
modulons (Table S3). The two genes with negative coefficients (add and ydhC) responded 
inversely to the activation of the purine biosynthetic pathway: add, which encodes the first 
enzyme in the purine degradation pathway; and ydhC, a putative transporter. Since ydhC 
expression was anticorrelated with purine biosynthetic gene expression, we hypothesized that 
ydhC was a purine-related efflux pump. In a similar fashion, we used the i-modulon structure to 
generate additional information for 87 genes with poor annotations, including 11 transporters 
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(Table S4). One such prediction, yjiY, was recently independently verified as a pyruvate 
transporter and renamed to btsT35. 
 

The condition-specific activities of the PurR-related i-modulons revealed differences in 
purine and pyrimidine biosynthetic gene expression (Fig. 3d). Adenine supplementation 
activated the repressor PurR to decrease the activity of the PurR-1 and PurR-2 i-modulons, 
whereas cytidine supplementation resulted in a decrease in PurR-2 activity. LB rich medium 
decreased both i-modulon activities.  

 
The relationship between the quantitative activities of the PurR i-modulons and the 

expression level of PurR indicated the drivers of regulator activity. The activity of the PurR-1 i-
modulon was highly correlated (Pearson R = 0.86, p-value < 10-10) with the expression level of 
purR (Fig. 3e). A similar relationship was observed in 21 of 50 regulatory i-modulons (Table 1). 
In contrast, the activity of the PurR-2 i-modulon was uncorrelated with purR expression (Pearson 
R = 0.24, p-value = 8*10-4), and was likely controlled by UTP-dependent reiterative 
transcription36 (Fig. S4d). 
 

The results presented in this section demonstrate that the i-modulon structure of the TRN 
revealed by ICA provides a deep understanding of its biological functions and offers a guide to 
discovery.  

 
I-modulons Capture Coordinated Biochemical Signals 
 Although most i-modulons were linked to single regulators, some i-modulons appeared to 
be influenced by more than one regulator. For example, the Tryptophan i-modulon was enriched 
for TrpR-regulated genes but also included two genes (tnaA and tnaB) that are regulated by 
tryptophan-mediated transcriptional attenuation31 and respond inversely to the other genes in the 
i-modulon (Fig. S4e). Similarly the Leucine/Isoleucine (Leu/Ile) i-modulon contained 13 genes 
in 4 operons that are regulated by unique combinations of transcriptional attenuation32 and TF 
binding (Fig. S4f). 
 
 This phenomenon enabled us to interpret the Pyruvate i-modulon, named for its high 
activity in strains grown with pyruvate as the primary carbon source (Fig. 4a). This i-modulon 
was dominated by the pyruvate transporter gene btsT35 and the putative pyruvate transporter gene 
yhjX (Fig. 4b). The gene coefficients were consistent with their reported regulatory strategies; the 
BtsSR two-component system regulates btsT and contains a high-affinity pyruvate receptor, 
whereas the YpdAB two-component system regulates yhjX at lower pyruvate concentrations37. 
Four additional genes were regulated by the pyruvate-responsive regulator PdhR. When the 
genes in the Pyruvate i-modulon were mapped to the reactions they catalyzed, we observed that 
the Pyruvate i-modulon responded to increased extracellular and intracellular pyruvate levels to 
increase fermentation and activate acetate overflow metabolism (Fig. 4c)39. 
 
Two i-modulons characterize the ‘Fear vs. Greed’ Tradeoff 

Can the i-modulon decomposition be utilized to understand a major genetic perturbation 
of the transcriptome? Adaptive laboratory evolution of E. coli40 revealed two distinct point 
mutations in the RNA polymerase subunit β that shift cellular resources towards growth-related 
functions (i.e. greed) away from stress-hedging functions (i.e. fear)41.  
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The quantitative i-modulon activities for two RpoB mutant strains reflected this trade-off 

(Fig. 5a). Three i-modulons whose activities significantly deviated from the wild-type strain 
were initially uncharacterized. Relaxation of the gene coefficient threshold revealed genes 
encoding translation machinery, such as ribosomal proteins, to comprise one of the 
uncharacterized i-modulons (Fig. 5b). The compendium-wide activity of this Translation i-
modulon was correlated with growth rate (Pearson R = 0.67, p-value < 10-10, Fig. S4g), 
consistent with previous observations that growth is propelled by increased ribosomal catalytic 
activity42–45. The Translation i-modulon therefore represented the “greedy”, growth-related 
functions of the transcriptome. 

 
The i-modulon with the largest activity decrease in both variants was enriched in genes 

controlled by the stress response sigma factor (RpoS). The RpoS i-modulon activity was 
correlated (Pearson R = 0.67, p-value < 10-10, Fig. S4h) with the expression level of rpoS and 
revealed a quantitative measure of cellular stress across diverse conditions (Fig. 5c). Therefore, 
the RpoS i-modulon represented the “fearful” stress-hedging functions of the transcriptome. 

 
PRECISE also contains expression data for over 30 adaptive laboratory evolution 

endpoint strains46, many of which contain mutations in genes encoding RNA polymerase 
subunits. All strains with mutated rpoB or rpoC genes exhibited low RpoS i-modulon activity, 
reflecting a reduction in stress-related expression. Further examination revealed that the RpoS i-
modulon activity was anti-correlated with the Ribosomal i-modulon activity (Pearson R = -0.63, 
p < 10-10), illuminating the compendium-wide transcriptomic trade-off between fear and greed 
(Fig. 5d). The mutations in rpoB shift the strains along this line, increasing growth and reducing 
stress-related gene expression. 

 
The results presented in this section show that the fear-greed tradeoff, and other 

transcriptome restructuring events, can be studied in great detail by decomposing the 
transcriptome into a summation of independent regulatory events. 

 
An I-modulon Identifies Transcriptional Differences Between Two Closely-Related E. coli 
Strains 
 The PRECISE database includes 30 RNA-seq datasets from Escherichia coli BW25113, 
a closely related strain to E. coli MG1655. The BW25113 strain was the background strain for 
the Keio collection of over 3,000 single-gene knock-outs47. The transcriptomic differences 
between these strains, resulting from 29 genetic variations48, have not been characterized. We 
identified a single i-modulon whose activities separated the transcriptomes of the two strains 
(Fig. 6a). The i-modulon gene coefficients elucidated twelve transcriptomic differences 
explained by genetic differences between the strains (Fig. 6b and Table S5). 

 
We then sought to use the summation of i-modulons to quantitatively account for these 

strain-specific differences. To this end, we analyzed two expression profiles in the compendium: 
the baseline condition (wild-type E. coli MG1655) and E. coli BW25113 with thiamine and 
ferric chloride supplementation. Only two i-modulons were differentially activated between the 
two conditions: the BW25113 i-modulon (described above) and the Thiamine i-modulon that 
controls thiamine biosynthesis through a riboswitch30. We accounted for the transcriptomic 
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differences by subtracting the gene coefficients in the two i-modulons scaled by their respective 
i-modulon activities from the E. coli BW25113 expression profile. This increased the R2 between 
the two strains’ expression profiles from 0.93 to 0.94 (Fig. 6c), illustrating that the summation of 
the independently modulated genes captured the major expression differences between the two 
strains. 
 
 In the previous section we used the i-modulon structure to interpret the effects of a single 
mutation in rpoB on the transcriptome. Here, we illustrated the broader ability of the i-modulons 
to interpret and quantitatively account for the transcriptional differences between closely related 
strains. 
 
I-modulons Identify Differences in Transcriptional Regulation Across Multiple E. coli 
Strains 

It has proven difficult to compare transcriptional regulation between different strains of 
the same species49. We examined the ability of i-modulons to provide a structured basis for such 
comparison. We grew and expression profiled a set of eight diverse E. coli strains in identical 
media (with additional supplements for BW251123 as described above) and calculated their i-
modulon activities using the 70 previously identified i-modulons as a basis (Fig. 6d). Three 
strains (MG1655, BW25113 and W3110) diverged from the same ancestral K-12 strain with 
limited genetic differences; CFT0173 and O157:H7 EDL933 are pathogenic strains; and the 
remaining three strains (BL21(DE3), HS, and Crooks) are laboratory strains. 

 
The expression profiles of the K-12 strains shared similar i-modulon activities, including 

higher activities in the pyrimidine-responsive PurR-2 i-modulon. This can be explained by a 
defect in the rph-pyrE operon, which leads to pyrimidine starvation in the K-12 strains50. The 
RpoS i-modulon activity was significantly suppressed in all strains except MG1655 and 
BW25113. Strains W3110, CFT073, and O157:H7 EDL933 have an amber mutation that results 
in a truncation in rpoS and is known to reduce its expression and activity51,52. Three other strains 
(BL21(DE3), HS, and Crooks) contain a divergent mutation at the same position that likely 
explains their reduced RpoS i-modulon activity (Fig. 6e,f). 
 

These results demonstrate that the i-modulons derived from a single strain can provide a 
scaffold to analyze transcriptomes from other strains of the same species. Strain-specific 
differences in i-modulon activity can be traced to sequence variations in the associated regulator, 
thus providing a deep explanation for targeted strain differences. 
 
Discussion 

We have demonstrated that the combination of (1) independent component analysis of 
high-quality RNAseq data and (2) high-resolution comprehensive regulator binding site 
information, identifies linear combinations of quantitative regulatory signals that reconstitute the 
E. coli transcriptome. This result suggests that a principle of i-modulon addition governs the 
composition of the E. coli transcriptome. Application of this principle provided a 
multidimensional understanding of the E. coli TRN, and uncovered detailed responses to 
environmental and genetic perturbations, optimality of adaptation to new conditions, and links 
between genotype and phenotype of E. coli strains. If this principle governs the composition of 
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other prokaryotic transcriptomes, it provides a path to develop detailed understanding of 
transcriptional regulation in less-understood organisms. 

 
We have shown that for the model prokaryote E. coli, 50 of the 70 identified i-modulons 

represent the effects of characterized transcriptional regulators. This coverage is a consequence 
of the quality and diversity of the RNA-seq compendium used, the extensive information 
available on E. coli transcriptional regulators, and the relative simplicity of the E. coli TRN. In 
principle, if we obtained expression data for every condition sensed by a prokaryote, we could 
decompose its expression state to a non-reducible set of regulatory signals. These fundamental 
signals, combined with high-throughput binding data for all TFs in an organism38, would lead to 
the establishment of a comprehensive quantitative transcriptional regulatory network. 
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Table 1: Overview of i-modulons derived from PRECISE. I-modulons are either named after 
their associated regulator(s) or their biological function. Strong activity-TF relationships (R2adj >  
0.4) are marked in bold. 
 

I-modulon 
Name 

Number 
of Genes Regulator(s) Enrichment 

P-value Precision Recall Activity-TF 
Expression R2

adj Biological Function 
Amino Acid and Nucleotide Biosynthesis (10) 

ArgR 11 ArgR 1.27E-17 1.00 0.09 0.43 Arginine biosynthesis 
CysB 18 CysB 4.66E-31 0.83 0.48 0.38 Inorganic sulfate assimilation 
GcvA 7 GcvA 1.43E-08 0.43 0.75 0.00 Glycine cleavage system 

His-tRNA 8 His-tRNA 0 1.00 1.00  Histidine biosynthesis 
Leu/Ile 14 

IlvY or 
leu-tRNA attenuation or 

ile-tRNA attenuation 
3.38E-37 1.00 0.82 

0.00 
 
 

Branched-chain amino acid biosynthesis 
Lrp 39 Lrp 5.47E-36 0.82 0.16 0.13 Amino acid and peptide transport 

MetJ 18 MetJ 5.71E-25 0.61 0.73 0.46 Methionine biosynthesis 
PurR-1 15 PurR 2.29E-23 0.80 0.33 0.73 Purine Biosynthesis 
PurR-2 9 PurR 1.12E-13 0.78 0.19 0.05 Pyrimidine biosynthesis 

Tryptophan 12 
TrpR or 

trp-tRNA attenuation or 
Tryptophan attenuation 

1.92E-20 0.75 0.50 
0.00 

 
 

Tryptophan Biosynthesis 
Carbon Source Utilization (14) 

AllR/GalRS 15 
AllR or 
GalR or 

GalS 
3.72E-16 0.53 0.42 

0.03 
0.08 
0.07 

Allantoin and galactose catabolism 
CdaR 14 CdaR 3.62E-24 0.64 1.00 0.81 Glucarate catabolism 
Cra 18 Cra 5.15E-18 0.78 0.10 0.32 Central carbon metabolism 

Crp-1 33 Crp 2.07E-09 0.61 0.03 0.21 Carbon source catabolism 
Crp-2 19 Crp 1.89E-05 0.58 0.02 0.16 Carbon source catabolism 
GlcC 8 GlcC 4.11E-17 0.75 0.86 0.42 Glycolate catabolism 
GlpR 9 GlpR 0 1.00 1.00 0.06 Glycerol catabolism 

GntR/TyrR 19 GntR or 
TyrR 1.12E-29 0.74 0.58 0.00 

0.00 
Gluconate catabolism and tyrosine 

biosynthesis 
GutMR 6 GutM and 

GutR 1.71E-14 0.83 0.71 0.00 
0.00 Sorbitol catabolism 

LacI/PrpR 13 LacI or 
PrpR 5.18E-18 0.54 0.88 0.13 

0.20 Lactose and propionate catabolism 
MalT 8 MalT 3.63E-19 0.88 0.70 0.71 Maltose catabolism 

NagC/TyrR 16 NagC or 
TyrR 2.29E-29 0.94 0.32 0.41 

0 
N-acetylglucosamine catabolism and 

tyrosine biosynthesis 
Pyruvate 17 

PdhR or 
YpdB or 

BtsR 
6.00E-06 0.33 0.09 

0.24 
0.02 
0.13 

Pyruvate transport and fermentation 
XylR 13 XylR 2.51E-15 0.46 0.86 0.85 Xylose catabolism 

Miscellaneous Metabolism (6) 
BirA 9 BirA 1.71E-14 0.56 1.00 0.00 Biotin biosynthesis 

Cbl+CysB 10 Cbl and 
CysB 1.81E-26 0.90 1.00 0.80 

0.20 Aliphatic sulfonate utilization 
FadR/IclR 22 FadR or 

IclR 6.93E-28 0.64 0.56 0.36 
0.10 Fatty acid degradation 

PaaX 9 PaaX 9.02E-21 0.89 0.62 0.20 Phenylacetic acid catabolism 
PuuR 7 PuuR 0 1.00 1.00 0.66 Putrescine catabolism 

Thiamine 11 Thiamine 0 1.00 1.00  Thiamine biosynthesis 
Stress Response (13) 

ArcA 28 ArcA 3.41E-12 0.68 0.04 0.00 Electron transport chain 
EvgA 20 EvgA 6.80E-21 0.50 0.63 0.05 Acid and osmotic stress response 

Fnr/IscR 44 Fnr or 
IscR 3.55E-28 0.84 0.08 0.55 

0.60 
Anaerobic response and iron-sulfur 

cluster assembly 
GadEWX 19 

GadE and 
GadW and 

GadX 
1.00E-27 0.58 1.00 

0.95 
0.52 
0.60 

Acid stress response 

GadWX 10 GadW and 
GadX 9.04E-23 0.90 0.60 0.61 

0.73 Acid stress response 
Nac 36 Nac 2.20E-21 0.83 0.06 0.71 Nitrogen starvation response 

NarL 17 NarL 9.00E-22 0.88 0.13 0.00 Nitrate respiration and formate 
dehydrogenase 
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NarL+Fnr 15 NarL and 
Fnr 3.40E-17 0.80 0.11 0.11 

0.16 Nitrite and nitrate reductase 
NtrC+RpoN 43 NtrC and 

RpoN 2.45E-47 0.65 0.58 0.61 
0.04 Nitrogen starvation response 

OxyR 7 OxyR 1.56E-11 0.86 0.13 0.32 Peroxide reductases 
RpoH 13 RpoH 6.65E-20 1.00 0.10 0.00 Heat shock response 
RpoS 62 RpoS 3.50E-20 0.52 0.11 0.45 General stress response 
SoxS 37 SoxS 1.44E-27 0.51 0.36 0.78 Oxidative stress response 

Metal Homeostasis (4) 
CusR 8 CusR 5.41E-15 0.75 0.50 0.76 Copper homeostasis 
Fur-1 61 Fur 1.02E-68 0.89 0.31 0.05 Iron homeostasis 
Fur-2 21 Fur 7.44E-15 0.67 0.08 0.03 Iron homeostasis 

ZntR/Zur 13 ZntR or 
Zur 6.49E-19 0.54 1.00 0.00 

0.01 Zinc homeostasis 
Structural Components (3) 

FlhDC 42 FlhDC 3.61E-65 0.90 0.49 0.72 Flagella assembly 
FliA 28 FliA 3.37E-50 0.96 0.42 0.85 Chemotaxis 

RcsAB 30 RcsAB 1.09E-18 0.33 0.63 0.78 Colanic acid capsule formation 
Genomic Alterations (6) 

BW25113 30      Transcriptional difference between 
BW25113 and MG1655 

crp-KO 12      Accounts for crp knock-out 
fur-KO 10      Accounts for fur knock-out 

gadWX-KO 4      Accounts for gadW and gadX knock-
outs 

insertion 10      IS2 insertion element after laboratory 
evolution 

soxRS-KO 10      Accounts for soxR and soxS knock-outs 
Biological Enrichment (8) 

crp-related 19      All genes have crp motif upstream 
fimbriae 7      Fimbria assembly 

iron-related 15      Activated under oxidative stress and iron 
starvation 

lipopoly-
saccharide 23      Lipopolysaccharide biosynthesis 
membrane 18      Enriched in membrane-bound proteins 
proVWX 3      Glycine betaine transport 

translation 1      Enriched in translation machinery 
yeeRS-flu 5      Genes in CP4-44 prophage 

Uncharacterized (6) 
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Figures: 
 

 
Fig. 1: Independent Component Analysis (ICA) Extracts Regulatory Signals from Expression Data 
(a) Given three microphones recording three people speaking simultaneously, each microphone records each voice 
(i.e. signal) at different volumes (i.e. signal strengths) based on their relative distances. Using only these measured 
mixed signals, ICA recovers the original signals and their relative signal strengths by maximizing the statistical 
independence of the recovered signals11,53. The mixed signals (X) are a linear combination of the matrix of 
recovered source signals (S) and the mixing matrix (A) that represents the relative strength of each source signal in 
the mixed output signals. This relationship is mathematically described as X = SA. (b) An expression profile under a 
specific condition can be likened to a microphone in a cell, measuring the combined effects of all transcriptional 
regulators. (c) Schematic illustration of ICA applied to a gene expression compendium. See Fig. S1b for additional 
details on data quality. The example TF is a dual regulator that primarily upregulates genes, and is activated by the 
green circular metabolite. Example experimental conditions shown are a TF knock-out, wild-type, and wild-type 
grown on medium supplemented with the activating metabolite. Each column of X contains an individual expression 
profile across 3,887 genes in E. coli. (d) Each component (column of S) contains a coefficient for each gene. These 
are scaled by the component’s condition-specific activities (row in A) to form a single layer of the transcriptomic 
compendium (e) The sum of all 70 layers, or components, reconstructs most of the variance in the original 
compendium. (f) Distribution of i-modulon categories. Categories of regulatory i-modulons are labelled in bold font. 
For more details, see Fig. S1 and Table 1. 
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Fig. 2: Validation of I-modulon-Regulator Relationships  
(a) Precision across all 50 regulatory i-modulons. (b) Schematic illustration defining precision and recall for i-
modulons. Precision is the fraction of genes in an i-modulon that are in the linked regulon, and recall is the fraction 
of genes in a regulon that are in the linked i-modulon (c) Comparison of genes in the MetJ regulon (red) and i-
modulon (green). Genes validated by ChIP-exo are shown in bold. (d) Comparison of genes in the CysB regulon 
(red) and the CysB and Cbl+CysB i-modulons (green and blue, respectively). Most genes in the Cbl+CysB i-
modulon were regulated by both Cbl and CysB. The starred gene, sbp, was a member of both i-modulons but was 
not in the reported regulon. Genes with TF binding as determined by ChIP-exo are shown in bold. (e) Signs of i-
modulon gene coefficients for eight i-modulons linked to dual regulators, colored by reported effect of regulator. (f) 
Ten media for predicted i-modulon activations. Correctly activated i-modulons are shown in bold. Distribution of i-
modulon activities from pre-existing data includes all data from PRECISE excluding the ten validation conditions. 
The gray shaded region represents the average standard deviation across pre-existing i-modulon activities. All amino 
acid supplements were L-form, and all sugars were D-form. Abbreviations: GlcNAc, N-acetyl-glucosamine. 
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Fig. 3: ICA Reveals Independent Modulation of Genes Within the PurR Regulon  
(a) Histograms of gene coefficients in the PurR-1 and PurR-2 i-modulons. (b) Comparison of genes in the reported 
PurR regulon (blue), PurR-1 i-modulon (red) and PurR-2 i-modulon (green). (c) Motif identified upstream of genes 
in PurR-1 i-modulon compared to the reported PurR motif from RegulonDB 4. This motif was identified upstream of 
the guanine/hypoxanthine transporter encoding gene ghxP, although regulator binding was not previously reported. 
(d) The two PurR associated i-modulons exhibited distinct responses to environmental perturbations. (e) The PurR-1 
i-modulon activity level is highly correlated with the log-transformed purR expression level across all conditions, 
whereas the PurR-2 i-modulon activity exhibits no correlation (See Fig. S4d). Of the 21 i-modulons whose activities 
were correlated with the expression of their associated regulons, 15 required a minimum expression level to activate 
the i-modulon (See Fig. S4c). Similar information on important i-modulons is available in Supplemental Dataset 2. 
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Fig. 4: The Pyruvate I-modulon 
(a) Boxplot of Pyruvate i-modulon activities. Number of expression profiles in each box are shown. (b) Scatter plot 
of Pyruvate i-modulon gene coefficients against average gene expression on pyruvate minimal media. I-modulon 
genes are colored by reported or predicted regulation. See Fig. S4e,f for other i-modulons associated to multiple 
related regulators. (c) Schematic illustration of the metabolic roles and transcriptional regulation of genes in the 
Pyruvate I-modulon. Extracellular pyruvate activates the two-component systems BtsSR and YpdAB to upregulate 
the expression of pyruvate transporter-encoding genes yjiY and yhjX. High levels of intracellular pyruvate 
antagonize the PdhR repressor, increasing conversion of pyruvate to acetyl-CoA. Although the regulatory strategy is 
unknown for the remaining genes, we hypothesize that they are controlled by pyruvate-sensing TFs. 
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Fig. 5: Two i-modulons characterize the ‘Fear vs. Greed’ Tradeoff 
(a) Comparison of i-modulon activities in the RpoB E672K and RpoB E546V mutant strains grown on glucose 
minimal media against wild-type activities. Significant i-modulon activities are designated by asterisks. For detailed 
information about these i-modulons, see Supplemental Dataset 2. (b) Histogram of translation i-modulon gene 
coefficients. Gene names are shown for genes above relaxed threshold. The single gene outside the original 
threshold was rplV, marked with an asterisk. (c) The RpoS i-modulon activities revealed the stress level of the cell 
under various conditions. (d) The RpoS i-modulon activities were anti-correlated with the Translation i-modulon 
activities, highlighting the trade-off between stress-hedging and growth. Single nucleotide mutations in RpoB (in 
yellow and red) shift cellular resources along this line. 
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Fig. 6: I-modulons Identify Differences in Transcriptional Regulation Across Multiple E. coli Strains  
(a) BW25113 i-modulon activities separated by strain. Number of expression profiles from each strain is shown. (b) 
Scatterplot of average BW25113 expression against BW25113 i-modulon activity. Deletions and truncations in the 
BW25113 strain account for 11 of the 12 genes with negative coefficients. An insertion sequence (IS30) in the 
mhpC gene in the BW25113 strain corresponds to a large increase in expression of mhpCDEF, as IS30 contains a 
known promoter54. Two genes in the BW25113 strain, crl and glpR, are non-functional pseudogenes in MG1655 due 
to an internal frameshift. Their positive i-modulon gene coefficients imply an increase in expression when the genes 
are functional. Point mutations at the predicted transcription start site (TSS) of tabA, in the FabR regulator, and in 
the phenylalanine tRNA pheV, account for other genes with positive coefficients (See Table S5). Asterisks denote 
genes marginally within gene coefficient threshold. (c) Heatmap of estimated i-modulon activities for 8 E. coli 
strains grown on glucose minimal media (with added thiamine and ferric chloride for BW25113). Only significantly 
altered regulatory i-modulon activities are shown. Hierarchical clustering of the activities reflects strain-specific 
characteristics. (d) Subtraction of the BW25113 and Thiamine i-modulons from the E. coli BW25113 expression 
profile accounts for the major transcriptomic deviations from E. coli MG1655 grown without thiamine. Dashed lines 
indicate two-fold difference in TPM. (e) Sequence alignment of the RpoS protein across the eight E. coli strains. (f) 
RpoS activities of the eight strains grouped by position 33 in the RpoS protein sequence, as detailed in panel (e). 
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Methods: 
 
RNA extraction and library preparation: 
Total RNA was sampled from duplicate cultures. All strains were grown in minimal salts (M9) 
medium at exponential phase, with complete growth conditions listed in Supplemental Dataset 1. 
Growth curve analysis were performed using Bioscreen C Reader system with 200 uL culture 
volume per well. Two biological replicates were used in the assay. Media components were 
purchased from Sigma-Aldrich (St. Louis, MO). For nitrate respiration cultures, a 35:50 ratio of 
carbon dioxide to nitrogen was bubbled through the media to deoxygenate. After inoculation and 
growth, 3 mL of cell broth (OD600 ~ 0.5) was immediately added to 2 volumes Qiagen RNA-
protect Bacteria Reagent (6 mL), vortexed for 5 seconds, incubated at room temperature for 5 
min, and immediately centrifuged for 10 min at 17,500 RPMs.  The supernatant was decanted, 
and the cell pellet was stored in the -80°C.  Cell pellets were thawed and incubated with 
Readylyse Lysozyme, SuperaseIn, Protease K, and 20% SDS for 20 minutes at 37°C. Total RNA 
was isolated and purified using the Qiagen RNeasy Mini Kit columns and following vendor 
procedures. An on-column DNase-treatment was performed for 30 minutes at room temperature. 
RNA was quantified using a Nano drop and quality assessed by running an RNA-nano chip on a 
bioanalyzer. The rRNA was removed using Illumina Ribo-Zero rRNA removal kit for Gram 
Negative Bacteria. A KAPA Stranded RNA-Seq Kit (Kapa Biosystems KK8401) was used 
following the manufacturer’s protocol to create sequencing libraries with an average insert length 
of around ~300 bp.  Libraries were ran on a HiSeq4000 (Illumina). 
 
ChIP-exo preparation: 
ChIP-exo experimentation was performed following the procedures previously described 55. To 
activate each TF, cells were grown on relevant media: M9 minimal medium with 2 g/L glucose 
and 5 mM methionine for MetJ, and M9 minimal medium with 2 g/L glucose and 0.25 mM 
taurine for CysB. In brief, to identify binding maps for each TF, DNA bound to each TF from 
formaldehyde cross-linked E. coli cells were isolated by chromatin immunoprecipitation (ChIP) 
with the specific antibodies that specifically recognize myc tag (9E10, Santa Cruz 
Biotechnology), and Dynabeads Pan Mouse IgG magnetic beads (Invitrogen) followed by 
stringent washings as described previously 56. ChIP materials (chromatin-beads) were used to 
perform on-bead enzymatic reactions of the ChIP-exo method 33. Briefly, the sheared DNA of 
chromatin-beads was repaired by the NEBNext End Repair Module (New England Biolabs) 
followed by the addition of a single dA overhang and ligation of the first adaptor (5′-
phosphorylated) using dA-Tailing Module (New England Biolabs) and NEBNext Quick Ligation 
Module (New England Biolabs), respectively. Nick repair was performed by using PreCR Repair 
Mix (New England Biolabs). Lambda exonuclease- and RecJf exonuclease-treated chromatin 
was eluted from the beads and overnight incubation at 65°C reversed the protein-DNA cross-
link. RNAs- and Proteins-removed DNA samples were used to perform primer extension and 
second adaptor ligation with following modifications. The DNA samples incubated for primer 
extension as described previously were treated with dA-Tailing Module (New England Biolabs) 
and NEBNext Quick Ligation Module (New England Biolabs) for second adaptor ligation. The 
DNA sample purified by GeneRead Size Selection Kit (Qiagen) was enriched by polymerase 
chain reaction (PCR) using Phusion High-Fidelity DNA Polymerase (New England Biolabs). 
The amplified DNA samples were purified again by GeneRead Size Selection Kit (Qiagen) and 
quantified using Qubit dsDNA HS Assay Kit (Life Technologies). Quality of the DNA sample 
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was checked by running Agilent High Sensitivity DNA Kit using Agilent 2100 Bioanalyzer 
(Agilent) before sequenced using HiSeq 2500 (Illumina) following the manufacturer's 
instructions. ChIP-exo experiments were performed in biological duplicate. 
 
ChIP-exo processing: 
ChIP-exo was processed as described previously55. Briefly, sequence reads obtained from ChIP-
exo experiments were mapped onto the E. coli reference genome (NC_000913.3) using bowtie57 
with default options in order to generate SAM output files. MACE program58 was used to define 
peak candidates from biological duplicates for each experimental condition with sequence depth 
normalization. Then, each peak was assigned to the nearest operon on either side, using operon 
definitions from RegulonDB. Only operons 500 basepairs downstream of peak were considered. 
Final operons on forward strand were required to be in front of the peak, and operons on reverse 
strand were required to be behind the peak. Genome-scale data were visualized using MetaScope 
to manually curate peaks (http://systemsbiology.ucsd.edu/Downloads/MetaScope). 
 
Compilation of PRECISE: 
Raw sequencing reads were collected from GEO (See Supplemental Data 1 for accession 
numbers) or produced in the lab, and mapped to the reference genome (NC_000913.3 for strain 
MG1655 and CP009273 for BW25113) using bowtie 1.1.257 with the following options “-X 
1000 -n 2 -3 3”. Transcript abundance was quantified using summarizeOverlaps from the R 
GenomicAlignments package, with the following options “mode="IntersectionStrict", 
singleEnd=FALSE, ignore.strand=FALSE, preprocess.reads=invertStrand”59. Genes shorter than 
100 nucleotides and genes with under 10 fragments per million mapped reads across all samples 
were removed before further analysis. Transcripts per Million (TPM) were calculated by 
DESeq2. The final expression compendium was log-transformed log2(TPM+1) before analysis, 
referred to as log-TPM. Biological replicates with R2 < 0.9 between log-TPM were removed to 
reduce technical noise. 
 
Compilation of the reported E. coli regulatory network: 
We compiled the global TRN using all interactions from RegulonDB 10.03 for both transcription 
factor and sRNA binding sites. Binding sites were added from recent studies, as described in 
Fang et al.27, in addition to binding sites for Nac and NtrC60 and binding sites for 10 
uncharacterized transcription factors 38. We also included sigma factor binding sites, riboswitch 
information, and transcriptional attenuation from Ecocyc61. When reported, mode of effect (i.e. 
activation or repression) was included. If the effect was unreported, or multiple effects were 
reported, effects were designated as unknown. All genes absent from PRECISE were removed 
from the final TRN. 

 
Computing robust independent components: 
We first normalized the compendium using wild-type E. coli MG1655 grown on glucose M9 
minimal media as the baseline condition (labelled base__wt_glc__1 and base__wt_glc__2). We 
subtracted the mean expression of each gene in these two samples from the compendium to 
calculate log2-fold-change (LFC) deviations from the baseline. 

 
We used the Scikit-learn62 implementation of the FastICA algorithm53 to identify independent 
components. We executed FastICA 256 times with random seeds, a convergence tolerance of 10-
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8, log(cosh(x)) as the contrast function, and the parallel search algorithm. We constrained the 
number of components in each iteration to the number of components that reconstruct 99% of the 
variance as calculated by principal component analysis (138 components). 

 
The resulting source components (S) from each run were clustered using the Scikit-learn 
implementation of the DBSCAN algorithm63 with epsilon of 0.1, and minimum of 50% of 
samples to create a cluster seed. DBSCAN does not require predetermination of the number of 
clusters, and does not require that all points belong to a cluster. The dimensionality of the dataset 
is therefore estimated by the number of clusters calculated by DBSCAN. The components 
computed by FastICA are standardized by default, with a mean of 0 and an L2-norm of 1. 
However, identical components from separate runs may have opposite signs. Therefore we used 
the following distance metric: 
 

dx,y = 1- |ρx,y| 
 

where ρx,y is the Pearson correlation between components x and y. Each component in a cluster 
was then inverted if necessary to ensure that the gene with the maximum absolute value in the 
component had a positive weight, creating sign-consistent clusters. The final independent 
components were defined as the centroid of each cluster in S, and the weightings were defined as 
the centroid of their corresponding weighting vectors in A.  

 
In order to ensure that the final components were consistent across multiple runs, we computed 
the clustered components 100 times, and found that 70 components were identified in every run, 
which were the final robust components used in the analysis. 

 
In order to confirm that the i-modulon structure was generally invariant to the composition of the 
expression database, we applied ICA to two subsets of PRECISE. The first subset consisted of 
all previously generated data from unevolved E. coli (48 profiles), and the second subset 
consisted of all previously generated data (170 profiles). We compared the resulting components 
using the absolute value of the pearson correlation coefficient. The resulting network was 
graphed using the Graphviz64 python library (Fig. S3c). Correlations below 0.5 were discarded as 
insignificant. 

 
Determination of the gene coefficient threshold: 
Each component in S contains the contributions of each gene to the statistically independent 
source of variation. Most of these values are near zero for a given component. In order to 
identify the most significant genes in each component, we modified the method proposed in 
Frigyesi et al.65. For each component, we iteratively removed genes with the largest absolute 
value and computed the kurtosis of the resulting distribution. Once the kurtosis fell below a 
cutoff, we designated the removed genes as significant. 
    
To identify this cutoff, we performed a sensitivity analysis on the concordance between 
significant genes in each component and known regulons. Eleven components were initially 
identified to have high concordance (precision > 0.75 and recall > 0.25) with a single regulator, 
using an initial kurtosis cutoff of 4. We varied the kurtosis cutoff from 1 through 10 in 
increments of 0.5, and computed the F1-score (harmonic average between precision and recall) 
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between each component and its linked regulator. The maximum value of the average F1-score 
across the 11 components occurred at a kurtosis cutoff of 4.5 (See Fig. S5a-c). 

 
Since each set of significant genes represents a set of independently modulated genes, we 
henceforth refer to these gene sets as “i-modulons”. Since independent components have no 
canonical direction, we inverted i-modulons (and related activities) such that the number of 
positive genes in an i-modulon was always larger than the number of negative genes. 

  
Associating regulators to i-modulons: 
We compared the set of significant genes in each i-modulon to each regulon (defined as the set 
of genes regulated by any given regulator) using Fisher’s Exact Test (FDR < .01). Additionally, 
combined regulon enrichments were calculated to identify joint regulation of i-modulons (such 
as NtrC+RpoN and NagC/TyrR), using both intersection (+) and union (/) of up to four regulons. 
Final i-modulon-regulator associations were determined through manual curation of enriched 
regulators. 
 
Cumulative explained variance for ICA: 
Components were initially ordered by the L2-norm (sum of squares) of for each row in the A 
matrix for ICA. Cumulative explained variance was calculated for component K: 

 

CEV = 1 − #$%&'∑ )*+
*,- .*/
$(&)

2, 
Where F(A) is the square of the Frobenius norm  

F(A) = 3∑ 4%𝑎6,8/4
9

6,8 :
;
<, 

X is the original expression profile, sk is the kth column in the S matrix, and ak is the kth row in 
the A matrix. 
 
Comparison of microarray data and PRECISE using ICA and sparse-PCA: 
Microarray data was acquired from NCBI GEO Series GSE683622. This dataset had similar size 
to PRECISE (212 experiments) to ensure comparability. Microarray data was processed using 
the RMA R package66. ICA was performed as described above for both datasets. PCA 
determined that 148 components reconstructed 99% of the variance in the microarray dataset. 
Sparse-PCA was performed using the elastic net R package67, searching for the same number of 
components as with ICA, and a vector of ones as thresholding parameters. The resulting 
components from sparse-PCA and ICA were compared against single regulators, using the 
kurtosis threshold with cutoff of 4.5 as discussed above. Regulators with highest F1-score were 
assigned to each component to ensure consistency in the comparison (no manual curation was 
used to generate the comparison figure). 
 
Differential activity analysis: 
We first computed the distribution of differences in i-modulon activities between biological 
replicates, and then fit a log-normal distribution to each distribution. We confirmed that the 
difference in activities between biological replicates followed a log-normal distribution for all i-
modulons using the Kolmogorov-Smirnov test and validating through quantile-quantile plots 
(Fig. S5d-f).  
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To test for differential activity of an i-modulon between two different conditions, we first 
computed the average activity of the i-modulon between biological replicates, if available. We 
then computed the absolute value of the difference in i-modulon activities between the two 
conditions. This difference was compared against the log-normal distribution for the i-modulon 
to calculate a p-value. I-modulons were designated as significant if the absolute value of their 
activities was greater than 5, and p-value was below 0.01.  
 
I-modulon summation: 
We selected samples base__wt_glc__1 and base__wt_glc__2 to represent the wild-type cell, and 
samples omics__bw_glc__1 and omics__bw_glc__2 to represent the mutated strains to be 
corrected. The average activities between the replicates were used for the corrections. The 
corrections were applied to the BW25113 and Thiamine i-modulons. 

 
The i-modulon decomposition is based on the equation X=SA, where xj = Σsi*aij for a particular 
expression profile j, where i represents an independent component. We aim to produce the 
correction (x2′) to the expression profile (x2) with respect to a baseline expression profile (x1) for 
all differentially activated i-modulons i ∈ I: 

 
x2′ = x2 - Σs̃i*(ai2 - ai1), 

where s̃i is a vector of zeros except for significant gene coefficients in i-modulon i, and aij is the 
activity of i-modulon i under condition j. 

 
RNA-seq processing and i-modulon projection for multiple strain comparison 
Raw sequencing reads and transcriptome abundance were identified similar to as described in the 
section above, using the following reference genomes: NC_000913.3 (MG1655), CP009273 
(BW25113), NC_007779.1 (W3110), NC_010468.1 (Crooks), NC_012971.2 (BL21(DE3)), 
NC_009800.1 (HS), CP008957.1 (O157:H7 EDL933), and NC_004431.1 (CFT073). Since gene 
composition varies across E. coli strains, we filtered the transcriptomes to only include the 1033 
genes that were members of at least one i-modulon. Genes absent from a particular strain with 
respect to the reference strains (MG1655) were assumed to have zero expression. We calculated 
the log2(TPM + 1) values using the same normalization to baseline conditions as described 
above. 

 
Thereafter, we calculated the i-modulon activities for the eight new E. coli expression profiles 
using the previously identified 70 independent components (including all gene coefficients). We 
projected the eight new expression profiles (X′) onto the previously computed basis (S): 

 
A′ = pinv(S)*X′ 

 
where A′ represents the i-modulon activities for the eight strains, and pinv is the pseudo-inverse 
function. This represents the least-squares approximation of A. 
 
Automated characterization of i-modulons: 
Supplemental Dataset 2 contains detailed information on important i-modulons. Each page 
characterizes one i-modulon, which are sorted by name. The Cra i-modulon page is described in 
Fig. S6a-g. 
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The scatter plot (Fig. S6a) compares the i-modulon gene weights to the baseline expression 
(defined as the average log-TPM of sample IDs wt_glc__wt_glc__1 and wt_glc__wt_glc__2). 
The horizontal dashed lines represent the threshold separating significant and non-significant 
genes in an i-modulon. Each gene is colored by its functional category, defined by clusters of 
orthologous groups of genes queried from EggNOG68. Gene names are provided on the 
scatterplot if total number of significant genes is below 25. Subscripts indicate split genes in E. 
coli MG1655, classified as pseudogenes. 
  
The bar chart (Fig. S6b) displays the i-modulon activities across all conditions in the database, 
grouped by study. Each condition shares the same total width, regardless of number of biological 
replicates. The sample IDs correspond to the IDs in Supplemental Dataset 1. 
 
The histograms (Fig. S6c) show the gene weights in an i-modulon on a log-scale, split by 
enriched regulon. The vertical bars represent the significance threshold for the component. The 
gray histogram captures genes that are not in an enriched regulon. The brown histogram captures 
genes that are in more than one enriched regulon. 
 
The venn diagram (Fig. S6d) compares genes in an i-modulon (above the threshold) to genes in 
the enriched regulons. If the i-modulon name contains a slash (/), the regulon circle contains the 
union of genes in any enriched regulon (i.e. genes in either regulon). If the i-modulon name 
contains a plus sign (+), the regulon circle contains the intersection of the regulons (i.e. genes in 
both regulons). Numbers in parentheses indicate number of operons (complete or partial) in each 
category. Operons were defined using RegulonDB. This panel is hidden if no enriched regulons 
were identified. 
 
The regulon scatter plot (Fig. S6e) compares the expression level of enriched regulators to the i-
modulon activity. Each point represents an expression profile. Two lines were fit to each scatter 
plot, a simple line and a broken line. The broken line represents a minimal expression level 
required before a correlation is observed between the i-modulon activity and the regulator 
expression. Only the line with the highest R2adj is shown, where 

 
R2adj = 1 - (1-R2)(n-1)/(n-k-1)  

 
The broken line is modeled as: 
 

y = a*c + b if x < c 
y = a*x + b if x >= c, 

 
where x is the expression level of the gene encoding the TF, and y is the i-modulon activity level. 
Parameter c is optimized using the optimize.curve_fit function in the Python scipy package69. 
Three initial values for c were tested to identify the optimal fit: minimum expression, maximum 
expression, and mean expression. 
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This panel is hidden if no enriched regulons were identified, or if expression levels were not 
measured for the regulator (see Thiamine i-modulon). If there are two or more enriched regulons 
with expression levels, the two TFs with the strongest association to the i-modulon are shown. 
 
Motif Search: 
The motifs (Fig. S6f) were identified by searching upstream sequences using MEME70. Genes in 
each i-modulon were grouped into operons. A stringent upstream sequence was defined as the 
region from -300 to the start of the operon. We searched for zero or one motif per sequence using 
an E-value threshold of 10-3, searching for motifs with all widths between 6 and 30 basepairs for 
all non-genomic i-modulons. For i-modulons with no enriched motifs in the stringent upstream 
sequence, we searched for motifs in a broader upstream sequence of -600 to +100, keeping all 
other parameters constant. The E-value of the motif and the percent of i-modulon operons with 
the upstream motif are listed below the motif. 
 
The motif comparison (Fig. S6g) was generated by comparing i-modulon motifs against known 
motifs from RegulonDB using TOMTOM71, with an E-value threshold of 10-3 and allowing 
incomplete matches. The E-value of the comparison is shown below the figure. 

 
For regulatory i-modulons, genes with identified motif sites but no known regulation by the 
associated TF are reported in Table S4. 
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