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Abstract 23 

Background: Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct 24 

disease. Tumour microenvironment (TME) immune phenotypes play crucial roles in 25 

predicting clinical outcomes and therapeutic efficacy.  26 

Method: In this study, we depict the immune landscape of IDC by using 27 

transcriptome profiling and clinical characteristics retrieved from The Cancer Genome 28 

Atlas (TCGA) data portal. Immune cell infiltration was evaluated via single-sample 29 

gene set enrichment (ssGSEA) analysis and systematically correlated with genomic 30 

characteristics and clinicopathological features of IDC patients. Furthermore, an 31 

immune signature was constructed using the least absolute shrinkage and selection 32 

operator (LASSO) Cox regression algorithm. A random forest algorithm was applied 33 

to identify the most important somatic gene mutations associated with the constructed 34 

immune signature. A nomogram that integrated clinicopathological features with the 35 

immune signature to predict survival probability was constructed by multivariate Cox 36 

regression. 37 

Results: The IDC were clustered into low immune infiltration, intermediate immune 38 

infiltration, and high immune infiltration by the immune landscape. The high 39 

infiltration group had a favourable survival probability compared with that of the low 40 

infiltration group. The low-risk score subtype identified by the immune signature was 41 

characterized by T cell-mediated immune activation. Additionally, activation of the 42 

interferon-α response, interferon-γ response and TNF-α signalling via the NFκB 43 

pathway was observed in the low-risk score subtype, which indicated T cell activation 44 
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and may be responsible for significantly favourable outcomes in IDC patients. A 45 

random forest algorithm identified the most important somatic gene mutations 46 

associated with the constructed immune signature. Furthermore, a nomogram that 47 

integrated clinicopathological features with the immune signature to predict survival 48 

probability was constructed, revealing that the immune signature was an independent 49 

prognostic biomarker. Finally, the relationship of VEGFA, PD1, PDL-1 and CTLA-4 50 

expression with the immune infiltration landscape and the immune signature was 51 

analysed to interpret the responses of IDC patients to immune checkpoint inhibitor 52 

therapy.  53 

Conclusion: Taken together, we performed a comprehensive evaluation of the 54 

immune landscape of IDC and constructed an immune signature related to the 55 

immune landscape. This analysis of TME immune infiltration patterns has shed light 56 

on how IDC respond to immune checkpoint therapy and may guide the development 57 

of novel drug combination strategies. 58 

 59 

Keywords: immune landscape; immune signature; survival; invasive ductal 60 

carcinoma; immune checkpoint inhibitor 61 

 62 

Introduction 63 

Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct disease. 64 

IDCs are typically of high histologic grade and high mitotic index. HER2 65 

overexpression or amplification is detected in 20% of these tumours (1). IDC tends to 66 
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metastasize to bone, liver, and lung, whereas invasive lobular carcinoma (ILC) has a 67 

higher tendency to metastasize in gastrointestinal and genital tracts, serosal cavities, 68 

and meninges (2). IDCs usually form glandular structures in contrast to the small 69 

clusters formed by ILCs. The loss of CDH1 leads to the discohesive morphology in 70 

ILCs, whereas IDCs maintain intact cell adhesion (3). Furthermore, the frequency of 71 

recurrently mutated genes and recurrent copy-number alterations often differs 72 

significantly between IDCs and ILCs (3). These features are generally associated with 73 

a poor prognosis. Taken together, these differences suggest that ILCs and IDCs are 74 

distinct cancer types and progress along different pathways.  75 

Genetic and epigenetic changes contribute to the progression of tumour 76 

progression and recurrence in different cancer types. However, accumulated evidence 77 

indicates that the tumour microenvironment (TME) has clinicopathological 78 

significance in predicting survival outcomes and assessing therapeutic efficacy factors 79 

(4, 5). TME cells constitute a vital element of cellular and noncellular components in 80 

the tumoural niche, including extracellular matrix and cellular components, such as 81 

fibroblasts, adipose cells, immune-inflammatory cells, and neuroendocrine cells. 82 

Previous studies have revealed that immune cells in the TME modulate cancer 83 

progression and are attractive therapeutic targets (6, 7). To date, the comprehensive 84 

landscape of immune cells infiltrating the TME of IDCs has not yet been elucidated. 85 

We propose that IDCs have a distinct immune landscape and that the immune 86 

landscape might lead to different prognoses and treatment responses. In this study, by 87 

applying several computational algorithms, we estimated the abundance of immune 88 
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cells in the TME of IDCs and analysed the correlation of the immune landscape with 89 

genomic characteristics and pathological features of IDCs. Furthermore, we built an 90 

immune signature based on the TME immune phenotype, which is a robust prognostic 91 

biomarker and predictive factor for the response to immune-checkpoint inhibitors.  92 

 93 

Method 94 

Data download 95 

TCGA RNA-seq datasets and clinical data for IDCs were downloaded by UCSC 96 

Xena browser (https://xenabrowser.net/). GSE20685 and GSE86948 were 97 

downloaded from the Gene Expression Omnibus (GEO) database.  98 

Implementation of Single-Sample Gene Set Enrichment Analysis (ssGSEA) 99 

We obtained the marker gene set for immune cell types from Bindea et al (8). We 100 

used the ssGSEA program to derive the enrichment scores of each immune-related 101 

term. In brief, the infiltration levels of immune cell types were quantified by ssGSEA 102 

in the R package gsva (9). The ssGSEA applies gene signatures expressed by immune 103 

cell populations to individual cancer samples. The computational approach used in 104 

our study included 24 immune cells types that are involved in innate immunity and 105 

adaptive immunity. Tumours with qualitatively different immune cell infiltration 106 

patterns were grouped using hierarchical agglomerative clustering (based on 107 

Euclidean distance and Ward's linkage).  108 

The T cell infiltration score (TIS) was defined as the average of the standardized 109 

values for CD8+ T, central memory CD4+ T, effector memory CD4+ T, central 110 
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memory CD8+ T, effector memory CD8+ T, Th1, Th2, Th17, and Treg cells. The 111 

obtained cytotoxic activity scores (CYT) score was calculated by the geometrical 112 

mean of PRF1 and GZMA (10). The CD8+ T/Treg ratio was the digital ratio of the 113 

ssGSEA scores for these two cell types. The correlation between risk score and 114 

immune cell ssGSEA score was calculated by Pearson correlation. 115 

LASSO regularization 116 

LASSO (least absolute shrinkage and selection operator) is an important 117 

regularization in many regression analysis methods (e.g., COX regression and logistic 118 

regression) (10). The idea behind LASSO is that an L1-norm is used to penalize the 119 

weight of the model parameters. Assuming a model has a set of parameters, the 120 

LASSO regularization can be defined as:  121 

� � ������
�

���

 

It can also be expressed as a constraint to the targeted objective function:  122 

∑�� � ���� , �. .  ����� �   

An important property of the LASSO regularization term is that it can force the 123 

parameter values to be 0, thus generating a sparse parameter space, which is a 124 

desirable characteristic for feature selection. In our analysis, 19 genes which highly 125 

associated with OS were used as the input. 126 

Differentially expressed gene (DEG) analysis 127 

DEG analysis was performed by the Limma package (11). The samples were 128 

separated into a high-risk score group and a low-risk score group. An empirical 129 
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Bayesian approach was applied to estimate the gene expression changes using 130 

moderated t-tests. The Q value (adjusted p value) for multiple testing was calculated 131 

using the Benjamini-Hochberg correction. The DEGs were defined as genes with a Q 132 

value less than 0.05. The clusterProfiler R package was applied for the GO analysis 133 

(12). GSEA was applied with the GSEA software. 134 

Co-expression gene network based on RNA-seq data 135 

The Weighted correlation network analysis (WGCNA) was used to construct the 136 

gene co-expression network (13). The co-expression similarity ��,	  was defined as 137 

the absolute value of the correlation coefficient between the profiles of nodes � and �: 138 

��,	  � |������ ,  �	�| 

where ��  and  �	  are expression values of for genes � and �, and ��,	 represent 139 

Pearson’s correlation coefficients of genes � and �, respectively.  140 

A weighed network adjacency was defined by raising the co-expression similarity 141 

to a power �: 142 

��,	 � ��,	
  

with �≥1. We selected the power of �  = 5 and scale-free R�  = 0.95 as the 143 

soft-thresholding parameters to ensure a signed scale-free co-expression gene network. 144 

Briefly, network construction, module detection, feature selection, calculations of 145 

topological properties, data simulation, and visualization were performed. Modules 146 

were identified via hierarchical clustering of the weighting coefficient matrix. The 147 

module membership of node � in module � was defined as: 148 
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���,�

��� �� ������ ,  ���! 

where ��  is the profile of node �, and E��! is the module eigengene (the first 149 

principal component of a given module) of module �. The module membership 150 

measure ���,�

��� , lies in #�1, 1% and specifies how close node � is to module �, � 151 

�  1, . . . , &. 152 

By evaluating the correlations between the immune infiltration status, immune 153 

signature of IDCs and the module membership of each module, a brown module was 154 

selected for further analysis. 155 

Statistical analysis 156 

A random forest algorithm was applied to find the most important somatic 157 

mutation associated with the immune signature. Survival outcome analysis modelled 158 

the results in reference to the patient OS and RFS. P-values and Hazard ratios were 159 

obtained from univariate Cox proportional-hazards regression models using the R 160 

package survival. Multivariate Cox regression was used to calculate the coefficients in 161 

the nomogram. The nomogram was plotted by the rms package. The time-dependent 162 

AUC value was calculated by the survivalROC package.  163 

 164 

Results 165 

Immune Phenotype Landscape in the TME of IDC 166 

Immune cell populations modulate diverse immune responses and lead to 167 

antitumour effects by infiltrating the IDC TME. The immune cell infiltration status 168 

was assessed by applying the ssGSEA approach to the transcriptomes of IDCs. 169 
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Twenty-four immune-related terms were incorporated to deconvolve the abundance of 170 

diverse immune cell types in IDCs. The IDCs were clustered into 3 clusters (low 171 

infiltration: 208; intermediate infiltration: 430; and high infiltration: 130) in terms of 172 

immune infiltration by applying an unsupervised clustering algorithm (Fig. 1A). By 173 

applying hierarchical cluster analysis and K-means clustering analysis, we constructed 174 

a TME cell network, depicting a comprehensive landscape of tumour-immune cell 175 

interactions and their effects on the OS of patients with IDC (Figs. 1B, S1 and S2). 176 

The TME immune cells were clustered into 4 clusters, and the correlation among 177 

different immune cell types is shown in Fig. 1B. The association of OS and RFS with 178 

different clusters of IDCs was analysed by a pairwise log-rank test. The results 179 

indicated that the high infiltration group had a favourable survival probability 180 

compared with that of the low infiltration group (Fig. 1C and 1D). 181 

Construction of the immune signature 182 

A total of 413 genes were involved in the 24 immune-related terms. We applied 183 

the univariate COX regression based on the survival datasets of patients with IDC and 184 

the expression profiles of the 413 genes. The 19 most significant genes were selected 185 

with the criteria of a p value less than 0.0005 (Fig. 2A). The expression profiles of the 186 

19 genes are shown in Fig. 2B. LASSO Cox regression was performed on the 19 187 

genes to identify the most important features in terms of predicting the survival of 188 

IDC patients (Fig. 2C, 2D and 2E). By forcing the sum of the absolute value of the 189 

regression coefficients to be less than a fixed value, certain coefficients were reduced 190 

to exactly zero, and the most powerful prognostic features (QRSL1, TIMM8A, 191 
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IGHA1, BATF, KLRB1, SPIB, and FLT3LG) were identified with relative regression 192 

coefficients. Cross-validation was applied to prevent over-fitting. A 7-gene immune 193 

signature was constructed according to the individual coefficients of the genes. Then, 194 

we calculated the risk score for each IDC patient and ranked them (Fig. 2F). Fig. 2G 195 

shows the survival overview in the IDC patients. A heatmap showed that patients in 196 

the high-risk group tended to have increased QRSL1 and TIMM8A expression levels, 197 

as well as decreased expression levels of IGHA1, BATF, KLRB1, SPIB, and FLT3LG 198 

(Fig. 2G). The Kaplan-Meier curve and Cox regression suggested that patients with 199 

high risk scores had significantly worse OS and RFS than those with low risk scores 200 

(HR=2.94, p<0.0001 and HR=2.28, p=0.001, respectively) (Fig. 2H and 2I). The 201 

effect of the 7 genes on the OS and RFS of IDC patients is shown in Fig. S3 and Fig. 202 

S4, respectively. To confirm our findings in the IDC cohort, we validated the 203 

prognostic function of the immune signature in two independent GEO cohorts 204 

(GSE20685 and GSE86948). The risk score was calculated for each patient by using 205 

the same formula as in the IDC cohort. The GSE20685 and GSE86948 cohorts were 206 

used to predict the OS of BRCA patients based on our immune signature model. 207 

Consistent with our previous findings, the Kaplan-Meier curve suggested a 208 

significantly better overall survival in the low-risk group than in the high-risk group 209 

(Fig. S5A and S5B). 210 

The low risk score was associated with active infiltration status and high 211 

cytotoxic potential 212 

High infiltration status showed a lower risk score than the intermediate 213 
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infiltration status and low infiltration status showed (Fig. 3A). Similarly, patients with 214 

a low risk score had a higher proportion of high immune infiltration than patients with 215 

a high risk score (Fig. 3B). The presence of high immune infiltration in patients was 216 

linked to a low risk score and was associated with a favourable outcome (Fig. 3C). To 217 

compare cytotoxic function with the immune landscape and immune signature that we 218 

constructed, the associated signatures were identified for each patient. IDCs with high 219 

infiltration status and low risk score were associated with increased levels of immune 220 

activation. The TIS (p < 0.0001 and p < 0.0001, respectively) (Fig. 3D and 3H), 221 

interferon-γ signature (p < 0.0001 and p < 0.0001, respectively) (Fig. 3E and 3I), and 222 

CYT (p < 0.0001 and p < 0.0001, respectively) (Fig. 3F and 3J) were increased in the 223 

low-risk score group and high infiltration group. The ssGSEA score of DCs was 224 

higher in the low-risk score group than in the high-risk score group. The 225 

Kaplan-Meier curve showed that in the low-risk score group, the ssGSEA score of DC 226 

cells affected survival but did not affect the high-risk score group (Fig. S6A, S6B and 227 

S6C). These data indicate that compared with high-risk score tumours, low-risk score 228 

tumours have a distinct immune phenotype, characterized by increased immune 229 

infiltration and increased levels of immune activation. 230 

The low-risk score was associated with increased T cell infiltration 231 

The association of risk score and immune-related cells was analysed by Pearson 232 

correlation. Cytotoxic cells, CD8+ T cells, T cells and the 6 other most significant 233 

immune-related cell types are shown in Fig. 4. A high level of correlation was found 234 

between the risk score and the T cell-mediated immune response. The ssGSEA scores 235 
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of 24 immune-related terms in the low, intermediate, and high immune status and 236 

low- and high-risk score groups are shown in Fig. S7A and S7C. The p value and 237 

difference in the mean ssGSEA score from the high- and low-infiltration status and 238 

low- and high-risk score groups are shown in Fig. S7B and Fig. S7D. The proportions 239 

of low, intermediate, and high immune infiltration status in different pathological 240 

subtypes and different AJCC stages of IDC are shown in Fig. S7E and Fig. S7F. The 241 

triple-negative subtype of IDCs had a higher proportion of high infiltration status 242 

IDCs than other pathological subtypes, indicating an active immune response in 243 

triple-negative IDCs. The risk score distribution in different pathological subtypes and 244 

different AJCC stages of IDC are shown in Fig. S5G and Fig. S5H. The luminal A 245 

subtype had a lower risk score than the other pathological subtypes. 246 

Functional annotation and WGNCA of the transcriptomes of IDC patients 247 

To identify the underlying biological characteristics of the constructed immune 248 

signature, DEG analysis was performed based on the high-risk score group and 249 

low-risk score group. The heatmap depicts the significant DEGs between the two 250 

groups (Fig. 5A). The GO analysis indicated that T cell activation, positive regulation 251 

of leukocyte cell-cell adhesion, and regulation of lymphocyte activation were the most 252 

significantly enriched biological processes between the high-risk score group and the 253 

low-risk score group (Fig. 5B). The GSEA results showed that allograft rejection, 254 

IL-6/JAK/STAT3 signalling, the inflammatory response, interferon-α response, 255 

interferon-γ response and TNF-α signalling via the NFκB pathway were the 256 

predominant upregulated pathways in the low-risk score group. In contrast, the E2F 257 
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targets, G2M checkpoints, MTORC1 signalling and protein secretion pathways were 258 

significantly downregulated in the low-risk score group (Fig. 5C and 5D). To further 259 

identify the underlying biological characteristics in the immune signature, WGCNA 260 

was performed, and the correlation of risk score and immune infiltration status with 261 

module membership was analysed. The soft threshold selection is shown in Fig. S8. 262 

The module-trait heatmap illustrates that the brown module had a significant p value 263 

with both immune signature and immune infiltration status (Fig. 5E); the coefficients 264 

were -0.64 and 0.8, respectively. The association between module membership and 265 

gene significance for each gene in the brown module is shown in Fig. 5F. The genes 266 

from the brown module with a coefficient greater than 0.5 were selected as hub genes, 267 

and GO enrichment analysis revealed that T cell activation and lymphocyte activation 268 

were the most significantly enriched biological processes, which further confirmed 269 

the results from the DEG analysis. 270 

Mutation load and immune signature 271 

The spectrum of somatic mutations in patients with IDCs is known to be varied. 272 

We next investigated the distributions of somatic mutations and observed different 273 

patterns among IDCs in terms of total mutation burden (TMB). The risk score from 274 

the immune signature had a positive correlation with TMB in IDC patients (Fig. 6A). 275 

By applying a random forest algorithm, we identified 35 highly variable mutated 276 

genes that were associated with the immune signature (Fig. 6B). TP53 was the 277 

predominant gene of the 35 identified genes.  278 

Construction of a nomogram to predict overall survival in IDC patients  279 
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We constructed a nomogram that integrated clinicopathological features with the 280 

immune signature to predict the survival probability of IDC patients (Fig. 7A). The 281 

AUC(t) functions of the multivariable models were developed to indicate how well 282 

these features serve as prognostic markers. Compared to other features, such as 283 

signature-based risk score, AJCC-TNM stage and total mutation burden, the 284 

nomogram consistently showed the highest predictive power for overall survival in 285 

the follow-up period (Fig. 7B).  286 

The immune signature predicted the immunotherapeutic benefits in IDC patients 287 

VEGF-A, the main mediator in tumour angiogenesis, hinders T cell infiltration in 288 

the tumour microenvironment. Hence, we explored the correlation between VEGF-A 289 

expression and the T cell immune response in IDC tumours. Interestingly, the 290 

increased VEGFA expression significantly correlated with both decreased levels of 291 

activated CD8+ T cells and Th1 cell infiltration in the high immune infiltration 292 

tumour microenvironment but not in the low immune infiltration tumour 293 

microenvironment (Fig. 8A and 8B). Furthermore, perforin, the molecular effector 294 

found in the granules of cytotoxic T lymphocytes and natural killer cells, also showed 295 

a negative correlation with VEGF-A expression (Fig. 8C). Finally, the positive 296 

correlation of VEGF-A and the risk score was identified. PD-1, PDL-1 and cytotoxic 297 

T lymphocyte antigen-4 (CTLA-4) are promising targets for the treatment of patients 298 

with breast and non-small cell lung cancer. PD-1, PDL-1, and CTLA-4 antibodies are 299 

undergoing studies for the treatment of breast cancer. We analysed the correlation of 300 

PD-1, PDL-1, and CTLA-4 expression in the high- and low-infiltration groups. The 301 
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expression of PD-1, PDL-1, and CTLA-4 was more significantly correlated with 302 

CD8+ T cells, Th1 cell ssGSEA score and perforin expression in the high-infiltration 303 

group than in the low-infiltration group. Furthermore, the mean expression of PD-1, 304 

PDL-1, and CTLA-4 was significantly increased in the high-infiltration group, 305 

indicating a potentially enhanced response to the corresponding anticancer antibody 306 

for IDCs with high immune infiltration status. In our constructed immune signature, 307 

the risk score showed a negative correlation with PD-1, PDL-1, and CTLA-4 308 

expression, which implies a potentially enhanced effect of PD-1, PDL-1, and CTLA-4 309 

antibodies in patients with low risk score. Lastly, we checked the correlation of the 310 

expression profiles of several immune checkpoint proteins, e.g., CD160, CD274, 311 

CD276, CTLA-4, LAG3, and PDCD1, risk score, and VEGF-A in the TCGA and 312 

GSE20685 cohorts (Fig. S8).  313 

 314 

Discussion 315 

In this study, we depicted the immune landscape of IDC using a large cohort. The 316 

immune landscape might explain the differences in prognoses of patients with IDC 317 

and responses to PD1, PDL-1 and CTLA-4 antibodies. Based on the immune 318 

landscape, we constructed an immune signature that calculated the risk score per 319 

patient. The correlation of signature and immune landscape revealed that the T 320 

cell-mediated immune response played a crucial role in the signature. Patients with 321 

low risk scores had increased T cell infiltration scores, interferon-γ signatures, and 322 

cytotoxic activity scores, indicating active T cell immune responses and favourable 323 
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survival probability. A random forest algorithm was applied to find the most important 324 

somatic mutation correlated with the immune signature. A nomogram was constructed 325 

based on the immune signature and other clinicopathological properties of IDCs. A 326 

time-dependent ROC analysis showed high accuracy of the immune signature and 327 

nomogram in terms of predicting the survival of IDC patients. Lastly, PD-1, PDL-1, 328 

and CTLA-4 expression was found to be highly associated with the risk score. The 329 

patients with low risk scores had increased expression levels of PD-1, PDL-1, and 330 

CTLA-4, indicating a potentially high response rate to PD-1, PDL-1, and CTLA-4 331 

antibodies.  332 

In our analysis, the IDCs were clustered into three main clusters (low immune 333 

infiltration, intermediate immune infiltration, and high immune infiltration). The 334 

patients in the high-infiltration cluster had the best survival probability compared with 335 

patients in the low- and intermediate-infiltration clusters. The T cell immune response 336 

is the central event in antitumour immunity (14). T cells are divided into CD4+ 337 

(helper T cells, Th) and CD8+ (cytotoxic T cells, Tc) T cells. Their secretomes include 338 

IFN-γ, TNF-α, and IL17, which have antitumour effects. Hence, the increased T cell 339 

infiltration score, interferon-γ signature, and cytotoxic activity score may lead to an 340 

anti-tumour effect in the high-infiltration group. This finding could explain the 341 

different OS and RFS in the high- and low-infiltration groups. 342 

From the immune landscape in IDCs, we built an immune signature that included 343 

seven features (QRSL1, TIMM8A, IGHA1, BATF, KLRB1, SPIB, and FLT3LG). 344 

FLT3LG is a crucial cytokine that controls the development of DCs and is particularly 345 
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important for CD8-positive classical DCs and their CD103-positive tissue 346 

counterparts. A clinical trial is currently underway to treat melanoma patients with a 347 

combination of immunostimulatory FLT3LG and a peptide-based vaccine targeting 348 

DCs (15). KLRB1, which encodes CD161, a surface marker on several T cell subsets 349 

and NK cells, has been found to be most frequently associated with favourable 350 

outcomes in many cancer types by enhancing innate immune characteristics (16). 351 

SPIB is a member of the ETS family and profoundly affects B cell functions. B cells 352 

that lack SPIB fail to proliferate in response to IgM cross-linking, exhibit limited 353 

capacity to respond to T-dependent antigens, and produce low levels of IgG1, IgG2a, 354 

and IgG2b (17). In addition, SPIB can activate enhancer elements in both Ig-λ and 355 

Ig-κ genes, increasing the expression of these two genes. BATF is an inhibitor of 356 

AP-1-driven transcription. Recent studies have revealed that BATF can regulate 357 

positive transcriptional activity in dendritic cells, B cells and T cells (18). BATF 358 

leucine zipper motifs interact with interferon-regulatory factor 4 (IRF4) and IRF8 at 359 

AP-1–IRF consensus elements (AICEs), adding additional flexibility to the actions of 360 

IRF4 and IRF8, which were previously considered to interact with SPIB and PU.1 361 

(19). The interaction of IRF4 and BATF in T helper 17 cells increases the 362 

production of IL-17, IL-21, IL-22 and IL-23 receptor. TIMM8A is involved in the 363 

import and insertion of hydrophobic membrane proteins from the cytoplasm to the 364 

mitochondrial inner membrane. The Bax/Bak complex mediates the release of 365 

DDP/TIMM8a and activates Drp1-mediated fission to promote mitochondrial 366 

fragmentation and subsequent elimination during programmed cell death (20). 367 
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From the expression profiles of the seven genes above, we calculated the risk score 368 

for each patient and predicted the survival of IDC patients. 369 

The risk score from the immune signature was most significantly correlated with 370 

the ssGSEA score of cytotoxic cells, CD8 T cells and T cells, indicating the important 371 

roles of the T cell immune response in the immune signature. Interestingly, DCs in the 372 

low-risk group played a more important role than DCs in the high-risk group. The 373 

increased proportion of DCs significantly correlated with favourable survival in the 374 

low-risk group but did not correlate with favourable survival of patients in the 375 

high-risk group. Th innate inflammatory cytokines, such as IL-1, IL-12, and IL-23 376 

expressed by DCs, promote IFN-γ-secreting CD4+ T cell and cytotoxic T lymphocyte 377 

responses (21). The high proportion of DCs and T cells cooperate to achieve the 378 

antitumour effect in IDC patients with low risk scores. Furthermore, the GSEA results 379 

revealed high levels of IFN-γ, TNF-α, and TNF-α secretion in the low-risk group, 380 

which contribute to the antitumour activity in IDC patients with low risk scores. 381 

WGCNA revealed opposing directions of the risk score (cor = -0.64) and immune 382 

infiltration (cor = 0.8) with the brown module, indicating the high level of correlation 383 

of risk score (calculated by immune signature) and immune infiltration. The hub gene 384 

in the brown module plays an essential role in regulating immune infiltration. The GO 385 

analysis revealed that T cell activation was the most significantly enriched biological 386 

process, indicating that the T cell-mediated immune response is the central event in 387 

both immune infiltration and the immune signature. 388 

The spectrum of somatic mutations varied in IDC patients. The different mutation 389 
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burdens in IDCs led us to analyse whether the landscape of immune cells and the 390 

immune signature were associated with somatic mutations. The TMB showed a 391 

positive correlation with the risk score in IDC patients. Furthermore, a random forest 392 

algorithm was performed to identify the most important variables correlated with the 393 

immune signature. TP53, SCN10A, PIK3CA and 32 other genes were the most 394 

significant variables in the analysis. TP53 and PIK3CA mutations are the most 395 

common gene mutations in IDCs (44% and 33%, respectively). In the 35 gene 396 

variables, GATA3, a key regulator of ER activity, is a newly identified gene that is 397 

mutated in IDCs (5% in ILC versus 13% in IDC, q = 0.03) (3). Mutations in GATA3 398 

are more frequent in luminal A IDC and are mutually exclusive with FOXA1 events. 399 

The differential expression level and enrichment for mutations of GATA3 in IDCs and 400 

of FOXA1 in ILC indicates a preferential requirement for the distinct regulation of 401 

ER activity in ILC and IDC (3). Previous studies revealed that the GATA3 mutation 402 

correlates with increased expression, which is associated with the immune response 403 

(22, 23). Our analysis further confirms the correlation of the GATA3 mutation with 404 

immune infiltration. In addition, we constructed a nomogram that integrated 405 

clinicopathological features with the immune signature to predict the survival 406 

probability of IDC patients. Compared with other clinicopathological features, the 407 

immune signature showed the best accuracy in predicting the survival of IDC patients 408 

at any time point and would therefore be helpful for the diagnosis and precise 409 

treatment of IDC patients. 410 

There have been several studies for the treatment of breast cancer with 411 
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immunotherapeutic antibodies. PD-1 is expressed by exhausted T cells. PD-1 and 412 

PD-L1 exhibit inhibitory receptor–ligand interactions, which are involved in the 413 

negative regulation of T cell activation and peripheral tolerance during immune 414 

responses by cancer cells. Despite demonstrated successes, only a proportion of 415 

patients benefit from PD-1 and PDL-1 antibody treatment. Hence, it is important to 416 

determine the mechanism that leads to the varied therapeutic effect of PD-1 and 417 

PDL-1 antibody treatment and thus improve individual diagnosis and precision 418 

medicine. PD-L1 expression, microsatellite instability and deficient mismatch repair 419 

are important biomarkers that predict the response to anti-PD-1/PD-L1 therapies 420 

(24-26). Among the three biomarkers, PD-L1 expression has been validated in nearly 421 

all tumour types for all approved anti-PD-1/PD-L1 therapies. In our analysis, the 422 

expression of PD1, PDL-1, and CTLA-4 was significantly increased in the 423 

high-infiltration group. Furthermore, the expression of PD1, PDL-1, and CTLA-4 had 424 

a significant correlation with CD8+ T cells, Th1 cell ssGSEA score and perforin 425 

expression in the high-infiltration group, which provides a basis for PD-1/PD-L1 and 426 

CTLA-4 treatment. Similarly, the immune signature we constructed also indicated that 427 

high expression levels of PD1, PDL-1, and CTLA-4 correlated with low risk score. 428 

Therefore, patients with a low risk score could derive more benefit from 429 

immunotherapy than patients with a high risk score. 430 

In the current study, we performed a comprehensive evaluation of the immune 431 

landscape of IDC and constructed an immune signature related to the immune 432 

landscape. This analysis of TME immune infiltration patterns has shed light on how 433 
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IDC respond to immune checkpoint therapy and may guide the development of novel 434 

drug combination strategies. 435 

 436 
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 466 

Figure legends 467 

Fig. 1 Immune landscape of IDCs and the TME characteristics.  468 

A, Unsupervised clustering of IDC patients from the TCGA cohort using ssGSEA 469 

scores from immune cell types. Mutation status of TP53, MYC, GATA3, MAP2K4, 470 

and CDH1, status of the oestrogen receptor, status of the progesterone receptor, status 471 

of Her2, survival, and stage are shown as patient annotations in the lower panel. 472 

Hierarchical clustering was performed with Euclidean distance and Ward linkage. 473 

Three distinct immune infiltration clusters, here termed high infiltration, median 474 

infiltration, and low infiltration, were defined. B, Interaction of the TME immune cell 475 
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types. The size of each term represents the survival impact of each TME cell type, 476 

calculated by log10 (log-rank test P value). The connection of TME immune cells 477 

represents interactions between both. The thickness of the line indicates the strength 478 

of the correlation calculated by Spearman correlation analysis. Positive correlations 479 

are represented in red, and negative correlations are represented in blue. The immune 480 

cell cluster was clustered by the hclust method. Immune cell cluster-A, yellow; cell 481 

cluster-B, blue; cell cluster-C, red; and cell cluster-D, brown. C, Kaplan-Meier curves 482 

for OS of IDC patients showing that the high immune infiltration group had a 483 

favourable outcome compared with the other groups. D, Kaplan-Meier curves for RFS 484 

of IDC patients showing that the high immune infiltration group had a favourable 485 

outcome compared with other groups. IDC: invasive ductal carcinoma; TME: tumour 486 

microenvironment; TCGA: The Cancer Genome Atlas; OS: overall survival; and RFS: 487 

recurrence-free survival. 488 

Fig. 2 Signature-based risk score is a promising marker of survival in IDC 489 

patients.  490 

A, The HR and P value from the univariable Cox HR regression of selected genes in 491 

the immune terms (Criteria: P value < 0.001). B, The expression of the selected genes 492 

shown by heatmap. Mutation status of TP53, MYC, GATA3, MAP2K4, and CDH1, 493 

status of the oestrogen receptor, status of the progesterone receptor, status of Her2, 494 

survival, and stage are shown as patient annotations in the lower panel. Hierarchical 495 

clustering was performed with Euclidean distance and Ward linkage. C and D, 496 

LASSO Cox analysis identified 7 genes most correlated with overall survival, and 497 
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10-round cross validation was performed to prevent overfitting. E, Coefficient 498 

distribution of the gene signature. F, Risk score distribution. G, Survival overview. H, 499 

Heatmap showing the expression profiles of the signature in the low- and high-risk 500 

groups. I, Patients in the high-risk group exhibited worse OS than those in the 501 

low-risk group. J, Patients in the high-risk group exhibited worse RFS than those in 502 

the low-risk group. IDC: invasive ductal carcinoma; OS: overall survival; and RFS: 503 

recurrence-free survival. 504 

Fig. 3 Heterogeneous immune cell infiltration in the low- and high-risk score 505 

groups. 506 

A, The distribution of risk scores in low, mediate and high immune infiltration 507 

patterns. B, The distribution of immune infiltration patterns in the low- and high-risk 508 

score groups. C, Alluvial diagram of immune infiltration patterns in groups with 509 

different risk scores and survival outcomes. D, TIS in low, mediate and high immune 510 

infiltration patterns. E, Relative interferon-γ signature in low, mediate and high 511 

immune infiltration patterns. F, Comparison of relative CYT in low, mediate and high 512 

immune infiltration patterns. G, Relative TIS in the low- and high-risk score groups. E, 513 

Relative interferon-γ signature in the low- and high-risk score groups. F, Comparison 514 

of relative CYT in the low- and high-risk score groups. TIS: T cell infiltration score; 515 

CYT: cytotoxic activity scores. 516 

Fig. 4 The nine most significant correlations of risk score with immune cell 517 

infiltration ssGSEA score. 518 

Fig. 5 Functional annotation of the immune signature and WGCNA of the IDC 519 
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transcriptome. 520 

A, Heatmap showing the transcriptome expression profiles of the low- and high-risk 521 

groups. B, GO analysis based on the significant genes in the comparison between 522 

low- and high-risk groups. C and D, GSEA revealed that most significant hallmarks 523 

correlated with the immune signature. E, Correlation between modules and traits. G, 524 

The correlation between module membership and gene significance in the brown 525 

module. H, GO analysis based on the hub genes in the brown module. GO: gene 526 

ontology; GSEA: gene set enrichment analysis.  527 

Fig. 6 The association of the immune signature with cancer somatic mutations.  528 

A, The correlation between the immune signature and IDC somatic mutations. B, 529 

Distribution of somatic mutations correlated with the immune signature. The upper 530 

bar plot indicates OS and RFS per patient, whereas the left bar plot shows the 531 

importance of the somatic mutations correlated with the immune signature. IDC: 532 

invasive ductal carcinoma; OS: overall survival; and RFS: recurrence-free survival. 533 

Fig. 7 Construction of a nomogram for survival prediction.  534 

A, Nomogram combining the immune signature with clinicopathological features. B, 535 

The AUC(t) of the multivariable models indicated that the nomogram had the highest 536 

predictive power for overall survival. 537 

Fig. 8 Immune signature predicts immunotherapeutic benefits 538 

A, B and C, The correlation of VEGFA expression with T cell infiltration, Th1 cells 539 

and PRF1 expression in high and low immune infiltration conditions. D, The 540 

correlation of VEGFA expression with the immune signature. E, F and G, The 541 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 27, 2019. ; https://doi.org/10.1101/620849doi: bioRxiv preprint 

https://doi.org/10.1101/620849


26 

 

correlation of PD-1 expression with T cell infiltration, Th1 cells and PRF1 expression 542 

in high and low immune infiltration conditions. H, The correlation of PD-1 expression 543 

with the immune signature. I, J and K, The correlation of PDL-1 expression with T 544 

cell infiltration, Th1 cells and PRF1 expression in high and low immune infiltration 545 

conditions. L, The correlation of PDL-1 expression with the immune signature. M, N 546 

and O, The correlation of CTLA-4 expression with T cell infiltration, Th1 cells and 547 

PRF1 expression in high and low immune infiltration conditions. P, The correlation of 548 

CTLA-4 expression with the immune signature.  549 

Fig. S1 The correlation between different infiltrating immune cells. 550 

Fig. S2 The correlation between the ssGSEA scores of infiltrating immune cells 551 

and the OS probability of IDC patients. 552 

Fig. S3 The correlation between the expression level of seven genes in the 553 

immune signature and the OS probability of IDC patients. 554 

Fig. S4 The correlation between the expression of seven genes in the immune 555 

signature and the RFS probability of IDC patients. 556 

Fig. S5 Validation of the immune signature in two external cohorts, GSE20685 (A) 557 

and GSE86948 (B).  558 

Fig. S6 The correlation between the ssGSEA scores of DCs and the OS 559 

probability of IDC patients in the high- and low-risk score groups. 560 

A, The ssGSEA scores were higher in the high- and low-risk score groups. B, The 561 

correlation between the ssGSEA scores of DCs and the OS probability of IDC patients 562 

in the low-risk score group. C, The correlation between the ssGSEA scores of DCs 563 
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and the OS probability of IDC patients in the high-risk score group. 564 

Fig. S7 The ssGSEA score distribution in the low, intermediate and high immune 565 

infiltration patterns and in the low- and high-risk score groups. 566 

A, The ssGSEA score distribution in low, intermediate and high immune infiltration 567 

patterns. B, The difference and P value from the comparison between the ssGSEA 568 

score from low and high immune infiltration patterns. C, The ssGSEA score 569 

distribution in the low- and high-risk score groups. D, The difference and P value 570 

from the comparison between the ssGSEA score from the low- and high-risk score 571 

group. E, The distribution of immune infiltration patterns in different pathological 572 

subtypes. F, The distribution of risk scores in different pathological subtypes. G, The 573 

distribution of immune infiltration patterns at different pathological stages. H, The 574 

distribution of risk scores at different pathological stages. 575 

Fig. S8 The selection of the soft threshold in the WGCNA 576 

Fig. S9 The correlation of the expression profiles of several immune checkpoint 577 

proteins, risk score, and VEGF-A in the TCGA (A) cohort and GSE20685 cohort 578 

(B).  579 

 580 
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