1	Immune Landscape of Invasive Ductal Carcinoma Tumour Microenvironment
2	Identifies a Prognostic and Immunotherapeutically Relevant Gene Signature
3	Xuanwen Bao ^{1, 2*‡} , Run Shi ^{3*} , Kai Zhang ⁴ , Shan Xin ¹ , Xin Li ⁵ , Yanbo Zhao ⁴ ,
4	Yanfang Wang ³ [‡]
5	1) Institute of Radiation Biology, Helmholtz Center Munich, German Research
6	Center for Environmental Health, 85764 Neuherberg, Germany
7	2) Technical University Munich (TUM), 80333 Munich, Germany
8	3) Ludwig-Maximilians-Universität München (LMU), 80539 Munich, Germany
9	4) Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University
10	School of Medicine, 310016 Hangzhou, China
11	5) College of Life Sciences, Nanjing University, 210093, Nanjing, China
12	
13	<pre>‡ Corresponding author:</pre>
14	Xuanwen Bao: xuanwen.bao@helmholtz-muenchen.de;
15	Yanfang Wang: yangfang.wang@cup.uni-muenchen.de
16	
17	Email address: Xuanwen Bao: xuanwen.bao@helmholtz-muenchen.de; Shan Xin:
18	shan.xin@helmholtz-muenchen.de; Kai Zhang: 3317020@zju.edu.cn; Xin Li:
19	Shin Lee@outlook.com; Yanbo Zhao: zhaoybzju@zju.edu.cn; Run Shi:
20	Run.Shi@med.uni-muenchen.de; Yanfang Wang:
21	yangfang.wang@cup.uni-muenchen.de.

23 Abstract

Background: Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct
disease. Tumour microenvironment (TME) immune phenotypes play crucial roles in
predicting clinical outcomes and therapeutic efficacy.
Method: In this study, we depict the immune landscape of IDC by using

28 transcriptome profiling and clinical characteristics retrieved from The Cancer Genome Atlas (TCGA) data portal. Immune cell infiltration was evaluated via single-sample 29 30 gene set enrichment (ssGSEA) analysis and systematically correlated with genomic 31 characteristics and clinicopathological features of IDC patients. Furthermore, an 32 immune signature was constructed using the least absolute shrinkage and selection 33 operator (LASSO) Cox regression algorithm. A random forest algorithm was applied 34 to identify the most important somatic gene mutations associated with the constructed 35 immune signature. A nomogram that integrated clinicopathological features with the 36 immune signature to predict survival probability was constructed by multivariate Cox 37 regression.

Results: The IDC were clustered into low immune infiltration, intermediate immune infiltration, and high immune infiltration by the immune landscape. The high infiltration group had a favourable survival probability compared with that of the low infiltration group. The low-risk score subtype identified by the immune signature was characterized by T cell-mediated immune activation. Additionally, activation of the interferon- α response, interferon- γ response and TNF- α signalling via the NF κ B pathway was observed in the low-risk score subtype, which indicated T cell activation

3

45	and may be responsible for significantly favourable outcomes in IDC patients. A
46	random forest algorithm identified the most important somatic gene mutations
47	associated with the constructed immune signature. Furthermore, a nomogram that
48	integrated clinicopathological features with the immune signature to predict survival
49	probability was constructed, revealing that the immune signature was an independent
50	prognostic biomarker. Finally, the relationship of VEGFA, PD1, PDL-1 and CTLA-4
51	expression with the immune infiltration landscape and the immune signature was
52	analysed to interpret the responses of IDC patients to immune checkpoint inhibitor
53	therapy.
54	Conclusion: Taken together, we performed a comprehensive evaluation of the
55	immune landscape of IDC and constructed an immune signature related to the
56	immune landscape. This analysis of TME immune infiltration patterns has shed light
57	on how IDC respond to immune checkpoint therapy and may guide the development
58	of novel drug combination strategies.
59	
60	Keywords: immune landscape; immune signature; survival; invasive ductal
61	carcinoma; immune checkpoint inhibitor
62	
63	Introduction
64	Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct disease.
65	IDCs are typically of high histologic grade and high mitotic index. HER2

overexpression or amplification is detected in 20% of these tumours (1). IDC tends to

67	metastasize to bone, liver, and lung, whereas invasive lobular carcinoma (ILC) has a
68	higher tendency to metastasize in gastrointestinal and genital tracts, serosal cavities,
69	and meninges (2). IDCs usually form glandular structures in contrast to the small
70	clusters formed by ILCs. The loss of CDH1 leads to the discohesive morphology in
71	ILCs, whereas IDCs maintain intact cell adhesion (3). Furthermore, the frequency of
72	recurrently mutated genes and recurrent copy-number alterations often differs
73	significantly between IDCs and ILCs (3). These features are generally associated with
74	a poor prognosis. Taken together, these differences suggest that ILCs and IDCs are
75	distinct cancer types and progress along different pathways.

76 Genetic and epigenetic changes contribute to the progression of tumour progression and recurrence in different cancer types. However, accumulated evidence 77 78 indicates that the tumour microenvironment (TME) has clinicopathological 79 significance in predicting survival outcomes and assessing therapeutic efficacy factors 80 (4, 5). TME cells constitute a vital element of cellular and noncellular components in 81 the tumoural niche, including extracellular matrix and cellular components, such as 82 fibroblasts, adipose cells, immune-inflammatory cells, and neuroendocrine cells. 83 Previous studies have revealed that immune cells in the TME modulate cancer progression and are attractive therapeutic targets (6, 7). To date, the comprehensive 84 85 landscape of immune cells infiltrating the TME of IDCs has not yet been elucidated. We propose that IDCs have a distinct immune landscape and that the immune 86 87 landscape might lead to different prognoses and treatment responses. In this study, by 88 applying several computational algorithms, we estimated the abundance of immune

89	cells in the TME of IDCs and analysed the correlation of the immune landscape with
90	genomic characteristics and pathological features of IDCs. Furthermore, we built an
91	immune signature based on the TME immune phenotype, which is a robust prognostic
92	biomarker and predictive factor for the response to immune-checkpoint inhibitors.
93	
94	Method
95	Data download
96	TCGA RNA-seq datasets and clinical data for IDCs were downloaded by UCSC
97	Xena browser (https://xenabrowser.net/). GSE20685 and GSE86948 were
98	downloaded from the Gene Expression Omnibus (GEO) database.
99	Implementation of Single-Sample Gene Set Enrichment Analysis (ssGSEA)
100	We obtained the marker gene set for immune cell types from Bindea et al (8). We
101	used the ssGSEA program to derive the enrichment scores of each immune-related
102	term. In brief, the infiltration levels of immune cell types were quantified by ssGSEA
103	in the R package gsva (9). The ssGSEA applies gene signatures expressed by immune
104	cell populations to individual cancer samples. The computational approach used in
105	our study included 24 immune cells types that are involved in innate immunity and
106	adaptive immunity. Tumours with qualitatively different immune cell infiltration
107	patterns were grouped using hierarchical agglomerative clustering (based on
108	Euclidean distance and Ward's linkage).
109	The T cell infiltration score (TIS) was defined as the average of the standardized

110 values for CD8+ T, central memory CD4+ T, effector memory CD4+ T, central

111	memory CD8+ T, effector memory CD8+ T, Th1, Th2, Th17, and Treg cells. The
112	obtained cytotoxic activity scores (CYT) score was calculated by the geometrical
113	mean of PRF1 and GZMA (10). The CD8+ T/Treg ratio was the digital ratio of the
114	ssGSEA scores for these two cell types. The correlation between risk score and
115	immune cell ssGSEA score was calculated by Pearson correlation.

116 LASSO regularization

LASSO (least absolute shrinkage and selection operator) is an important regularization in many regression analysis methods (e.g., COX regression and logistic regression) (10). The idea behind LASSO is that an L1-norm is used to penalize the weight of the model parameters. Assuming a model has a set of parameters, the LASSO regularization can be defined as:

$$\lambda \cdot \sum_{i=0}^n \|w_i\|_1$$

122 It can also be expressed as a constraint to the targeted objective function:

$$\sum \|Y - Y^*\|_2$$
, s.t. $\|w_i\|_1 < t$

An important property of the LASSO regularization term is that it can force the parameter values to be 0, thus generating a sparse parameter space, which is a desirable characteristic for feature selection. In our analysis, 19 genes which highly associated with OS were used as the input.

127 Differentially expressed gene (DEG) analysis

DEG analysis was performed by the Limma package (11). The samples were separated into a high-risk score group and a low-risk score group. An empirical Bayesian approach was applied to estimate the gene expression changes using
moderated t-tests. The Q value (adjusted p value) for multiple testing was calculated
using the Benjamini-Hochberg correction. The DEGs were defined as genes with a Q
value less than 0.05. The clusterProfiler R package was applied for the GO analysis
(12). GSEA was applied with the GSEA software.

135 Co-expression gene network based on RNA-seq data

The Weighted correlation network analysis (WGCNA) was used to construct the gene co-expression network (13). The co-expression similarity $s_{i,j}$ was defined as the absolute value of the correlation coefficient between the profiles of nodes *i* and *j*:

$$s_{i,j} = |cor(x_i, x_j)|$$

139 where x_i and x_j are expression values of for genes *i* and *j*, and $s_{i,j}$ represent 140 Pearson's correlation coefficients of genes *i* and *j*, respectively.

141 A weighed network adjacency was defined by raising the co-expression similarity 142 to a power β :

$$a_{i,j} = s_{i,j}^{\beta}$$

with $\beta \ge 1$. We selected the power of $\beta = 5$ and scale-free $\mathbb{R}^2 = 0.95$ as the soft-thresholding parameters to ensure a signed scale-free co-expression gene network. Briefly, network construction, module detection, feature selection, calculations of topological properties, data simulation, and visualization were performed. Modules were identified via hierarchical clustering of the weighting coefficient matrix. The module membership of node *i* in module *q* was defined as:

$$K_{cor,i}^{(q)} := cor(x_i, E^{(q)})$$

8

where x_i is the profile of node *i*, and E(q) is the module eigengene (the first principal component of a given module) of module *q*. The module membership measure $K_{cor,i}^{(q)}$, lies in [-1, 1] and specifies how close node *i* is to module *q*, *q* L = 1, ..., Q.

By evaluating the correlations between the immune infiltration status, immune signature of IDCs and the module membership of each module, a brown module was selected for further analysis.

156 Statistical analysis

A random forest algorithm was applied to find the most important somatic mutation associated with the immune signature. Survival outcome analysis modelled the results in reference to the patient OS and RFS. P-values and Hazard ratios were obtained from univariate Cox proportional-hazards regression models using the R package survival. Multivariate Cox regression was used to calculate the coefficients in the nomogram. The nomogram was plotted by the rms package. The time-dependent AUC value was calculated by the survivalROC package.

164

165 **Results**

166 Immune Phenotype Landscape in the TME of IDC

Immune cell populations modulate diverse immune responses and lead to antitumour effects by infiltrating the IDC TME. The immune cell infiltration status was assessed by applying the ssGSEA approach to the transcriptomes of IDCs.

170	Twenty-four immune-related terms were incorporated to deconvolve the abundance of
171	diverse immune cell types in IDCs. The IDCs were clustered into 3 clusters (low
172	infiltration: 208; intermediate infiltration: 430; and high infiltration: 130) in terms of
173	immune infiltration by applying an unsupervised clustering algorithm (Fig. 1A). By
174	applying hierarchical cluster analysis and K-means clustering analysis, we constructed
175	a TME cell network, depicting a comprehensive landscape of tumour-immune cell
176	interactions and their effects on the OS of patients with IDC (Figs. 1B, S1 and S2).
177	The TME immune cells were clustered into 4 clusters, and the correlation among
178	different immune cell types is shown in Fig. 1B. The association of OS and RFS with
179	different clusters of IDCs was analysed by a pairwise log-rank test. The results
180	indicated that the high infiltration group had a favourable survival probability
181	compared with that of the low infiltration group (Fig. 1C and 1D).

182 Construction of the immune signature

A total of 413 genes were involved in the 24 immune-related terms. We applied 183 184 the univariate COX regression based on the survival datasets of patients with IDC and the expression profiles of the 413 genes. The 19 most significant genes were selected 185 with the criteria of a p value less than 0.0005 (Fig. 2A). The expression profiles of the 186 19 genes are shown in Fig. 2B. LASSO Cox regression was performed on the 19 187 genes to identify the most important features in terms of predicting the survival of 188 189 IDC patients (Fig. 2C, 2D and 2E). By forcing the sum of the absolute value of the 190 regression coefficients to be less than a fixed value, certain coefficients were reduced to exactly zero, and the most powerful prognostic features (ORSL1, TIMM8A, 191

10

192	IGHA1, BATF, KLRB1, SPIB, and FLT3LG) were identified with relative regression
193	coefficients. Cross-validation was applied to prevent over-fitting. A 7-gene immune
194	signature was constructed according to the individual coefficients of the genes. Then,
195	we calculated the risk score for each IDC patient and ranked them (Fig. 2F). Fig. 2G
196	shows the survival overview in the IDC patients. A heatmap showed that patients in
197	the high-risk group tended to have increased QRSL1 and TIMM8A expression levels,
198	as well as decreased expression levels of IGHA1, BATF, KLRB1, SPIB, and FLT3LG
199	(Fig. 2G). The Kaplan-Meier curve and Cox regression suggested that patients with
200	high risk scores had significantly worse OS and RFS than those with low risk scores
201	(HR=2.94, p<0.0001 and HR=2.28, p=0.001, respectively) (Fig. 2H and 2I). The
202	effect of the 7 genes on the OS and RFS of IDC patients is shown in Fig. S3 and Fig.
203	S4, respectively. To confirm our findings in the IDC cohort, we validated the
204	prognostic function of the immune signature in two independent GEO cohorts
205	(GSE20685 and GSE86948). The risk score was calculated for each patient by using
206	the same formula as in the IDC cohort. The GSE20685 and GSE86948 cohorts were
207	used to predict the OS of BRCA patients based on our immune signature model.
208	Consistent with our previous findings, the Kaplan-Meier curve suggested a
209	significantly better overall survival in the low-risk group than in the high-risk group
210	(Fig. S5A and S5B).

The low risk score was associated with active infiltration status and high cytotoxic potential

High infiltration status showed a lower risk score than the intermediate

214	infiltration status and low infiltration status showed (Fig. 3A). Similarly, patients with
215	a low risk score had a higher proportion of high immune infiltration than patients with
216	a high risk score (Fig. 3B). The presence of high immune infiltration in patients was
217	linked to a low risk score and was associated with a favourable outcome (Fig. 3C). To
218	compare cytotoxic function with the immune landscape and immune signature that we
219	constructed, the associated signatures were identified for each patient. IDCs with high
220	infiltration status and low risk score were associated with increased levels of immune
221	activation. The TIS (p < 0.0001 and p < 0.0001, respectively) (Fig. 3D and 3H),
222	interferon- γ signature (p < 0.0001 and p < 0.0001, respectively) (Fig. 3E and 3I), and
223	CYT ($p < 0.0001$ and $p < 0.0001$, respectively) (Fig. 3F and 3J) were increased in the
224	low-risk score group and high infiltration group. The ssGSEA score of DCs was
225	higher in the low-risk score group than in the high-risk score group. The
226	Kaplan-Meier curve showed that in the low-risk score group, the ssGSEA score of DC
227	cells affected survival but did not affect the high-risk score group (Fig. S6A, S6B and
228	S6C). These data indicate that compared with high-risk score tumours, low-risk score
229	tumours have a distinct immune phenotype, characterized by increased immune
230	infiltration and increased levels of immune activation.

231 The low-risk score was associated with increased T cell infiltration

The association of risk score and immune-related cells was analysed by Pearson correlation. Cytotoxic cells, CD8+ T cells, T cells and the 6 other most significant immune-related cell types are shown in Fig. 4. A high level of correlation was found between the risk score and the T cell-mediated immune response. The ssGSEA scores

12

236	of 24 immune-related terms in the low, intermediate, and high immune status and
237	low- and high-risk score groups are shown in Fig. S7A and S7C. The p value and
238	difference in the mean ssGSEA score from the high- and low-infiltration status and
239	low- and high-risk score groups are shown in Fig. S7B and Fig. S7D. The proportions
240	of low, intermediate, and high immune infiltration status in different pathological
241	subtypes and different AJCC stages of IDC are shown in Fig. S7E and Fig. S7F. The
242	triple-negative subtype of IDCs had a higher proportion of high infiltration status
243	IDCs than other pathological subtypes, indicating an active immune response in
244	triple-negative IDCs. The risk score distribution in different pathological subtypes and
245	different AJCC stages of IDC are shown in Fig. S5G and Fig. S5H. The luminal A
246	subtype had a lower risk score than the other pathological subtypes.

247 Functional annotation and WGNCA of the transcriptomes of IDC patients

248 To identify the underlying biological characteristics of the constructed immune 249 signature, DEG analysis was performed based on the high-risk score group and 250 low-risk score group. The heatmap depicts the significant DEGs between the two 251 groups (Fig. 5A). The GO analysis indicated that T cell activation, positive regulation 252 of leukocyte cell-cell adhesion, and regulation of lymphocyte activation were the most significantly enriched biological processes between the high-risk score group and the 253 254 low-risk score group (Fig. 5B). The GSEA results showed that allograft rejection, 255 IL-6/JAK/STAT3 signalling, the inflammatory response, interferon- α response, 256 interferon- γ response and TNF- α signalling via the NF κ B pathway were the 257 predominant upregulated pathways in the low-risk score group. In contrast, the E2F

258	targets, G2M checkpoints, MTORC1 signalling and protein secretion pathways were
259	significantly downregulated in the low-risk score group (Fig. 5C and 5D). To further
260	identify the underlying biological characteristics in the immune signature, WGCNA
261	was performed, and the correlation of risk score and immune infiltration status with
262	module membership was analysed. The soft threshold selection is shown in Fig. S8.
263	The module-trait heatmap illustrates that the brown module had a significant p value
264	with both immune signature and immune infiltration status (Fig. 5E); the coefficients
265	were -0.64 and 0.8, respectively. The association between module membership and
266	gene significance for each gene in the brown module is shown in Fig. 5F. The genes
267	from the brown module with a coefficient greater than 0.5 were selected as hub genes,
268	and GO enrichment analysis revealed that T cell activation and lymphocyte activation
269	were the most significantly enriched biological processes, which further confirmed
270	the results from the DEG analysis.

271 Mutation load and immune signature

The spectrum of somatic mutations in patients with IDCs is known to be varied. We next investigated the distributions of somatic mutations and observed different patterns among IDCs in terms of total mutation burden (TMB). The risk score from the immune signature had a positive correlation with TMB in IDC patients (Fig. 6A). By applying a random forest algorithm, we identified 35 highly variable mutated genes that were associated with the immune signature (Fig. 6B). TP53 was the predominant gene of the 35 identified genes.

279 Construction of a nomogram to predict overall survival in IDC patients

280	We constructed a nomogram that integrated clinicopathological features with the
281	immune signature to predict the survival probability of IDC patients (Fig. 7A). The
282	AUC(t) functions of the multivariable models were developed to indicate how well
283	these features serve as prognostic markers. Compared to other features, such as
284	signature-based risk score, AJCC-TNM stage and total mutation burden, the
285	nomogram consistently showed the highest predictive power for overall survival in
286	the follow-up period (Fig. 7B).

287 The immune signature predicted the immunotherapeutic benefits in IDC patients

288 VEGF-A, the main mediator in tumour angiogenesis, hinders T cell infiltration in the tumour microenvironment. Hence, we explored the correlation between VEGF-A 289 290 expression and the T cell immune response in IDC tumours. Interestingly, the 291 increased VEGFA expression significantly correlated with both decreased levels of 292 activated CD8+ T cells and Th1 cell infiltration in the high immune infiltration 293 tumour microenvironment but not in the low immune infiltration tumour 294 microenvironment (Fig. 8A and 8B). Furthermore, perforin, the molecular effector 295 found in the granules of cytotoxic T lymphocytes and natural killer cells, also showed a negative correlation with VEGF-A expression (Fig. 8C). Finally, the positive 296 correlation of VEGF-A and the risk score was identified. PD-1, PDL-1 and cytotoxic 297 298 T lymphocyte antigen-4 (CTLA-4) are promising targets for the treatment of patients 299 with breast and non-small cell lung cancer. PD-1, PDL-1, and CTLA-4 antibodies are undergoing studies for the treatment of breast cancer. We analysed the correlation of 300 301 PD-1, PDL-1, and CTLA-4 expression in the high- and low-infiltration groups. The

15

302	expression of PD-1, PDL-1, and CTLA-4 was more significantly correlated with
303	CD8+ T cells, Th1 cell ssGSEA score and perforin expression in the high-infiltration
304	group than in the low-infiltration group. Furthermore, the mean expression of PD-1,
305	PDL-1, and CTLA-4 was significantly increased in the high-infiltration group,
306	indicating a potentially enhanced response to the corresponding anticancer antibody
307	for IDCs with high immune infiltration status. In our constructed immune signature,
308	the risk score showed a negative correlation with PD-1, PDL-1, and CTLA-4
309	expression, which implies a potentially enhanced effect of PD-1, PDL-1, and CTLA-4
310	antibodies in patients with low risk score. Lastly, we checked the correlation of the
311	expression profiles of several immune checkpoint proteins, e.g., CD160, CD274,
312	CD276, CTLA-4, LAG3, and PDCD1, risk score, and VEGF-A in the TCGA and
313	GSE20685 cohorts (Fig. S8).

314

315 Discussion

316 In this study, we depicted the immune landscape of IDC using a large cohort. The immune landscape might explain the differences in prognoses of patients with IDC 317 318 and responses to PD1, PDL-1 and CTLA-4 antibodies. Based on the immune 319 landscape, we constructed an immune signature that calculated the risk score per 320 patient. The correlation of signature and immune landscape revealed that the T 321 cell-mediated immune response played a crucial role in the signature. Patients with 322 low risk scores had increased T cell infiltration scores, interferon- γ signatures, and cytotoxic activity scores, indicating active T cell immune responses and favourable 323

324	survival probability. A random forest algorithm was applied to find the most important
325	somatic mutation correlated with the immune signature. A nomogram was constructed
326	based on the immune signature and other clinicopathological properties of IDCs. A
327	time-dependent ROC analysis showed high accuracy of the immune signature and
328	nomogram in terms of predicting the survival of IDC patients. Lastly, PD-1, PDL-1,
329	and CTLA-4 expression was found to be highly associated with the risk score. The
330	patients with low risk scores had increased expression levels of PD-1, PDL-1, and
331	CTLA-4, indicating a potentially high response rate to PD-1, PDL-1, and CTLA-4
332	antibodies.
333	In our analysis, the IDCs were clustered into three main clusters (low immune
334	infiltration, intermediate immune infiltration, and high immune infiltration). The
335	patients in the high-infiltration cluster had the best survival probability compared with
336	patients in the low- and intermediate-infiltration clusters. The T cell immune response

is the central event in antitumour immunity (14). T cells are divided into CD4+ (helper T cells, Th) and CD8+ (cytotoxic T cells, Tc) T cells. Their secretomes include IFN- γ , TNF- α , and IL17, which have antitumour effects. Hence, the increased T cell infiltration score, interferon- γ signature, and cytotoxic activity score may lead to an anti-tumour effect in the high-infiltration group. This finding could explain the different OS and RFS in the high- and low-infiltration groups.

From the immune landscape in IDCs, we built an immune signature that included seven features (QRSL1, TIMM8A, IGHA1, BATF, KLRB1, SPIB, and FLT3LG). FLT3LG is a crucial cytokine that controls the development of DCs and is particularly

346	important for CD8-positive classical DCs and their CD103-positive tissue
347	counterparts. A clinical trial is currently underway to treat melanoma patients with a
348	combination of immunostimulatory FLT3LG and a peptide-based vaccine targeting
349	DCs (15). KLRB1, which encodes CD161, a surface marker on several T cell subsets
350	and NK cells, has been found to be most frequently associated with favourable
351	outcomes in many cancer types by enhancing innate immune characteristics (16).
352	SPIB is a member of the ETS family and profoundly affects B cell functions. B cells
353	that lack SPIB fail to proliferate in response to IgM cross-linking, exhibit limited
354	capacity to respond to T-dependent antigens, and produce low levels of IgG1, IgG2a,
355	and IgG2b (17). In addition, SPIB can activate enhancer elements in both Ig- $\!\lambda$ and
356	Ig- κ genes, increasing the expression of these two genes. BATF is an inhibitor of
357	AP-1-driven transcription. Recent studies have revealed that BATF can regulate
358	positive transcriptional activity in dendritic cells, B cells and T cells (18). BATF
359	leucine zipper motifs interact with interferon-regulatory factor 4 (IRF4) and IRF8 at
360	AP-1-IRF consensus elements (AICEs), adding additional flexibility to the actions of
361	IRF4 and IRF8, which were previously considered to interact with SPIB and PU.1
362	(19). The interaction of IRF4 and BATF in T helper 17 cells increases the
363	production of IL-17, IL-21, IL-22 and IL-23 receptor. TIMM8A is involved in the
364	import and insertion of hydrophobic membrane proteins from the cytoplasm to the
365	mitochondrial inner membrane. The Bax/Bak complex mediates the release of
366	DDP/TIMM8a and activates Drp1-mediated fission to promote mitochondrial
367	fragmentation and subsequent elimination during programmed cell death (20).

From the expression profiles of the seven genes above, we calculated the risk scorefor each patient and predicted the survival of IDC patients.

370 The risk score from the immune signature was most significantly correlated with 371 the ssGSEA score of cytotoxic cells, CD8 T cells and T cells, indicating the important 372 roles of the T cell immune response in the immune signature. Interestingly, DCs in the 373 low-risk group played a more important role than DCs in the high-risk group. The 374 increased proportion of DCs significantly correlated with favourable survival in the 375 low-risk group but did not correlate with favourable survival of patients in the 376 high-risk group. Th innate inflammatory cytokines, such as IL-1, IL-12, and IL-23 377 expressed by DCs, promote IFN- γ -secreting CD4+ T cell and cytotoxic T lymphocyte 378 responses (21). The high proportion of DCs and T cells cooperate to achieve the 379 antitumour effect in IDC patients with low risk scores. Furthermore, the GSEA results 380 revealed high levels of IFN- γ , TNF- α , and TNF- α secretion in the low-risk group, 381 which contribute to the antitumour activity in IDC patients with low risk scores. 382 WGCNA revealed opposing directions of the risk score (cor = -0.64) and immune 383 infiltration (cor = 0.8) with the brown module, indicating the high level of correlation 384 of risk score (calculated by immune signature) and immune infiltration. The hub gene 385 in the brown module plays an essential role in regulating immune infiltration. The GO 386 analysis revealed that T cell activation was the most significantly enriched biological 387 process, indicating that the T cell-mediated immune response is the central event in 388 both immune infiltration and the immune signature.

389 The spectrum of somatic mutations varied in IDC patients. The different mutation

390	burdens in IDCs led us to analyse whether the landscape of immune cells and the
391	immune signature were associated with somatic mutations. The TMB showed a
392	positive correlation with the risk score in IDC patients. Furthermore, a random forest
393	algorithm was performed to identify the most important variables correlated with the
394	immune signature. TP53, SCN10A, PIK3CA and 32 other genes were the most
395	significant variables in the analysis. TP53 and PIK3CA mutations are the most
396	common gene mutations in IDCs (44% and 33%, respectively). In the 35 gene
397	variables, GATA3, a key regulator of ER activity, is a newly identified gene that is
398	mutated in IDCs (5% in ILC versus 13% in IDC, $q = 0.03$) (3). Mutations in GATA3
399	are more frequent in luminal A IDC and are mutually exclusive with FOXA1 events.
400	The differential expression level and enrichment for mutations of GATA3 in IDCs and
401	of FOXA1 in ILC indicates a preferential requirement for the distinct regulation of
402	ER activity in ILC and IDC (3). Previous studies revealed that the GATA3 mutation
403	correlates with increased expression, which is associated with the immune response
404	(22, 23). Our analysis further confirms the correlation of the GATA3 mutation with
405	immune infiltration. In addition, we constructed a nomogram that integrated
406	clinicopathological features with the immune signature to predict the survival
407	probability of IDC patients. Compared with other clinicopathological features, the
408	immune signature showed the best accuracy in predicting the survival of IDC patients
409	at any time point and would therefore be helpful for the diagnosis and precise
410	treatment of IDC patients.

411 There have been several studies for the treatment of breast cancer with

20

412	immunotherapeutic antibodies. PD-1 is expressed by exhausted T cells. PD-1 and
413	PD-L1 exhibit inhibitory receptor-ligand interactions, which are involved in the
414	negative regulation of T cell activation and peripheral tolerance during immune
415	responses by cancer cells. Despite demonstrated successes, only a proportion of
416	patients benefit from PD-1 and PDL-1 antibody treatment. Hence, it is important to
417	determine the mechanism that leads to the varied therapeutic effect of PD-1 and
418	PDL-1 antibody treatment and thus improve individual diagnosis and precision
419	medicine. PD-L1 expression, microsatellite instability and deficient mismatch repair
420	are important biomarkers that predict the response to anti-PD-1/PD-L1 therapies
421	(24-26). Among the three biomarkers, PD-L1 expression has been validated in nearly
422	all tumour types for all approved anti-PD-1/PD-L1 therapies. In our analysis, the
423	expression of PD1, PDL-1, and CTLA-4 was significantly increased in the
424	high-infiltration group. Furthermore, the expression of PD1, PDL-1, and CTLA-4 had
425	a significant correlation with CD8+ T cells, Th1 cell ssGSEA score and perforin
426	expression in the high-infiltration group, which provides a basis for PD-1/PD-L1 and
427	CTLA-4 treatment. Similarly, the immune signature we constructed also indicated that
428	high expression levels of PD1, PDL-1, and CTLA-4 correlated with low risk score.
429	Therefore, patients with a low risk score could derive more benefit from
430	immunotherapy than patients with a high risk score.
424	

In the current study, we performed a comprehensive evaluation of the immune landscape of IDC and constructed an immune signature related to the immune landscape. This analysis of TME immune infiltration patterns has shed light on how

434	IDC respond to immune checkpoint therapy and may guide the development of novel
435	drug combination strategies.
436	
437	List of abbreviations
438	TME: tumour microenvironment; IDC: invasive ductal carcinoma; TCGA: The
439	Cancer Genome Atlas; GEO: Gene Expression Omnibus; ssGSEA: single-sample
440	gene set enrichment; LASSO: least absolute shrinkage and selection operator; ILC:
441	invasive lobular carcinoma; DEG: differentially expressed gene; WGCNA: weighted
442	correlation network analysis; TMB: total mutation burden; IRF4:
443	interferon-regulatory factor 4; AICE: AP-1–IRF consensus element.
444	
445	Declarations
446	Ethics approval and consent to participate
447	Not applicable
448	Consent for publication
449	Not applicable
450	Availability of data and materials
451	The datasets supporting the conclusions of this article are available in the Xena
452	browser (https://xenabrowser.net/) repository.
453	Competing interests

454 The authors declare that they have no competing interests.

455 Funding

456	This work was partially supported by the Zhejiang Provincial Natural Science
457	Foundation (NO. LY16H020005).
458	Author Contributions
459	XW. B. and R. S. conceived and designed the experiments. XW. B., S. X., and K.
460	Z. analysed the data. XW. B., and YF. W. wrote the paper. YB. Z., K. Z., and R. S.
461	reviewed the draft. All authors read and approved the final manuscript.
462	Acknowledgements
463	We would like to thank Dr Michael Rosemann for helpful discussions and
464	suggestions.
465	
466	
467	Figure legends
468	Fig. 1 Immune landscape of IDCs and the TME characteristics.
469	A, Unsupervised clustering of IDC patients from the TCGA cohort using ssGSEA
470	scores from immune cell types. Mutation status of TP53, MYC, GATA3, MAP2K4,
471	and CDH1, status of the oestrogen receptor, status of the progesterone receptor, status
472	of Her2, survival, and stage are shown as patient annotations in the lower panel.
473	Hierarchical clustering was performed with Euclidean distance and Ward linkage.
474	Three distinct immune infiltration clusters, here termed high infiltration, median
475	infiltration, and low infiltration, were defined. B, Interaction of the TME immune cell

23

476	types. The size of each term represents the survival impact of each TME cell type,
477	calculated by log_{10} (log-rank test P value). The connection of TME immune cells
478	represents interactions between both. The thickness of the line indicates the strength
479	of the correlation calculated by Spearman correlation analysis. Positive correlations
480	are represented in red, and negative correlations are represented in blue. The immune
481	cell cluster was clustered by the hclust method. Immune cell cluster-A, yellow; cell
482	cluster-B, blue; cell cluster-C, red; and cell cluster-D, brown. C, Kaplan-Meier curves
483	for OS of IDC patients showing that the high immune infiltration group had a
484	favourable outcome compared with the other groups. D, Kaplan-Meier curves for RFS
485	of IDC patients showing that the high immune infiltration group had a favourable
486	outcome compared with other groups. IDC: invasive ductal carcinoma; TME: tumour
487	microenvironment; TCGA: The Cancer Genome Atlas; OS: overall survival; and RFS:
488	recurrence-free survival.
489	Fig. 2 Signature-based risk score is a promising marker of survival in IDC
490	patients.
491	A, The HR and P value from the univariable Cox HR regression of selected genes in
492	the immune terms (Criteria: P value < 0.001). B, The expression of the selected genes
493	shown by heatmap. Mutation status of TP53, MYC, GATA3, MAP2K4, and CDH1,
494	status of the oestrogen receptor, status of the progesterone receptor, status of Her2,
495	survival, and stage are shown as patient annotations in the lower panel. Hierarchical
496	clustering was performed with Euclidean distance and Ward linkage. C and D,

498	10-round cross validation was performed to prevent overfitting. E, Coefficient
499	distribution of the gene signature. F, Risk score distribution. G, Survival overview. H,
500	Heatmap showing the expression profiles of the signature in the low- and high-risk
501	groups. I, Patients in the high-risk group exhibited worse OS than those in the
502	low-risk group. J, Patients in the high-risk group exhibited worse RFS than those in
503	the low-risk group. IDC: invasive ductal carcinoma; OS: overall survival; and RFS:
504	recurrence-free survival.
505	Fig. 3 Heterogeneous immune cell infiltration in the low- and high-risk score
506	groups.
507	A, The distribution of risk scores in low, mediate and high immune infiltration
508	patterns. B, The distribution of immune infiltration patterns in the low- and high-risk
509	score groups. C, Alluvial diagram of immune infiltration patterns in groups with
510	different risk scores and survival outcomes. D, TIS in low, mediate and high immune
511	infiltration patterns. E, Relative interferon- γ signature in low, mediate and high
512	immune infiltration patterns. F, Comparison of relative CYT in low, mediate and high
513	immune infiltration patterns. G, Relative TIS in the low- and high-risk score groups. E,
514	Relative interferon- γ signature in the low- and high-risk score groups. F, Comparison
515	of relative CYT in the low- and high-risk score groups. TIS: T cell infiltration score;
516	CYT: cytotoxic activity scores.
517	Fig. 4 The nine most significant correlations of risk score with immune cell
518	infiltration ssGSEA score.

519 Fig. 5 Functional annotation of the immune signature and WGCNA of the IDC

520 transcriptome.

521	A, Heatmap showing the transcriptome expression profiles of the low- and high-risk
522	groups. B, GO analysis based on the significant genes in the comparison between
523	low- and high-risk groups. C and D, GSEA revealed that most significant hallmarks
524	correlated with the immune signature. E, Correlation between modules and traits. G,
525	The correlation between module membership and gene significance in the brown
526	module. H, GO analysis based on the hub genes in the brown module. GO: gene
527	ontology; GSEA: gene set enrichment analysis.
528	
520	Fig. 6 The association of the immune signature with cancer somatic mutations.
529	Fig. 6 The association of the immune signature with cancer somatic mutations.A, The correlation between the immune signature and IDC somatic mutations. B,
529	A, The correlation between the immune signature and IDC somatic mutations. B,
529 530	A, The correlation between the immune signature and IDC somatic mutations. B, Distribution of somatic mutations correlated with the immune signature. The upper

534 Fig. 7 Construction of a nomogram for survival prediction.

A, Nomogram combining the immune signature with clinicopathological features. B,

- 536 The AUC(t) of the multivariable models indicated that the nomogram had the highest
- 537 predictive power for overall survival.

538 Fig. 8 Immune signature predicts immunotherapeutic benefits

A, B and C, The correlation of VEGFA expression with T cell infiltration, Th1 cells and PRF1 expression in high and low immune infiltration conditions. D, The correlation of VEGFA expression with the immune signature. E, F and G, The

542	correlation of PD-1 expression with T cell infiltration, Th1 cells and PRF1 expression
543	in high and low immune infiltration conditions. H, The correlation of PD-1 expression
544	with the immune signature. I, J and K, The correlation of PDL-1 expression with T
545	cell infiltration, Th1 cells and PRF1 expression in high and low immune infiltration
546	conditions. L, The correlation of PDL-1 expression with the immune signature. M, N
547	and O, The correlation of CTLA-4 expression with T cell infiltration, Th1 cells and
548	PRF1 expression in high and low immune infiltration conditions. P, The correlation of
549	CTLA-4 expression with the immune signature.
550	Fig. S1 The correlation between different infiltrating immune cells.
551	Fig. S2 The correlation between the ssGSEA scores of infiltrating immune cells
552	and the OS probability of IDC patients.
553	Fig. S3 The correlation between the expression level of seven genes in the
554	immune signature and the OS probability of IDC patients.
555	Fig. S4 The correlation between the expression of seven genes in the immune
556	signature and the RFS probability of IDC patients.
	Signature and the first producting of the e-patients.
557	Fig. S5 Validation of the immune signature in two external cohorts, GSE20685 (A)
557 558	
	Fig. S5 Validation of the immune signature in two external cohorts, GSE20685 (A)
558	Fig. S5 Validation of the immune signature in two external cohorts, GSE20685 (A) and GSE86948 (B).
558 559	 Fig. S5 Validation of the immune signature in two external cohorts, GSE20685 (A) and GSE86948 (B). Fig. S6 The correlation between the ssGSEA scores of DCs and the OS

563 in the low-risk score group. C, The correlation between the ssGSEA scores of DCs

and the OS probability of IDC patients in the high-risk score group.

565 Fig. S7 The ssGSEA score distribution in the low, intermediate and high immune

A, The ssGSEA score distribution in low, intermediate and high immune infiltration

566 infiltration patterns and in the low- and high-risk score groups.

- patterns. B, The difference and P value from the comparison between the ssGSEA score from low and high immune infiltration patterns. C, The ssGSEA score distribution in the low- and high-risk score groups. D, The difference and P value from the comparison between the ssGSEA score from the low- and high-risk score
- 572 group. E, The distribution of immune infiltration patterns in different pathological
- subtypes. F, The distribution of risk scores in different pathological subtypes. G, The
- 574 distribution of immune infiltration patterns at different pathological stages. H, The
- 575 distribution of risk scores at different pathological stages.
- 576 Fig. S8 The selection of the soft threshold in the WGCNA
- 577 Fig. S9 The correlation of the expression profiles of several immune checkpoint
- 578 proteins, risk score, and VEGF-A in the TCGA (A) cohort and GSE20685 cohort
- 579 **(B).**
- 580

567

- 581
- 582 **References**
- Eble JN, Tavassoli FA, Devilee P. Pathology and genetics of tumours of the breast and female
 genital organs: larc; 2003.
- 585 2. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor

- 586 characteristics and clinical outcome. Breast cancer research. 2004;6(3):R149.
- 587 3. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular
- 588 portraits of invasive lobular breast cancer. Cell. 2015;163(2):506-19.
- 589 4. Smid M, Rodríguez-González FG, Sieuwerts AM, Salgado R, Prager-Van der Smissen WJ, van Der
- 590 Vlugt-Daane M, et al. Breast cancer genome and transcriptome integration implicates specific
- 591 mutational signatures with immune cell infiltration. Nature communications. 2016;7:12910.
- 592 5. Pages F, Galon J, Dieu-Nosjean M, Tartour E, Sautes-Fridman C, Fridman W. Immune infiltration in
- human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29(8):1093.
- 594 6. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu
- 595 Rev Immunol. 2008;26:677-704.
- 596 7. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors
- with mismatch-repair deficiency. New England Journal of Medicine. 2015;372(26):2509-20.
- 598 8. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal
- 599 dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity.
- **600** 2013;39(4):782-95.
- 601 9. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and
- 602 RNA-seq data. BMC bioinformatics. 2013;14(1):7.
- 603 10. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors
- associated with local immune cytolytic activity. Cell. 2015;160(1-2):48-61.
- 605 11. Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology
- 606 solutions using R and Bioconductor: Springer; 2005. p. 397-420.
- 607 12. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes

- among gene clusters. Omics: a journal of integrative biology. 2012;16(5):284-7.
- 609 13. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC
- 610 bioinformatics. 2008;9(1):559.
- 611 14. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer
- 612 research. 2009;69(12):4941-4.
- 613 15. Vacchelli E, Aranda F, Bloy N, Buqué A, Cremer I, Eggermont A, et al. Trial
- 614 Watch—Immunostimulation with cytokines in cancer therapy. Oncoimmunology. 2016;5(2):e1115942.
- 615 16. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of
- 616 genes and infiltrating immune cells across human cancers. Nature medicine. 2015;21(8):938.
- 617 17. Gallant S, Gilkeson G. ETS transcription factors and regulation of immunity. Archivum
- 618 immunologiae et therapiae experimentalis. 2006;54(3):149-63.
- 619 18. Murphy TL, Tussiwand R, Murphy KM. Specificity through cooperation: BATF-IRF interactions
- 620 control immune-regulatory networks. Nature reviews immunology. 2013;13(7):499.
- 621 19. Li P, Spolski R, Liao W, Wang L, Murphy TL, Murphy KM, et al. BATF–JUN is critical for
- 622 IRF4-mediated transcription in T cells. Nature. 2012;490(7421):543.

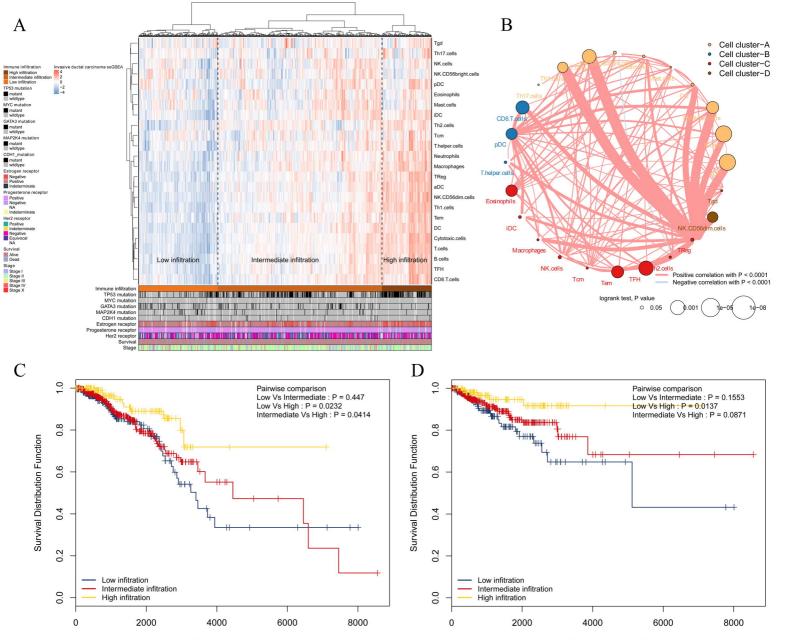
623 20. Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP, Estaquier J, et al. Bax/Bak-dependent

- 624 release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during
- 625 programmed cell death. Current Biology. 2005;15(23):2112-8.
- 626 21. Butt A, Mills K. Immunosuppressive networks and checkpoints controlling antitumor immunity
- 627 and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene.
- 628 2014;33(38):4623.

629 22. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, et al. Mutation of GATA3 in human breast

- 630 tumors. Oncogene. 2004;23(46):7669.
- 631 23. Mantel P-Y, Kuipers H, Boyman O, Rhyner C, Ouaked N, Rückert B, et al. GATA3-driven TH2
- 632 responses inhibit TGF-β1-induced FOXP3 expression and the formation of regulatory T cells. PLoS
- 633 biology. 2007;5(12):e329.
- 634 24. Lee V, Le DT. Efficacy of PD-1 blockade in tumors with MMR deficiency. Future Medicine; 2016.
- 635 25. Diaz LA, Marabelle A, Delord J-P, Shapira-Frommer R, Geva R, Peled N, et al. Pembrolizumab
- 636 therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. American
- 637 Society of Clinical Oncology; 2017.
- 638 26. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity,
- 639 and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine.
- 640 2012;366(26):2443-54.
- 641

642



Days from diagnosis

Days from diagnosis

IGHA1 TRAF3IP3

KLRB1

FLT3LG

BCL11B

CD8A

BATF

CD3E

IL26

QRSL1

GZMA

CD3D

CD6

IGKC

CD1A

SPIB

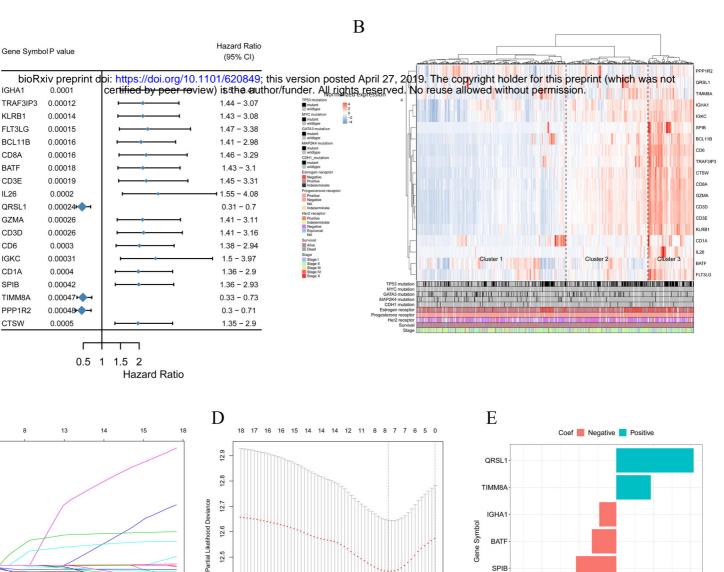
TIMM8A

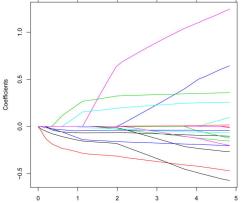
PPP1R2

8

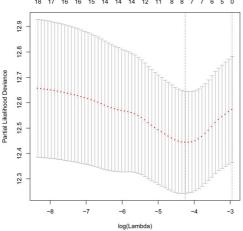
CTSW

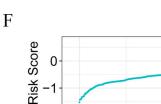
С

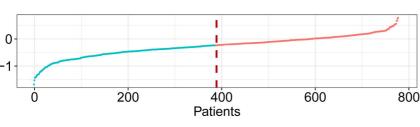




L1 Norm



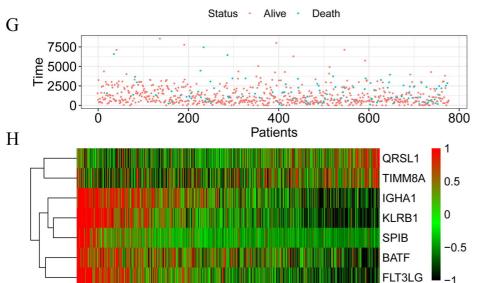


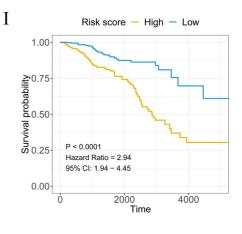


High risk

Low risk

Theshold





0.0 Coefficient

0.1

0.2

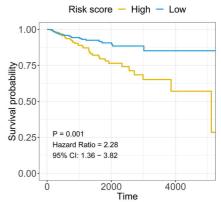
-0.1

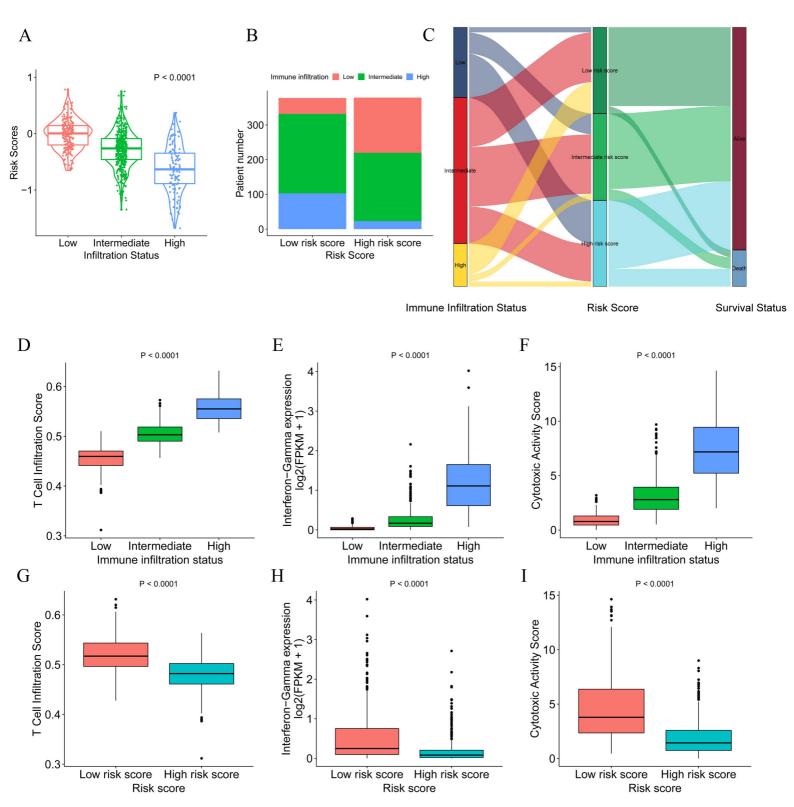
KLRB1

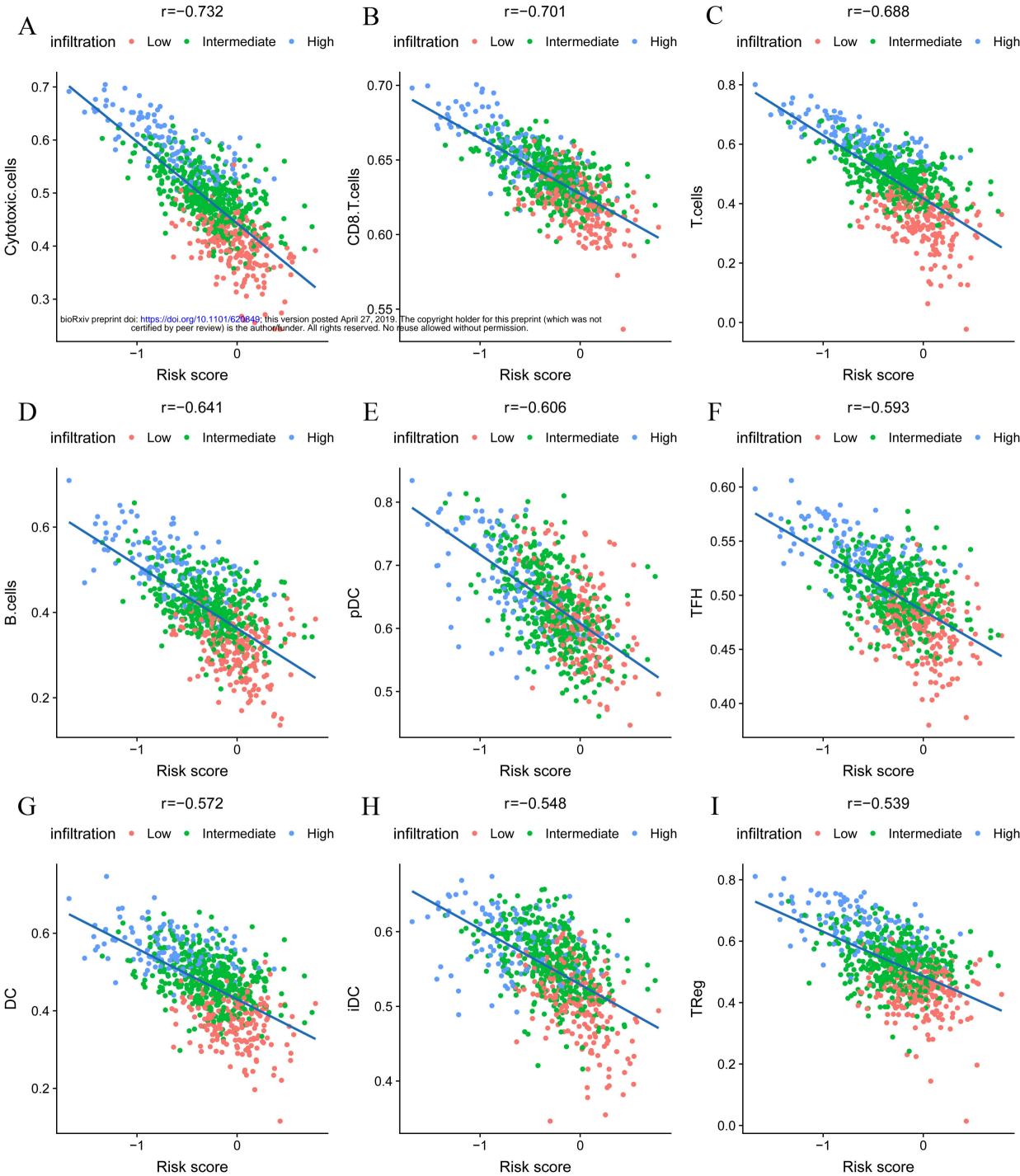
FLT3LG

J

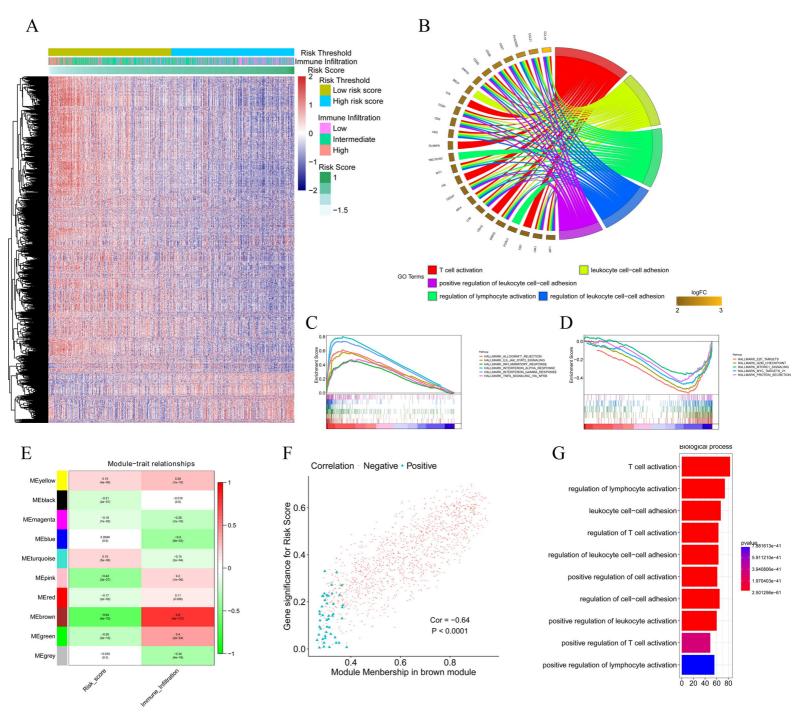
-0.2

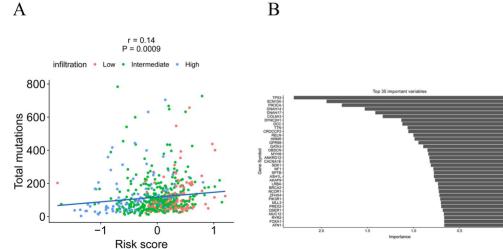


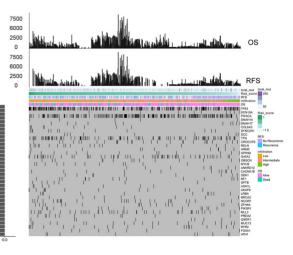


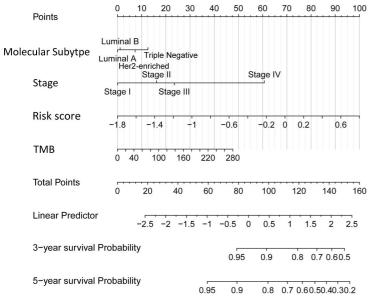


Risk score

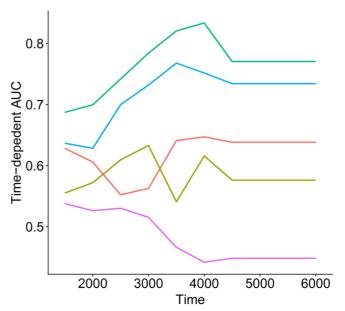


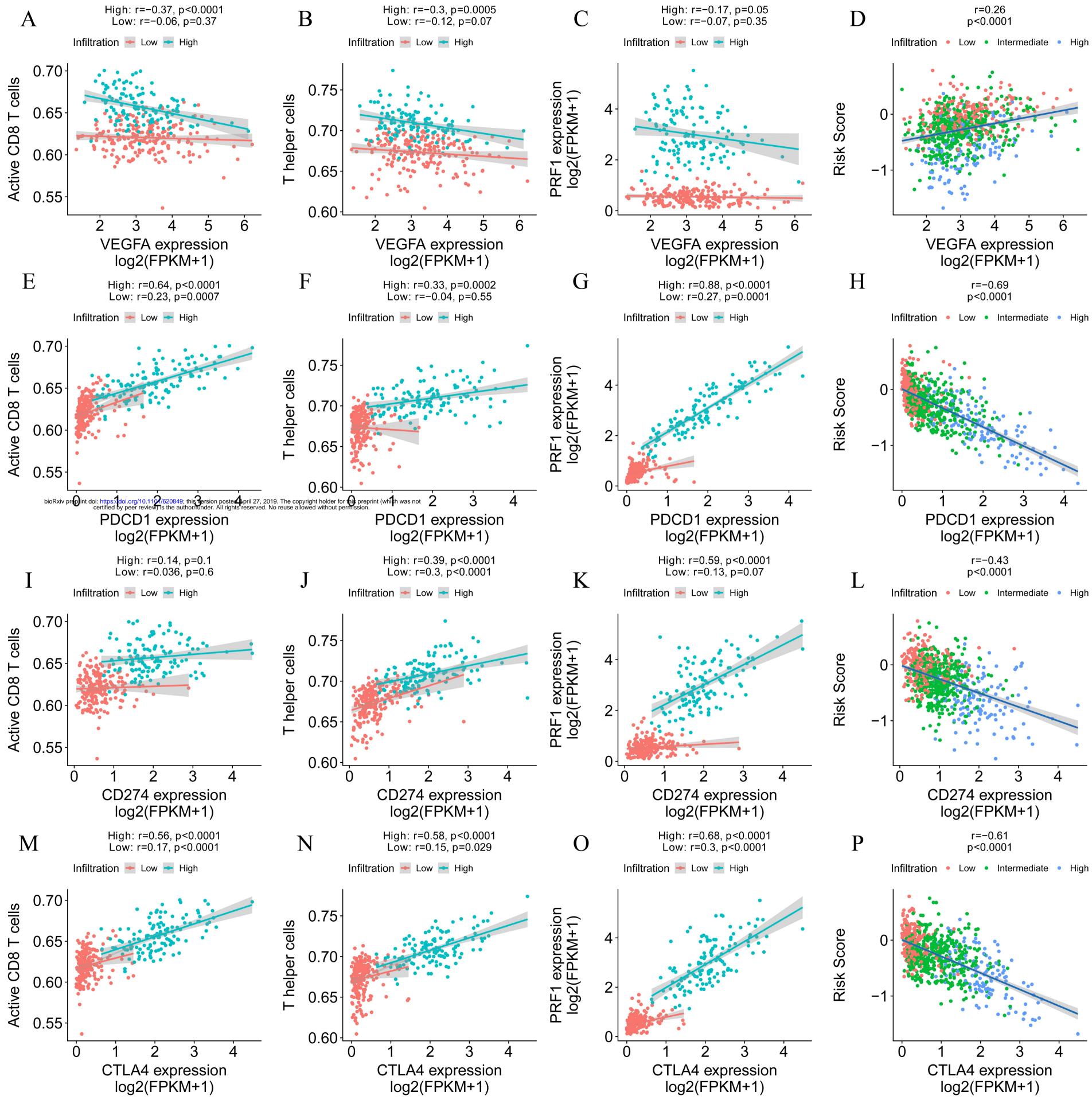


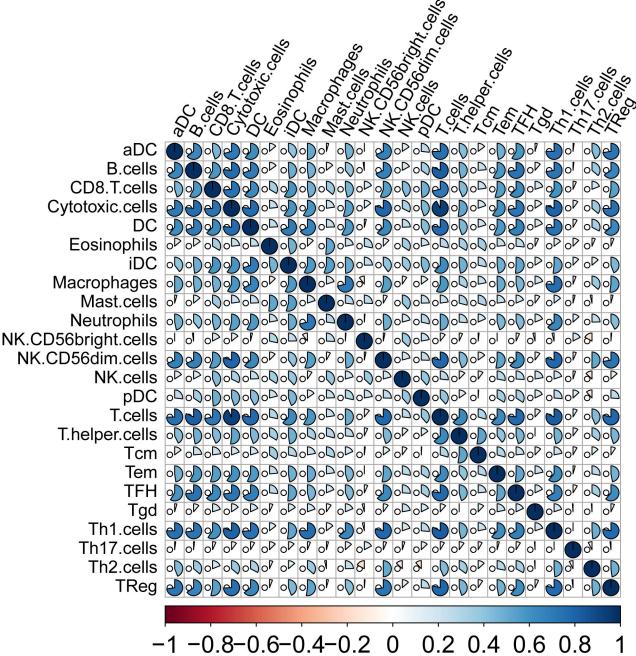


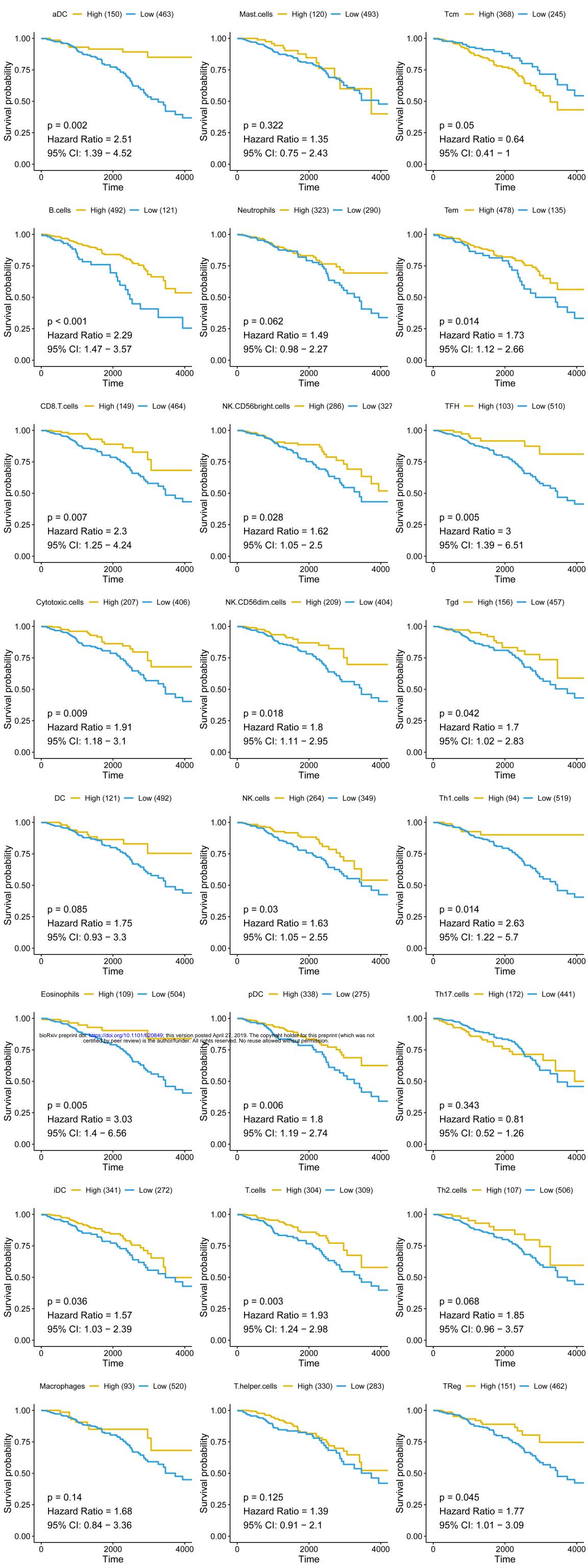


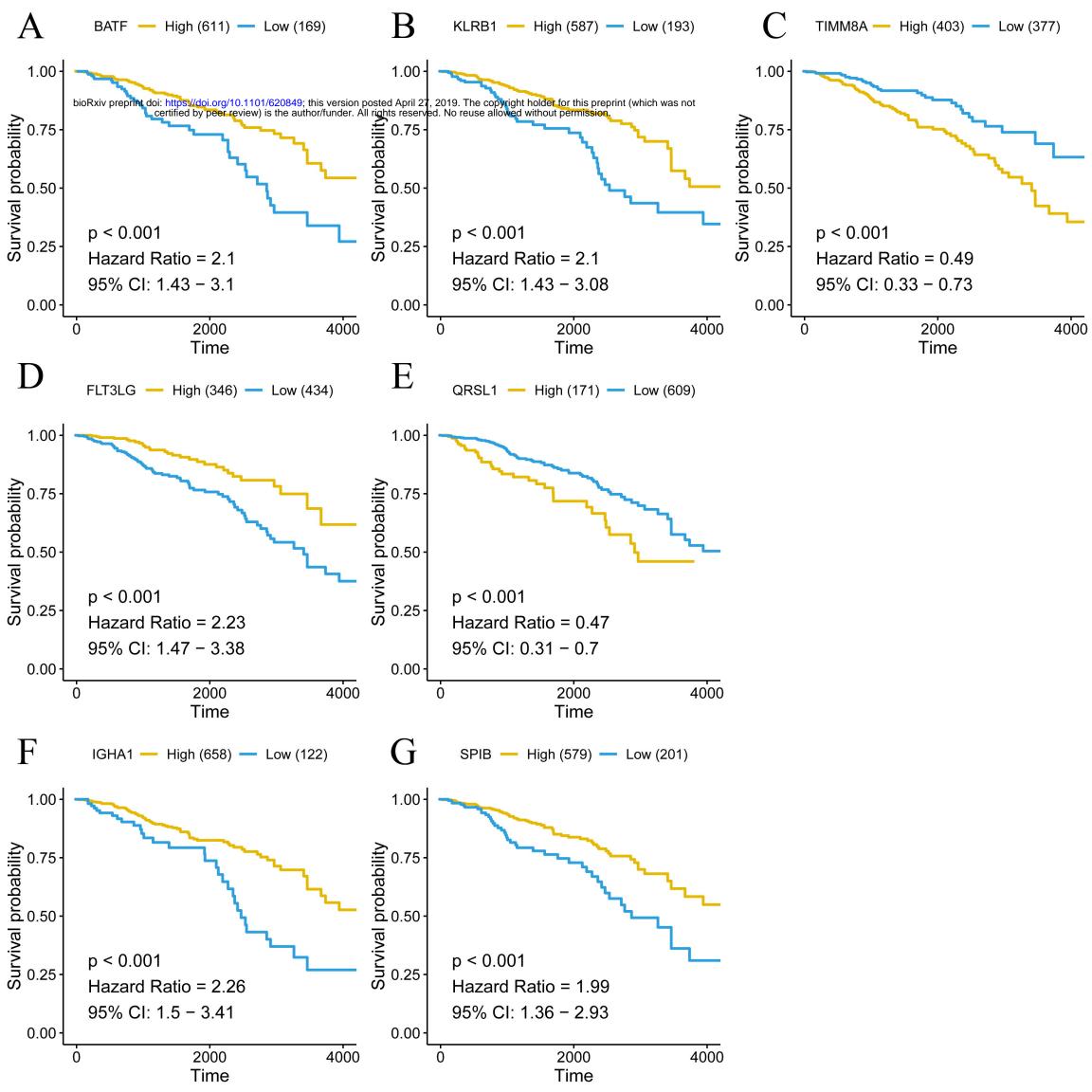
-AJCC Stage-Molecular Subtype-Nomogram-Risk Score-TMB

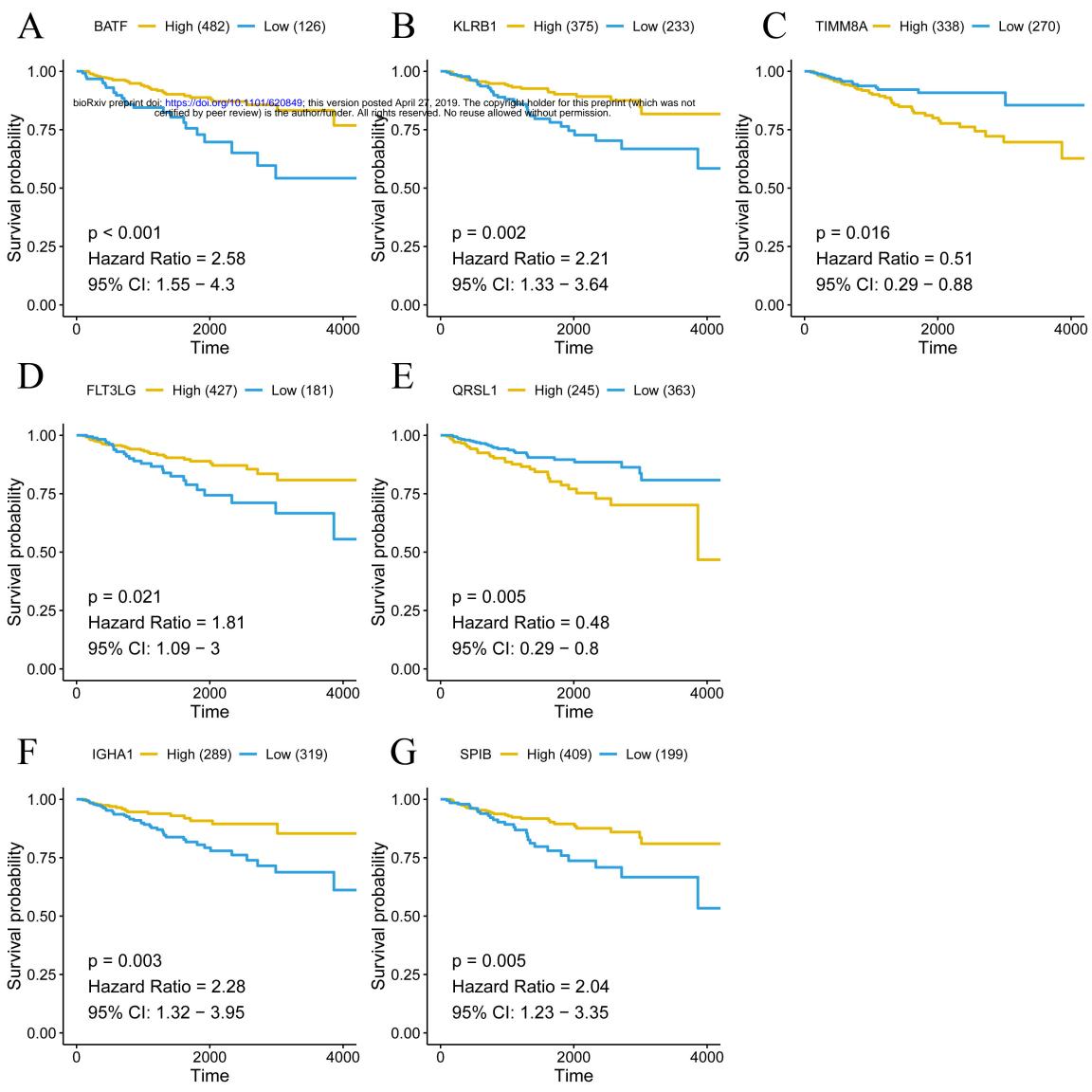




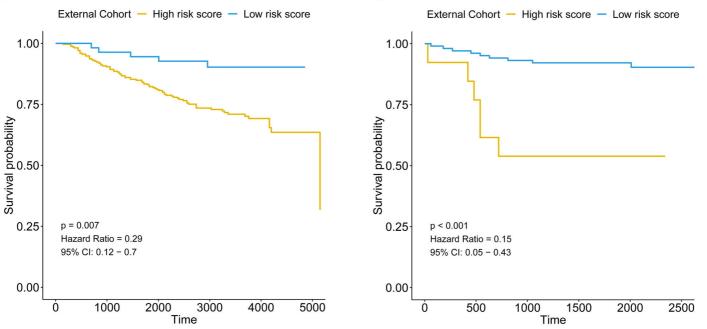








A



В

