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Abstract

Motivation

The advent of high-throughput sequencing technologies made it
possible to obtain large volumes of genetic information, quickly
and inexpensively. Thus, many efforts are devoted to unveil the
biological roles of genomic elements, being one of the main tasks
the identification of protein-coding and long non-coding RNAs.

Results

We describe RNAsamba, a tool to predict the coding potential of
RNA molecules from sequence information using a deep-learning
model that processes both the whole sequence and the ORF to
look for patterns that distinguish coding and non-coding RNAs.
We evaluated the model in the classification of coding and non-
coding transcripts of humans and five other model organisms
and show that RNAsamba mostly outperforms other state-of-the-
art methods. We also show that RNAsamba can identify coding
signals in partial-length ORFs and UTR sequences, evidencing
that its model is not dependent on the presence of complete
coding regions. RNAsamba is a fast and easy tool that can
provide valuable contributions to genome annotation pipelines.

Availability and implementation

The source code of RNAsamba is freely available at:
https://github.com/apcamargo/RNAsamba.

Correspondence: mcarazzo@lge.ibi.unicamp.br

1. Introduction

High-throughput sequencing technology has enabled the se-
quencing of genomes and transcriptomes of a myriad of
species, yielding large quantities of genetic information [1].
Hence, great effort is dedicated to characterize the obtained
data, mainly by the identification of functional genomic el-
ements such as messenger RNAs (mRNAs) and long non-
coding RNAs (lncRNAs).

Due to their role of carriers of protein synthesis informa-
tion, mRNAs have been studied for several decades and are
well represented in genetic databases. In contrast, lncRNAs,
which are defined as transcripts longer than 200 nucleotides
that are not translated into proteins [2], have been known for
much less time and only recently their role as regulators of
gene expression and their link to genetic diseases have been

unveiled.
One of the main goals of the functional annotation of

genomes and transcriptomes is the identification of mRNAs
and lncRNAs. Usually, this process relies on the compari-
son of sequences or structures with databases of biological
sequences, which is very time-consuming [3] and poses limita-
tions for both the annotation of mRNAs and lncRNAs. As only
a fraction of the genetic diversity existing in nature is known
and available in databases, many new protein-coding genes
are not identified as such because their protein product is not
found among existing data. On the other side, as lncRNAs
are not under the same evolutionary constraints as mRNAs,
they display lower sequence conservation than protein-coding
transcripts [4, 5], resulting in failure to find homologous se-
quences in database searches [6, 7].

Even though mRNAs and lncRNAs usually share many
molecular features [8, 9], they display contrasting sequence
characteristics that can be used to create statistical models
that can compute the coding potential of any given transcript
without the limitations of database-based annotation pipelines.
Most of these approaches employ machine learning algorithms
to differentiate coding and non-coding transcripts based on
a series of human-designed sequence features such as ORF
length and integrity [10, 11], GC-content [8], 3-base periodic-
ity [12], k-mer frequencies [13, 14] and hexamer usage bias
[15]. The usage of these features, however, may introduce
bias to the classification, causing, for instance, the models
to misclassify lncRNAs possessing long ORFs and coding
transcripts containing short or truncated ORFs.

The power of multi-layered neural networks to identify
deep patterns has made them the de facto standard in many
machine learning applications, such as image and text analy-
sis, and have been extensively employed in bioinformatics to
provide new biological insights [16]. Contrasting to conven-
tional machine learning algorithms, deep learning approaches
do not rely on human-designed features and can be used to
capture concealed sequence signals that are fundamentally
different between mRNAs and lncRNAs.

Here we describe RNAsamba, a tool that uses a novel
neural network architecture to tackle the mRNA/lncRNA clas-
sification problem relying solely on sequence information. We
show that our method outperforms previous tools in a variety
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of metrics and is robust to limitations commonly found in real
world data, such as truncated ORFs.

2. Background

Recurrent Neural Networks (RNNs) are a type of neural net-
work in which each node takes the output of a previous node
as input, forming a directed graph. This architecture confers
RNNs the property of remembering previous states, making
them ideal to deal with sequential data such as nucleotide
sequences [16]. One well documented drawback of traditional
RNNs is the issue of long-range dependencies, which hinders
the training of networks with sequences longer than a few
hundred time steps and makes it difficult to train RNNs with
long sequences [17]. To tackle this problem, the recently intro-
duced IGLOO [18] architecture looks at sequences as a whole,
rather than sequentially like in the recurrent paradigm. To
do so, IGLOO creates representations of sequences by taking
patches of the feature space and multiplying them by learnable
weights (Figure 1A).

In an IGLOO layer, input sequences are of shape (L,M),
where L is the length of the sequence and M is feature size,
i.e. the size of the representation of the element at a given
position. IGLOO uses an initial 1-D convolutional layer and
max pooling to transform the input into a (L,M*)-shaped
array, which can be scaled to accommodate for the overall
size of the network. Then, IGLOO iteratively collects K
patches, each containing 4 random matrix slices, which are
multiplied by learnable weights and joined, resulting in a K-
sized representation of the sequence. Intuitively, the weight
learns relationships between non-necessarily contiguous slices
of the feature map. Using K of those weights allows the
network to find a sequence representation composed of K
different non-local relationships. This representation can then
be fed to a dense layer for classification.

By taking global snapshots of the sequence, IGLOO net-
works can be used to process very long sequences, making
them particularly interesting for nucleotide sequence data.
Furthermore, IGLOO layers can be easily parallelized and
run significantly faster than RNN variants, such as GRUs and
LSTMs, for a similar number of trainable parameters.

3. Algorithm

Starting from the initial nucleotide sequence, RNAsamba
computes the coding potential of a given transcript by com-
bining information coming from two different sources (Fig-
ure 1B): the Whole Sequence Branch (B1) and the Longest
ORF Branch (B2). B1 contains whole sequence representa-
tions of the transcript and can capture protein-coding signa-
tures irrespective of the identification of the ORF. In con-
trast, B2 carries information extracted from the longest iden-
tified ORF and the putative protein translated from it. By

taking into account these two sources of sequence informa-
tion, RNAsamba builds a thorough model of the transcript,
improving the classification performance of the algorithm.

ORF extraction

RNAsamba scans each of the three reading frames looking
for fragments that initiate with a start codon (ATG) and finish
either with a stop codon (TAG, TAA or TGA) or at the end of the
transcript. The longest fragment among the ones found in all
reading frames is then extracted, regardless of finishing with
a stop codon or not.

Sequence processing and encoding

RNAsamba generates high-level representations of both nu-
cleotide and aminoacid sequences using IGLOO units. As
these units require fixed length sequences as input, transcript
and protein sequences are truncated to a maximum length of
3,000 nucleotides and 1,000 aminoacids, respectively. Even
though these thresholds were arbitrarily chosen, we observed
that, while using them, the algorithm exhibits faster train-
ing times and can capture enough information to correctly
classify very long transcripts (Table 1). We believe that this
because the region that contributes the most to classification
is located right after the start codon [19]. The sequences are
then converted into numeric representations as follows:

Nucleotide: ATGACT . . .→ (1,2,4,1,3,2, . . .)
Aminoacid: MTGQLV . . .→ (19,10,5,11,1,7, . . .)

Finally, nucleotide and protein sequences shorter than the
maximum length threshold are then zero-padded to 3,000 and
1,000 elements, respectively.

Whole Sequence Branch (B1)

To obtain high-level representations of the transcript, the
whole nucleotide sequence is inputted into two independent
stacked IGLOO units, N1 and N2, with K1 (K1 = 900) patches
and distinct kernel sizes in their initial convolutional layers.
The outputs of these units are then concatenated and fed to a
dense layer resulting in B1.

Longest ORF Branch (B2)

B2 is the result of the combination of four different layers
that carry different properties of the ORF sequence. Layer
P1 contains a representation of the protein sequence and is
obtained by inputting the aminoacid sequence of the putative
protein into an stacked IGLOO layer with K2 (K2 = 600)
patches; layer F1 is comprised of the relative frequencies
of nucleotide k-mers (k ⊂ {2,3,4}) in the ORF; layer A1

contains the relative aminoacid frequency of the translated
ORF; layer O1 consists of the length of the longest identified
ORF. B2 is obtained by feeding P1, F1, A1 and O1 to four
independent dense layers, concatenating the outputs into a
single matrix that is then fed a final dense layer.
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Figure 1. (A) In an IGLOO layer the input sequence is initially processed by an 1D convolutional layer and down-sampled using the max pooling approach.

From the resulting matrix, K patches consisting of four random slices are drawn from the matrix and multiplied by K learnable weights, producing a

high-level representation of the sequence input. (B) From the RNA sequence RNAsamba derives two branches. In the Whole Sequence Branch (B1),

the whole transcript nucleotide sequence is fed to two IGLOO layers to create high-level representations of the transcript (N1 and N2). In the Longest

ORF Branch (B2) four layers are derived from the ORF sequence: an IGLOO representation of the putative protein (P1), nucleotide k-mer frequencies

(F1), aminoacid frequencies (A1) and the ORF length (O1). The two branches are weighted by the α parameter and then used to compute the final

classification of the transcript.

Branch weightening

The branches B1 and B2 gather different information from the
transcript: while B1 captures patterns from the whole tran-
script sequence, B2 picks up information specific to the ORF.
Therefore, we include an attention mechanism, the α param-
eter, to weight information coming from these two branches.
This mechanism is important, for instance, to correctly clas-
sify transcripts with unusual ORF length, such as noncoding
transcripts with long ORFs or truncated protein-coding RNAs.

α= softmax(O1 ·W1 +W2)
Y = α ·B1 +(1−α) ·B2

Where W1 and W2 are trainable matrices and α is a matrix
that is used to weight B1 and B2 in the final layer (Y). While
training the algorithm end-to-end, the weights in W1 and W2

are optimized to maximize classification accuracy.
To obtain the coding score, Y is fed to a dense layer with a

softmax activation that normalizes the input into probabilities
for each class [20]. Training is performed by minimizing the
categorical cross-entropy using the Adam optimizer [21].

4. Implementation

RNAsamba is built with popular state-of-the-art deep learning
libraries, TensorFlow [22] and Keras. We provide an execution
guide and convenient scripts to make the process of training
new models and classifying transcripts easy for the end user.
For training new models, RNAsamba supports changing the
number of epochs and batch size. It also allows the user to
enable early stopping, which is useful to avoid overfitting. For
inference, our implementation allows the input of multiple
weights files that are combined in an ensemble classification,
also helping to reduce model variance.

5. Results

RNAsamba can accurately distinguish mRNAs from
lncRNAs in several datasets

To evaluate the ability of RNAsamba’s algorithm to learn how
to discriminate coding sequences from non-coding ones, we
compared it with five state-of-the-art coding potential predic-
tors: CPAT [23], CPC2 [24], FEELnc [25], lncRNAnet [26]
and mRNN [19], being the last two based on neural network
models. To keep the comparison as unbiased as possible, the
benchmark was performed using four independent datasets
consisting of coding and non-coding human transcripts previ-
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Figure 2. Classification benchmark of six different coding potential calculators. (A) Classifiers performance in four independent test datasets containing

human transcripts. Values correspond to the area under the precision-recall curve. Models that were trained with the corresponding training sets are

represented by filled circles, while pre-trained models are indicated by unfilled circles. CPC2 is outside of the displayed range in the mRNN-Challenge test

dataset (75.35%). (B) Classifiers performance in five different species. Values correspond to the area under the precision-recall curve.

ously used in the literature. These datasets exhibit differing
characteristics regarding balance, transcript, and ORF length
distributions (Table S1 and Figure S1). When possible, clas-
sification models were trained using the training set of each
dataset. As data augmentation is a central feature of mRNN’s
train process, we chose not to train new models for this algo-
rithm.

We found that RNAsamba outperforms the other predic-
tors in a variety of metrics in all datasets (Figure 2A and Ta-
ble S2). The only dataset in which RNAsamba does not show
consistently better classification performance is the mRNN-
Challenge dataset, where mRNN displays better overall results.
It should be noted, however, that mRNN was tested with a
pre-trained model (unfilled circles in Figure 2) made avail-
able by its developers and we did not reproduce their training
procedure, which involves data augmentation of the training
sequences.

RNAsamba’s model generalizes to different species

In order to evaluate if a RNAsamba model trained with human
RNA sequences generalizes well to other species, we evalu-
ated a model trained with human data in multiple test datasets,
each containing both mRNAs and ncRNAs from one of five
different species: M. musculus, D. rerio, D. melanogaster,

C. elegans and A. thaliana (Table S3 and Figure S2). We
also compared the performance of RNAsamba to five other
algorithms pre-trained with human transcripts.

RNAsamba exhibits good classification performance in
every species, irrespective of the evolutionary distance to hu-
mans, showing that a model learned from human sequence
data can be generalized to different organisms. When com-
pared to other tools, RNAsamba recurrently is placed among
the best tools, showing slightly worse results only in D. rerio
and D. melanogaster, where it displays a drop in precision
(Figure 2B and Table S4). Notably, mRNN exhibits a signifi-
cant decrease in classification performance when compared
to its results in human data, evidencing that its algorithm may
not handle well RNA sequences from different species.

RNAsamba can identify truncated coding sequences

Since it comprehends the coding portion of the RNA, the ORF
is generally used as the main source of information to detect
potential protein-coding transcripts. Because of that, most
mRNA predictors use human-engineered features extracted
from the coding portion of the transcript, such as the ORF
length and coverage. This dependence of a detectable in-
frame ORF to identify coding sequences impairs the function
of these algorithms to annotate the majority of transcriptome
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datasets, which contain a large fraction of partial-length tran-
scripts [6, 27, 28].

As the B1 branch of RNAsamba captures sequence infor-
mation that is independent of the ORF, it can detect protein-
coding signatures even in the absence of a start codon. Thus,
we tested the algorithm’s performance in the identification of
truncated mRNA transcripts in which both the start and stop
codon are absent. To avoid biases caused by the detection of a
fragment of the true ORF, we also evaluated RNAsamba’s per-
formance in a separate set of truncated transcripts that show
no in-frame start codon inside the ORF, meaning that the
model would have to capture ORF-independent coding marks
to identify mRNAs. For this test, we trained RNAsamba with
both complete and truncated sequences, aiming to make the
algorithm more capable of identifying mRNAs by looking at
the whole sequence context.

Inspection of the fraction of identified mRNAs obtained
from each stratum of truncated ORFs revealed that RNAsamba
is capable of identifying a substantial fraction of the mRNAs
even when most of the ORF is absent (Figure 3). We also
noted a negative association between the amount of available
ORF information and the median value of the α parameter,
showing that RNAsamba favors B1 as ORF-derived data be-
comes sparse (Figure S3).

When contrasted to three ORF-dependent algorithms,
CPAT, CPC2 and FEELnc, RNAsamba displayed a much
better performance at identifying partial coding sequences.
The discrepancy between RNAsamba and these algorithms
is much more pronounced in the case of the truncated tran-
scripts without in-frame start codons, as CPAT, CPC2 and
FEELnc are incapable of finding fragments of the true ORF,
making their predictions mostly unreliable. When compared
to other algorithms that don’t strictly rely on ORF sequences,
RNAsamba displays better classification performance than
lncRNAnet, but generally worse than the mRNN model. We
suspect that mRNN’s good performance in this specific kind
of data is possibly due to the use of artificially introduced
reading frame shifts during the data augmentation process
[19].

RNAsamba can detect a translation-related sequence
residing outside of the ORF

The Kozak consensus sequence, which spawns from the -6 to
the +4 positions of mRNAs, is a recurring sequence in coding
transcripts [29] and plays a major role in the initiation of the
translation process [30], evidencing that portions of untrans-
lated regions can affect translation efficiency. As RNAsamba
uses whole-sequence information to process RNA sequence
data, we investigated whether its algorithm is sensitive to
changes in the Kozak sequence region.

Thus, for each of 1,000 randomly chosen mouse mRNAs,
we derived two sets containing 100 computer-generated tran-
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Figure 3. Evaluation of the ability of different tools to detect the coding

potential of ORFs with varying degrees of fragmentation.

scripts each. In the control set, new sequences were cre-
ated by exchanging the Kozak sequence region of the mRNA
by fragments created by sampling nucleotides from a uni-
form probability distribution. In contrast, nucleotides of the
computer-generated fragments of the second set were sam-
pled according to the probability distribution of the Kozak
consensus sequence (Figure S4).

We found that Kozak-derived sequences lead to an over-
all increase of transcripts’ coding score. In the majority of
the tested transcripts (77.71%), this score was significantly
larger (FDR-adjusted p-value≤ 0.05) in fragments generated
from the Kozak consensus probability distribution, indicating
that RNAsamba is able to detect an important signal that con-
tributes to mRNA translation even though it mostly resides
outside of the ORF. Accordingly, we observed that there is
a significant (p-value ≈ 0.01) negative correlation between
the coding score of a given sequence and the Hamming dis-
tance between its computed-generated portion and the Kozak
sequence consensus.

We also investigated whether the effect of the Kozak se-
quence on the coding score is diminished in longer sequences,
since they intrinsically carry larger amounts of information to
be processed by the RNAsamba algorithm. We noticed that
for transcripts longer than a well-defined threshold, around
3,160 base pairs (bp), there is no detectable variation among
the coding scores of the control and the Kozak-derived groups
(Figure S5), suggesting that the effect of this short signal is
no longer detectable as the algorithm processes larger chunks
of information.

RNAsamba is faster than neural network-based alter-
natives

Neural networks models are becoming increasingly popular
due to their ability to learn nonintuitive patterns, that would
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Figure 4. Computational performance of RNAsamba, lncRNAnet and mRNN. (A) Inference wall time of five independent executions of each algorithm. (B)

Average wall time per epoch of five independent executions of RNAsamba and mRNN. LncRNAnet does not provide an interface to train new models,

thus its training times were not measured. Computations were performed with two Intel(R) Xeon(R) E5-2420 v2 CPUs.

otherwise be ignored by humans, from large quantities of data.
This learning power is, however, accompanied by an enor-
mous increase in the number of trainable parameters when
compared to traditional machine learning techniques, greatly
increasing training time [16]. We felt that the available neural
network-based coding-potential calculators impose a barrier
for most users, as they do not possess GPU hardware to in-
crease performance. By using modern libraries and IGLOO
layers we sought to develop an algorithm that makes it feasible
to train new models even with traditional CPUs.

We compared RNAsamba to lncRNAnet and mRNN with
respect to inference and training times using the FEELnc
dataset. These two algorithms employ traditional RNN vari-
ations — LSTM in lncRNAnet and GRU in mRNN — that
were previously shown to be slower than IGLOO [18]. In-
deed, we found that RNAsamba’s inference is, on average,
10.5 and 3.6 times faster than lncRNAnet and mRNN, respec-
tively (Figure 4A). Regarding training, RNAsamba is 14.2
faster than mRNN (Figure 4B). Jointly, these results show that
RNAsamba is faster than current alternatives, making it more
accessible to most users.

Ablation studies

We investigated the effect of altering some of the features of
RNAsamba’s algorithm to its overall performance.

Changing the maximum sequence length: As IGLOO layers
require fixed-length inputs, we arbitrarily chose to truncate
nucleotide and aminoacid sequences at the positions 3,000
and 1,000, respectively. To check whether this choice neg-
atively affected RNAsamba’s classification performance by
not providing it with important sequence information, we
developed two alternative versions of the model that trun-
cate nucleotide and aminoacid sequences at 4,500/1,500 and
6,000/2,000. We verified that raising the input sequences max-
imum length increased both the train and test times, without
improving the model’s accuracy. Reducing the maximum
lengths to 2,400/800 resulted in a slight drop in classification

performance (Table 1).

Removing the B2 branch: By removing the B2 branch we de-
prived RNAsamba’s algorithm of ORF-derived features, forc-
ing it to leverage whole-sequence information to distinguish
between mRNAs and lncRNAs. We observed that this abla-
tion reduced the accuracy of the network by 15.79% (Table 1),
leading us to the conclusion that the features the algorithm
derives from the ORF contain key information that is not ex-
tracted from the nucleotide sequence by the IGLOO layer
alone.

Replacing IGLOO with GRU and LSTM: The Gated Recur-
rent Unit (GRU) [31] and the Long Short-Term Memory
(LSTM) [32] are established RNN architectures, commonly
used in deep-learning tasks that deal with sequences. Recently,
IGLOO has been shown to outperform both GRU and LSTM
in terms of run time and accuracy on some standard benchmark
problems such as the copy-memory and the addition tasks [18].
To evaluate whether this holds true in the mRNA/lncRNA clas-
sification paradigm, we developed alternative versions of our
algorithm in which IGLOO was substituted by GRU or LSTM
layers with 256 units. We found that the model using IGLOO
is more accurate and significantly faster, for both training and
classification, than the GRU and LSTM variants (Table 1).

6. Conclusion

In this study, we presented RNAsamba, a new deep learning-
based tool to predict the coding potential of RNA transcripts
relying solely in sequence information. Compared to other
algorithms, RNAsamba exhibits better classification perfor-
mance in multiple human datasets and generalizes very well to
other species, without relying on computationally-expansive
data augmentation.

We believe that RNAsamba’s algorithm introduces two
major contributions: (1) the usage of the IGLOO architecture
to learn from sequence data and (2) the integration of whole
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Table 1. Ablation studies of the RNAsamba model. Default parameters are highlighted in bold. Reported train times, test times and accuracy values

correspond to the average of five independent executions. Computations were performed with two Intel(R) Xeon(R) E5-2420 v2 CPUs.

Architecture Maximum length (nt/aa) Branches Training (s) Inference (s) Accuracy

IGLOO 3000/1000 B1, B2 965.41 94.74 0.9393
IGLOO 2400/800 B1, B2 918.13 93.17 0.9319

IGLOO 4500/1500 B1, B2 1110.37 98.38 0.9390

IGLOO 6000/2000 B1, B2 1242.86 103.04 0.9392

IGLOO 3000/1000 B1 658.83 28.62 0.7814

GRU 3000/1000 B1, B2 8853.15 306.34 0.9110

LSTM 3000/1000 B1, B2 10468.63 510.63 0.9089

transcript and ORF-derived information into a single coding
score. By using IGLOO layers, RNAsamba can learn nonin-
tuitive coding patterns, as we demonstrated with the Kozak
consensus, without relying on biased human-designed fea-
tures. This architecture also makes RNAsamba significantly
faster than RNN-based algorithms, making it more appeal-
ing to most users. Through the usage of its two branches,
RNAsamba can identify mRNAs with short or incomplete
ORFs, which usually are misclassified by most algorithms.

With RNAsamba, we sought to offer a fast and easy-to-use
tool to most researchers. To achieve that, we developed our
software using modern and well documented libraries. Also,
we provide convenient scripts to promptly execute training
and inference tasks. By doing so, we believe that RNAsamba
provides most users with a state-of-the-art coding potential
predictor that can be easily used to accurately predict mRNAs
and lncRNAs in genome annotation pipelines.

7. Materials and methods

Classification performance evaluation

We assessed the performance of RNAsamba and five other
sequence-dependent classification software: CPAT (1.2.4),
CPC2, FEELnc (version 0.1.1), lncRNAnet and mRNN. We
calculated the performance metrics considering mRNAs as
the positive class and ncRNAs as the negative class.

For the evaluation in each of the human test datasets,
RNAsamba, CPAT and FEELnc were trained with the corre-
sponding train sets. We used pre-trained models for CPC2,
lncRNAnet and mRNN. For the classification evaluation in
the M. musculus, D. rerio, D. melanogaster, C. elegans and A.
thaliana datasets, RNAsamba was trained with the sequences
of all four human datasets. Other programs were executed
with their pre-trained models. mRNN was loaded with weights
provided in the w14u3.pkl file.

Links for download of the datasets used in these bench-
marks can be found in the Supplementary Data.

Truncated ORFs dataset

To generate the test for the analysis of truncated transcripts,
mouse ORF sequences were retrieved from Ensembl (release
94) [33] and sequences shorter than 300 nucleotides were
discarded. Next, ORFs that exhibited an in-frame start codon
and the ones that didn’t were separated into different sets. The
start and stop codons were removed from the sequences of
both sets, guaranteeing that the true beginning and end of the
ORFs would not be detected by the classifiers. Subsequently,
each set was used to generate five subsets consisting of 1,000
randomly sampled sequences. Finally, the sequences from
each dataset were sliced at random positions to generate sets
of fragmented ORFs with fixed relative lengths (20%, 30%,
50%, 70% and 90% of the total ORF length).

For the performance evaluation, we used a RNAsamba
model trained with a set containing the CPC2, FEELnc and
mRNN human train and test sets as well as fragmented ORFs
extracted from 50,000 of those sequences. CPAT, CPC2
FEELnc, lncRNAnet and mRNN were executed using pre-
trained models. mRNN was loaded with weights provided in
the w14u3.pkl file.

Kozak sequence analysis

The 100 different 10 bp fragments in the Kozak sequence
set and the control set were generated, respectively, from the
Kozak sequence probability distribution (Figure S4A) and a
uniform distribution, in which all four nucleotides are equally
probable to be drawn in each position (except for the start
codon). The distance between the generated fragments and the
Kozak sequence was obtained by computing their Hamming
distances to two sequences derived from the Kozak consensus
(GCC[AG]CCATGG) and choosing the lowest value.

We randomly selected 1,000 sequences among mouse
mRNAs, retrieved from Ensembl (release 94), whose 5’ UTR
contained at least 6 nucleotides. Then, the region spawn-
ing the positions -6 to +1 of each mRNA was exchanged by
the 10 bp fragments of the Kozak sequence set and control
set, producing two sets of hybrid transcripts containing both
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biological and computer-generated sequences (Figure S4B).
For each mRNA, we used one-tailed Mann-Whitney tests

to test for differences in the coding scores of sequences in the
two sets. We used the Fisher’s method to aggregate p-values
and the Benjamini-Hochberg procedure to compute the false
discovery rate (FDR). Kendall’s tau coefficient was used to
measure the degree of association between coding scores and
Hamming distance to the Kozak sequence.

Ablation studies

The models generated in the ablation studies were trained
for 10 epochs using the FEELnc human train set and all the
performance evaluations were measured using the FEELnc
human test set.

Code and data availability

The source code for RNAsamba is available in an online repos-
itory (https://github.com/apcamargo/RNAsamba). Train
and test sequences generated for the truncated ORF analy-
sis, as well as computer-generated Kozak fragments were
uploaded to Open Science Framework (https://doi.org/
10.17605/OSF.IO/MD56Y).
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