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Abstract 

 Neuron morphology is recognized as a key determinant of cell type, yet the quantitative profiling of a mammalian neuron’s complete three-dimensional (3-D) morphology remains arduous when the neuron has complex arborization and long projection. Whole-brain reconstruction of neuron morphology is even more challenging as it involves processing tens of teravoxels of imaging data. Validating such reconstructions is extremely laborious. We developed TeraVR, an open-source virtual reality annotation system, to address these challenges. TeraVR integrates immersive and collaborative 3-D visualization, interaction, and hierarchical streaming of teravoxel-scale images. Using TeraVR, we produced precise 3-D full morphology of long-projecting neurons in whole mouse brains and developed a collaborative workflow for highly accurate neuronal reconstruction. 
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Introduction 

 Major international initiatives are underway to profile and characterize cell types of the mammalian brain (Ecker, 2017, Regev, 2017).  As a key recognized attribute of cell type since Ramon y Cajal, high fidelity reconstruction of neuron morphology is gaining increased attention (Ascoli, 2006; Yuste, 2015; Economo, 2016). The basic building blocks of the brain, neurons and glial cells, are often noted for their remarkable three-dimensional (3-D) shapes that distinguish one cell-type from another. While such shapes are critical to understanding cell type, function, connectivity and development (Zeng and Sanes, 2017), it is challenging to profile these shapes precisely.  Sparse labeling and high-resolution micro-imaging of a brain cell help visualize the appearance of the cell, yet it remains a major bottleneck how to convert such imaging data into a digital description of morphology, including the 3-D spatial locations of a cell’s parts and their topological connections.  This conversion process is often called neuron tracing or neuron reconstruction and it has become an essential and active area of neuroinformatics.   Two complementary reconstruction workflows exist: one for electron microscopy (EM) images and the other for light microscopy (LM) data (Helmstaedter, 2013; Januszewski, 2018; Peng, et al, 2015). EM offers nanometer-resolution and thus provides a way to reconstruct the entire surface of the shape, but it is often constrained to relatively small brain regions. When whole-brain scale is the focus 
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and complete neuron morphology is desired, LM is a more suitable imaging modality where data is typically acquired at sub-micrometer resolution. LM-reconstruction makes it possible to trace both long projections and the terminal arborization of a brain cell. Recent extension of this approach based on expansion microscopy can help visualize neurons at nanometer-resolution using LM approaches (Gao, 2019).  It is widely recognized that manual and semi-automatic neuron-tracing methods are crucially required to produce full reconstructions, which can also serve as “gold-standard” datasets to develop fully automatic neuron-tracing methods (Peng, 2011; Peng, 2015; Ai-Awami, 2016; Mosinska, 2017; Haehn, 2018). Without loss of generality below we define any neuron-tracing method that has a non-negligible human labor component as manual reconstruction, which clearly also includes many semi-automatic methods. This paper discusses a new technology that makes such LM-oriented manual reconstruction more efficient and reliable than existing approaches. This work was motivated by four difficulties detailed below: (1) observability, (2) big data handling, (3) interaction, and (4) validation.    First, a neuron can have a very complex 3-D shape that may contain hundreds or even thousands of fiber-branches especially in dense arbors. Such a high degree of mutual occlusion makes it hard to see how neurite-fibers wire together. The observability is further compromised by the uneven or weak axon labeling, relatively poor Z-resolution from imaging, etc. Often, neither the prevailing 2-D 
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cross-sectional view (such as those widely used in EM-oriented and many LM software packages) nor the typical 3-D intensity projection methods (Peng, et al, 2010) are sufficient to unambiguously delineate these complex wiring patterns, let alone reconstruct them.   Second, reconstructing the full morphology of a mammalian neuron relies on effectively managing and streaming huge whole-brain imaging datasets. The volume of a typical mouse brain is about 500 mm3, it is not uncommon that a neuron may have over one hundred millimeters long neurite fiber (Economo, et al, 2016).  When an entire mouse brain is imaged at sub-micrometer resolution in 3-D, the volume of the acquired brain images often contains twenty to thirty or more teravoxels. Only a small number of existing software packages are able to open and analyze such big datasets (Bria, et al, 2016; Pietzsch, 2015). How to streamline the unambiguous 3-D visualization and analysis of such huge datasets presents a major informatics challenge.   Third, manual reconstruction of neurons is often laborious and unintuitive using two-dimensional (2-D) tools to interact with 3-D images and the 3-D geometrical representations reconstructed from such images. Reconstructing geometrical objects from 3-D volumetric images requires overlaying these objects onto the imaging data in 3-D space and manipulating them in situ. Since most current computer displays (e.g. computer screens) and data interaction tools (e.g. computer mouse) are still restricted to 2-D, it is usually hard to observe and manipulate higher 
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dimensional data via a lower dimensional interface. It is also desirable to interact with the data directly using a smooth workflow. Applications such as Virtual Finger (Peng, et al, 2014) represent progress toward this goal, but improvement is still necessary for complex and large neurons and also for display and interaction hardware.   Finally, it is often necessary but very expensive to involve multiple annotators to produce “gold-standard” reconstructions. Manual work is time-consuming and tedious, thus in practice most existing studies can afford only one annotator per neuron. To resolve any ambiguity of reconstructions, it is desired to have a way to allow multiple annotators to visualize the same neuron and its underlying imaging data at the same time, and collaborate on the work. This approach requires collaborative and immersive annotation of multi-dimensional imaging data at the whole-brain scale.   Here we introduce the TeraVR system addressing the above requirements.  We demonstrate the applicability of TeraVR to challenging cases of whole mouse brain neuron reconstruction, achieving previously unattainable accuracy and efficiency. 
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Results 

 We developed TeraVR (Fig. 1, Supplementary Note 1, Supplementary Videos 1-

11), an open-source virtual reality software package for the visualization and annotation of teravoxel-scale whole-brain imaging data (Fig. 1a). The software was built upon the TeraFly module of Vaa3D (http://vaa3d.org) (Bria, et al, 2016), thus 
TeraVR can streamline the data input-output (IO) and other real-time user interaction with teravoxel-scale image volumes, e.g. an 18.4-teravoxel brain-image in Fig. 1a. As described below, TeraVR also has a number of unique features designed for reconstruction of neuron morphology in whole-brain images, at different levels of details and at different local regions of interest (ROI).   To use TeraVR, a user wears a virtual reality headset (bottom right of Fig. 1a) and works within a virtual space defined for the brain image along with the neuron reconstruction and other location-references on the image. TeraVR generates synchronized real-time rendering streams for both left and right eyes (bottom left of 
Fig. 1a), which simulate how a person perceives real-world objects and thus forms stereo-vision. In this way, TeraVR facilitates efficient immersive observation and annotation (Fig. 1b, Supplementary Video 12) of very large-scale multi-dimensional imaging data, that can have multiple channels or from different imaging modalities (Supplementary Fig. 1). With the accurate pinpointing capability in 
TeraVR (Supplementary Fig. 2), in real-time a user can precisely and efficiently 
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load the data of a desired high-resolution ROI to see detailed 3-D morphological structures (Supplementary Fig. 2c).   A user employs TeraVR to gain unambiguous understanding on a considerable number of challenging regions which typically contain complicated branching patterns, weak and discontinuous axon signals, overlapping neurites, etc. (middle of 
Fig. 1a) that are otherwise very hard, if not impossible, to distinguish confidently using any existing non-immersive visualization tools. TeraVR provides comprehensive tools for neuron reconstruction. In addition to single neurons, 
TeraVR was also used to reconstruct multiple densely packed neurons in very noisy images (Fig. 1c). TeraVR also allows multiple annotators working on the same dataset collaboratively using a cloud-based data server (Fig. 1d), in a way similar to Google-Docs, to combine multiple users’ input together efficiently.  
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Figure 1. The overall scheme of TeraVR. (a) TeraVR is applicable to very challenging visualization and 

reconstruction scenarios such as complicated branching, weak signals, and overlapping neurites. With 

TeraVR, a user is able to combine stereoviews to observe the complex 3-D neurite patterns easily and 

perform the reconstruction effectively. Combining such visualization and data-exploration functions 

with terabyte-scale imaging data (e.g. whole-brain scale) management and streaming capability 

enables reconstruction of complex neuronal morphology at an unprecedented accuracy and efficiency. 

(b) A mixed reality visualization that demonstrates the use of TeraVR. Immersed in a virtual 

environment, the user manipulates the imaging data with TeraVR in a way similar to manipulating a 

physical object. (c) Multiple densely packed neurons from an image with high, noisy background 

intensity level were reconstructed using TeraVR. (d) Real-time collaboration is demonstrated by 

showing views from all participating annotators. Each annotator logs onto the cloud and adopts a 

unique color for both annotation and an avatar representing the user’s real-time location. The left 

figure shows the view for annotator A (blue), in which two avatars of co-annotator B (purple) and C 
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(yellow) are seen. Annotation results are instantly shared among them. The upper right subpanel: 

annotator B examined a partially traced segment by co-annotator C, only to identify more branches 

after turning up the contrast and having a close-up view of the segment (without affecting the views of 

other annotators); bottom right subpanel: the view of annotator C.  

 We tested TeraVR in challenging situations for conventional non-VR approaches due to densely labeled and weakly imaged neurites. Such non-VR approaches include many visualization and annotation functions already existing in Vaa3D and TeraFly, as well as in other software packages such as ImageJ/Fiji (https://fiji.sc/) and Neurolucida (MBF Bioscience). First, for a strongly punctuated and highly intermingled axon cluster (Fig. 2a), five independent annotators reduced the time in tracing by 50-80% when they used TeraVR compared to TeraFly, the most efficient non-VR approach we found for these testing cases (Fig. 2b). Second, for exceedingly weak neurite signals (Fig. 2c), with TeraVR these annotators could consistently generate a neurite tract (bounded by branching points and/or terminal points) within 50 seconds, about 10 times better than the non-VR approach (Fig. 2d). For these weak signals, even when sometimes annotators needed to adjust the contrast in the visualization in both TeraVR and non-VR approaches, it was much easier for the annotators to use TeraVR than the non-VR method to find the right angle of observation and to add annotations on top of the signals. TeraVR reduced 60%~80% of labor when measured with alternative metrics such as the number of strokes to complete a neurite tract in drawing (Fig. 2d). Third, for 109 dense or weak tracts, with TeraVR these annotators rarely needed more than 50 seconds to reconstruct any of such difficult tracts, while the non-VR approach normally needed about 10 
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times of effort for the same task (Fig. 2e). In 37.6% of tracts in this testing set, at least one annotator was not able to use the non-VR approach to reconstruct (Fig. 2f) while none of these annotators had trouble to accomplish the goal when TeraVR was used.   

 
Figure 2. Efficiency of TeraVR. (a) A complex 3-D image volume with a number of intermingled, broken, 

strongly punctuated axon tracts. (b) Time spent to generate the five tracts in (a), each of which was 

produced by five independent annotators; the ‘non-VR’ results showed were obtained using TeraFly 

(same below in this figure); error bar: S.D. (c) A 3-D image volume with weak signal and strong noise, 

and the respective TeraVR reconstructions of barely visible neurite tracts. (d) Time and the number of 

operations needed to produce the tracts in (c). Gray bar: unavailable results (time/ number of strokes) 
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for non-VR approach; error bar: S.D. (e) Average time of 5 annotators to generate 109 tracts that were 

hard to reconstruct. For non-VR, the average was calculated among the sub-group of annotators who 

succeeded in reconstructing the tract. (f) The give-up rate of non-VR for each tract in (e); an annotator 

was allowed to give up the attempt after trying 300 seconds; the give-up rate for each tract was defined 

as (#failed attempts)/ (#all attempts). Arrows in (e) and (f): the cases where no non-VR attempt was 

able to produce the respective neurite tracts.  

 
Figure 3. Complete reconstruction of neurons at whole brain scale using TeraVR.  (a) A thalamic cell 

reconstructed using TeraVR. Upper left: a complete reconstruction of the neuron color-coded using ‘GM’ 

(Generation Method) and ‘SNR’ (signal-to-noise-ratio) schemes; in ‘GM’, magenta and green colors stand 

for neurites reconstructed using VR and non-VR, respectively; in ‘SNR’, blue, sky blue, yellow, and red 

colors indicate neurites with high, mid, low and very low SNR, respectively; two close-up views of local 

dendrites and remote axons are also shown in the right and the bottom. (b) For a set of 44 completely 
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reconstructed thalamic neurons (33 from brain No. 17302, 11 from brain No. 17545), the correlation 

between the portion of a neuron traced using the VR mode of TeraVR and the portion of this neuron that 

has very low SNR (VLSNR). (c) For a set of 73 completely reconstructed neurons in caudate putamen (58 

from brain No. 17302 and 15 from brain No. 17545), the correlation between the portion of a neuron 

traced using the VR mode of TeraVR and the portion of this neuron that has very low SNR (VLSNR). (d) 

The use of VR mode in reconstruction of BASNR (below average SNR) regions in each of the 117 neurons.  

(e) Whole-brain plot of 33 thalamic neurons reconstructed from brain No. 17302; gray: maximal 

intensity projection of this brain image; color-code: each neuron in a randomly assigned color.   A neuron may contain thousands or more neurite tracts, each of which is bounded by a pair of critical points, e.g. branching points, axonal or dendritic terminals, or the cell body (soma). Neurites are organized into local dendritic arbors, local axonal arbors, long projecting axon fibers, and distal axonal arbors. While some structures such as the major dendritic branches may be reconstructed using non-VR approaches, many other challenging cases (e.g. Fig. 2) will require the VR module in 
TeraVR for faithful and efficient reconstruction. Therefore, in TeraVR we designed a smooth switch between the VR mode and the non-VR mode to allow an annotator to choose a suitable mode to observe the imaging data and reconstruct neurites for different areas in a big imaging dataset.   This technology allowed us to reconstruct complete 3-D morphology of neurons from the whole mouse brain, each of which was repeatedly curated by four to five annotators to ensure accuracy (Figs. 3 and 4, Supplementary Fig. 3 and 4).  To better understand the usability of TeraVR, we trained 15 annotators to 
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independently produce complete reconstructions for different types of neurons. We analyzed under which situations these annotators would switch between VR and non-VR modes to understand the strength of the VR-mode (Fig. 3). VR was used mostly in densely arbored areas such as axonal arbors and sometimes also in local dendrites (Fig. 3a, and Supplementary Figs. 3a ~ 3c). The areas done by VR often have low or very low signal-to-noise-ratio (SNR) (Fig. 3a, Supplementary Fig. 3, 
Methods). For 44 thalamic neurons in two mouse brains, the percentage of very low SNR regions correlated linearly with the VR-portion of neurons (Fig. 3b). Linear correlation was also observed in analyzing 73 neurons in caudate putamen in the two brains (Fig. 3c). For all these 117 neurons together, over 90% of VR usage was dedicated to the reconstruction of neurites in the below average SNR regions (Fig. 

3d).   We further investigated whether reconstructions of similar accuracy could have been produced using other commonly used tools. We used TeraVR to recheck the reconstruction of neurons with very complex morphology, such as the cortico-cortical neurons, initially generated by annotators who had a lot of experience in using a popular reconstruction tool called Neurolucida (Neurolucida 360 or NL360). Since NL360 does not have comparable capability to handle big data IO streaming, the annotators needed to load a portion of the imaging data at a time to reconstruct neurons, at a much slower pace. More importantly, upon rechecking in TeraVR we found imperfectness of these NL360-based reconstructions (Fig. 4 a-c). The under-tracing of missing neurites was most notable, and the topology errors and over-
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tracing were common (Fig. 4 a-d) even for the cells traced from overall clearly labeled brains. In some cases, more than 40% of neurites of a neuron were found to be missing (Fig. 4 c-d, Supplementary Fig. 4a). Notably, it was often seen a missing axonal branch at the proximal part of an axon, which indicated missing a long projection and the corresponding whole distal targeting axonal cluster (Fig. 4a, Fig. 

4c). Also, annotators could choose to proceed along a wrong direction when a confusing branching region was encountered, which would lead to more severe reconstruction errors (Supplementary Fig. 4). These indicate the limitation of conventional tools for accurately observing neuronal structures in certain special situations such as dense neurites, axonal collaterals in dendrosomatic regions, where signals become obscure (for example, long axonal collaterals extending along pia, Fig. 4c). This observed limitation is common for the non-VR approaches, such as 
Vaa3D-TeraFly and Neurolucida, compared to TeraVR. A careful examination of 17 complex neurons from three whole-brains indicated that TeraVR extended 10-103% of the overall lengths of reconstructions from these neurons (Supplementary 

Table 1). We also carefully examined several other VR software packages and did not find any one that had comparable functions as TeraVR (Supplementary Tables 

2 and 3).   
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Figure 4. The use of TeraVR in validating, correcting, and extending complex neuron-reconstructions 

produced with Neurolucida. (a) ~ (c) Three examples of reconstructed neurons overlaid on the whole-

mouse brain imaging data, from three different brains (IDs: 236174, 17545, 17300), respectively. Green: 

initial reconstructions produced using Neurolucida; magenta: recovered missing portion of 

reconstructions using TeraVR. (d) The length of neuron reconstructions produced for (a)~(c), 

respectively.   In contrast to 2-D display devices in front of which multiple people may view the same visualization simultaneously, currently one 3-D VR headset can only be worn by one person at a time, therefore an annotator may not communicate easily with others once this person is working in the VR environment. To overcome this limitation, in TeraVR we developed a collaboration mode with which multiple users can join the same session to reconstruct the same neuron at the same time, similar 
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to the co-editing feature of Google-Docs. Specifically, in TeraVR we implemented a cloud-based server-client infrastructure, with which the annotation data of individual annotators are streamed to the server in real time and merged with the data produced by other collaborating annotators. Users are able to see all annotations produced by others in real time and perform certain further annotations. We assembled a geographically remote team of annotators in Nanjing (China), Shanghai (China), and Seattle (USA) to use this collaboration mode to simultaneously reconstruct complicated 3-D neuron morphology from the whole-brain imaging dataset (Fig. 1d and Fig. 5). Three annotators, each from a different city, were able to co-reconstruct in real-time dendritic and axonal structures around the soma of a neuron (Fig. 5 a-c) with only 20% of time compared to one single annotator (Fig. 5e). A Sholl analysis (Langhammer, et al, 2010) indicated the 
TeraVR-reconstructions produced by different combinations of annotators had consistent topology (Fig. 5d). A length analysis indicated the difference of neuron-lengths generated by such combinations of annotators was also small, at only 0.77% of the average total length of the reconstruction (Fig. 5e). A spatial distance analysis indicated the average lateral apartness of these reconstructions was about 3.5 voxels, which was 0.05% of the longitudinal span of the neuron (Fig. 5f). This study indicates the power of TeraVR’s collaborative approach for remote annotation.  
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Figure 5. Results produced using the collaboration mode of TeraVR. (a) ~ (c) Reconstructions done by 

different numbers of collaborating annotators; different colors of neurites indicate parts done by 

different annotators; #A: number of annotators. (d) Sholl analysis of three reconstructions in (a)~(c). (e) 

Summary of the number of annotators, reconstruction time, and the total length of reconstructions in 

(a)~(c). (f) The pairwise spatial distance of reconstructions in (a)~(c). 

 We developed TeraVR as an open system, which can be augmented by a number of other programs without compromising its modularity. In particular, we enhanced 
TeraVR using several artificial intelligence techniques to further improve the efficiency of annotators. First, for the imaging data, we trained a deep-learning model, U-Net (Ronneberger, et al 2015), based on high-quality reconstructions produced using TeraVR; then in TeraVR we allowed a user to quickly invoke the trained U-Net to separate neurite signal from background (Supplementary Figs. 5a, 

5b). We streamed the U-Net filtered images in real-time to TeraVR as an option that 
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a user could choose. This U-Net model could also be iteratively refined based on user’s feedback, thus it could be adapted to different brain images when needed. Second, for neuron reconstructions, in TeraVR we implemented a data-filtering model to detect various outlier structures, such as branches that had sharp turns (e.g. turning angle greater than 90 degrees or 135 degrees or other user-specified values), and then generate alerts to allow users to immediately focus on the structures that might be traced with errors (Supplementary Figs. 5c, 5d).    
Discussion  
TeraVR offers an immersive, intuitive and realistic experience for exploring brain imaging data, similar to the mixed reality visualization shown in Fig. 1b and 
Supplementary Video 12, where real and virtual contents were synthetically put together to demonstrate the user experience of TeraVR. While VR has not been widely used in biology, it is useful for biological problems especially due to the intrinsic multidimensional nature of many biological datasets, and has the potential to be integrated as the next standard protocol. TeraVR is among the first demonstration of such utility with great potential. While immersive VR visualization of biological surface objects and sometimes also imaging data were shown in applications such as biological education and data analyses (Supplementary Table 

2), there is little existing work on developing open-source VR software packages for very complicated and teravoxel-scale imaging datasets such as the whole brain 
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imagery as we have introduced here. We expect that TeraVR can  also be  used to  analyze other massive-scale datasets especially those produced using fast or high-resolution microscopy methods, such as the light-sheet microscopy (Keller, et al, 2008; Ahrens, et al, 2013; Silvestri, et al, 2013), expansion-microscopy (Chen, et al, 2015), and recent nanoscale lattice microscopy (Gao, et al, 2019).  
We chose to  focus  on  applying  TeraVR to the whole-brain single-neuron reconstruction challenge for two major reasons. First, currently no other alternative tools are able to reconstruct the fine, distal arborizations of neurons unambiguously in this way. Second, there has been little previous work on streamlining the large-scale data production of the complete single-neuron morphology at high precision and also at whole-brain scale. TeraVR has been a crucial tool to help several teams reconstruct  precisely  hundreds of  full morphologies, with  various image qualities,  not only for single neurons but also for multiple  densely  packed neurons in very noisy images. These reconstructions have been released to the public databases e.g. NeuroMorpho.Org and the BRAIN Initiative Cell Census Network initiative. 
Two additional aspects of TeraVR make  this  software package unique: the  collaboration mode and the integration of the artificial intelligence methods. TeraVR users can readily work together remotely and curate each other’s reconstructions. Such real-time ensemble-annotation greatly improves  the  consistency, robustness, accuracy, speed, and actual fun of neuron reconstruction. With the further help of 
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machine learning-based data analysis modules in both image and reconstruction domains, TeraVR will allow effective crowdsourcing and production of large-scale “gold standard” reconstructions, which in addition to its inherent value will further help the automation of neuron reconstruction and systematic studies of neuron morphometry.   
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Methods 

 

Data preparation. Tnnt1-IRES2-CreERT2;Ai82;Ai140 (brain ID No. 17302 and 17545), Gnb4-IRES2-CreERT2;Ai139 (No. 236174) and Plxnd1-CreER;Ai82;Ai140 (No. 17300) mice were used in fMOST (Li, et al, 2010) imaging to produce raw image stacks, which were further converted into the TeraFly-format using Vaa3D’s module TeraConverter.  
 

TeraVR visualization. TeraVR provides an immersive VR environment and true 3-D experience for interactive neuronal image visualization and annotation. A VR device, e.g. the HTC Vive (https://www.vive.com/us/), typically has a wearable headset (also known as head-mounted device) with two independent monitors. The left monitor is exclusively viewed by the left eye; and the right monitor by the right eye. 
TeraVR produces and feeds two slightly different rendering streams for left and right monitors, which are viewed by the user simultaneously to create a realistic stereo visualization. We used the ray-casting technique to render neuronal volume images. To allow the user to observe the data inside of the image volume, TeraVR adds a clipping plane orthogonal to the view direction to the typically used cube-model texture mapping to form a closed surface.   
Collaboration Mode. TeraVR allows multiple annotators to work collaboratively during reconstruction. To enable the collaboration mode, a collaboration server is 
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deployed on the cloud or in the intranet. The server receives messages from each connected annotator, and broadcasts to the others. An annotator joins a collaboration session by specifying the username and the IP/port of the collaboration server. Once connected, the annotator’s real-time working location in an image will be represented by an avatar, which is visible to all the other annotators. The annotator is also assigned a unique color, which is used as both the avatar’s color and the annotation’s color. When the annotator edits the reconstruction, e.g. adding / deleting a neurite or a marker, the operation is converted to a globally understandable command, which is sent to the server. The server maintains a queue of commands and dispatches them in sequence to all the connected annotators. In this way, the reconstruction result is synchronized among all the annotators.  
Mixed reality video making. To generate a mixed reality demonstration (Fig. 1b) that shows how TeraVR works, we first setup a physical camera to capture the movement of the annotator. A green screen was used to help remove the background. Meanwhile, an additional virtual camera was placed at the location of the physical camera (rather than being mounted on the VR headset) to generate a rendering stream of TeraVR from a third-person view. Importantly, the physical and the virtual cameras had exactly the same settings, including position, orientation, focus, etc., so that the real video stream was directly superimposed over the virtual one. These two cameras were started after TeraVR was launched. The mixed reality video was produced by synthesizing these two video streams. 
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Profiling the image quality of a neuron. To evaluate how hard to reconstruct a neuron, we profiled the underlying image quality for a neuron. We first decomposed a neuron structure into a set of segments, each being bounded by a pairs of critical points (branch points, terminal points, or the soma). The foreground (F), background (B), and critical background (Bcrt) were extracted for each segment: F was defined as the area enclosed within the radius of reconstructed neurite segment, 
B was defined as the bounding box of the segment excluding F, and Bcrt was defined the 20% brightest voxels within B. We then calculated the signal-to-noise-ratio (SNR) for a neurite segment as 𝑆𝑁𝑅 = ிത஻ത೎ೝ೟ା଴.଴଴ଵ, where 𝐹ത and 𝐵ത௖௥௧ were the average intensities for the image-voxels in foreground and critical background, respectively. Four SNR ranges were defined based on annotators’ consensus opinions: “very low” for SNR ∈ ሺ−∞, 1.0ሿ (the neurite signal was either very weak or very noisy), “low” for SNR ∈ ሺ1.0, 1.2ሿ (the signal was still in low quality), “mid” for SNR ∈ ሺ1.2, 1.4ሿ, and “high” for SNR values ∈ ሺ1.4, ∞ሻ (strong signals, which are clear and easy to trace). The overall image SNR of a neuron was calculated as the segment-wise average SNR weighted by the length of each segment.   
Computer configuration. TeraVR was implemented and evaluated on computers with Intel Core i7-7700 CPU @ 3.60GHz, 64GB memory, NVIDIA GeForce GTX 1070 GPU, Windows 10 64-bit edition, and uses HTC Vive as the virtual reality device.   
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Compatibility. TeraVR can be used to explore multi-dimensional, multi-channel image data, as long as the data format is supported by Vaa3D. For very large-scale images (>100 billion voxels), it is recommended to organize the data in the Vaa3D-Terafly format for smooth performance. 
Availability. TeraVR is released Open Source, as part of Vaa3D. A  user  guide  for  TeraVR is  provided  in  Supplementary Note 1. Whole-brain test data is available upon request due to their very large sizes. 
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Supplementary Figure 1.  Visualization of images of multiple channels using TeraVR. (a) A group of 
cells labeled in red, green, and blue colors. (b) An image stack in which the dendritic neurites are 
visualized in red color, and the spines are visualized in green color.   

 
Supplementary Figure 2.  Accurate pinpointing in TeraVR. (a) A local image volume that contains a 
dendritic tree. 5 bifurcations are highlighted using Y-shaped structures of different colors. 5 attempts 
for adding a marker at each of the bifurcations are made using TeraVR and non-VR approach, 
respectively. The displayed markers are the according attempts to pick up the bifurcations using non-VR 
approach. (b) For each group of attempts, a geometric centroid is calculated. The plot shows the 
distance to the centroid; error bar: S.D. (c) A plot of number of operations needed in order to go to the 
highest resolution of a ROI from the lowest resolution. TeraVR has stable performance and requires only 
the fewest number of operations. The non-VR approach lacks enough accuracy for pinpointing and thus 
needs more operation to accomplish the task; error bar: S.D.  
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Supplementary Figure 3. More complete reconstructions of neurons at whole brain scale using TeraVR. 
(a)-(c) 3 more neurons reconstructed using TeraVR. Refer to Figure 3 for the meaning of the color-
coding. (d) The illustrations of image regions with various SNRs. The neurites are given a slight offset 
for clarity. 
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Supplementary Figure 4. TeraVR helps picking up a major missing cluster in neuron-reconstruction 
produced first with Neurolucida. (a) A neuron first produced with Neurolucida (green) and then 
corrected by TeraVR (magenta), overlaid on the whole-mouse brain imaging data. The image quality is 
challenging in the region specified by the white box, leading to a large size of incorrectly-traced arbor in 
the Neurolucida reconstruction that was later identified and deleted using TeraVR (the deleted part of 
the Neurolucida reconstruction is not displayed here). (b) Full-resolution imaging data corresponding 
the to the white box in (a). The red arrow points to the critical position that corresponds to the 
reconstruction error resulting in a major missing cluster.  
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Supplementary Figure 5. Enhancing TeraVR using several AI modules. (a) The original image 
visualized in TeraVR. (b) The U-Net optimized image visualized in TeraVR. (c) A partial dendritic tree, 
where bifurcations with abnormal angles are highlighted (non-blue/red colors). (d) A terminal axon 
arbor, where bifurcations with abnormal angles are highlighted (non-red colors). For all subfigures, brightness +40%, contrast -40% for more visibility.    
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Supplementary Table 1. Statistics for 17 neuron-reconstructions (from three brains) that were first 
reconstructed using Neurolucida and then corrected using TeraVR.  
 Brain ID Neuron ID Total length (mm) TeraVR length (mm) Non-VR length (mm) % increased 

236174 
04229-04328-
X13663-Y8589 

67.6354 34.3252 33.3102 103.0471% 

17300 
5969-X27278-

Y20820 
63.5335 26.2606 37.2729 70.4549% 

17300 
03514-3525-

X19676-Y45282 
51.6424 16.1144 35.528 45.3569% 

236174 
03329-03428-

X13938-Y26099 
74.4109 22.4904 51.9205 43.3170% 

17545 
05574-X24399-

Y33944 
48.878 12.954 35.924 36.0595% 

236174 
03536-03545-

X15159-Y25525 
93.6728 19.3034 74.3693 25.9561% 

17545 
05689-X21900-

Y16152 
21.3688 3.85913 17.5096 22.0401% 

17545 
06151-X24259-

Y36270 
21.5348 3.85515 17.6797 21.8055% 

236174 
03529-03628-

X12805-Y10541 
106.858 18.2958 88.5619 20.6588% 

236174 
03001-03008-
X12887 Y24248 

115.714 18.3905 97.3237 18.8962% 

17545 
06070-X20183-

Y17777 
27.1727 4.217 22.9557 18.3702% 

17545 
06034-X23713-

Y35681 
42.3159 6.34982 35.966 17.6551% 

17545 
05534-X20427-

Y33851 
54.3758 7.94209 46.4337 17.1042% 

17545 
05996-X19743-

Y18066 
30.3852 4.07729 26.3079 15.4983% 

17300 
03426-X20339-

Y44872 
65.7337 8.45904 57.2747 14.7692% 

236174 
03429-03528-

X12632-Y10625 
97.0815 11.2848 85.7968 13.1529% 

236174 
03447-03459 

X12562 Y10626 
73.5985 7.13707 66.4614 10.7387% 
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Supplementary Table 2. VR software for scientific visualization. 1 syGlass has preliminary support for 
neuron reconstruction by placing consecutive nodes in the space to represent neurites, which is not 
practical and efficient for use in complete neuron reconstruction from whole-brain data. Ref_1: 
https://www.arivis.com/en/imaging-science/arivis-inviewr . Ref_2: https://www.syglass.io/ . Ref_3: 
Stefani, C., Lacy-Hulbert, A., & Skillman, T. (2018). ConfocalVR: Immersive Visualization for Confocal 
Microscopy. Journal of Molecular Biology, 430(21), 4028–4035. 

 
 

 arivis  
InViewR syGlass ConfocalVR VRNT TeraVR 

VR visualization 
of 3D images Yes Yes Yes Yes Yes 

VR neuron 
reconstruction No Preliminary 1 No Yes Yes 

Reported 
application to 
whole brains 

No No  No No Yes 

License Commercial Commercial Free only for 
nonprofit Free Free and Open 

Source 

Reference/link Ref_1 Ref_2 Ref_3 [24] This 
manuscript    
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Supplementary Table 3. A comparison between TeraVR and VRNT regarding the data management 
and compatibility, functions for reconstruction, and visualization and navigation. Bold: critical features. 
 

 
 

 Features VRNT TeraVR 

D
ata m

anagem
ent 

and com
patibility 

Support for imaging data Yes Yes 

Size of tested imaging 
data (voxels) 300 megavoxels  10~30 teravoxels 

Support for multi-channel 
imaging data No Yes 

Direct opening of 
morphology data No Yes 

Functions for reconstruction 

Adding or deleting tracts Yes Yes 
Modifying the fine 
geometry of a tract No 

Yes. A number of functions such 
as subdivision and dragging are 

provided.  
Undo Yes Yes 
Redo No Yes 

Semi-automatic 
reconstruction 

No. Reconstruction results might 
not well align with the signal. 

Yes. Virtual finger makes neurites 
align with signals. 

Collaborative 
reconstruction No Yes 

Support for artificial 
intelligence No Yes 

V
isualization and navigation 

Visualization mode Single. VR mode only. Dual. Allow convenient switch 
between VR and non-VR mode. 

Multiresolution display 
No. Thus not applicable for 

whole-brain applications w/o 
redevelopment. 

Yes. It is helpful when working 
on whole-brain imaging data. 

Good visibility of 
complex, weak and/or 

noisy regions 
No. Visibility is not good in 

many challenging cases. Yes 

Contrast adjustment No Yes 
Hide reconstructions No Yes 

Translating Yes Yes 
Rotation No Yes 

Scaling No Yes. It could be useful for 
anisotropic imaging data. 
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