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Abstract 

The retino-cortical visual pathway is retinotopically organized: Neighborhood relationships 
on the retina are preserved in the mapping to the cortex. Size relationships in that mapping 
are also highly regular: The size of a patch in the visual field that maps onto a cortical patch 
of fixed size, follows, along any radius and in a wide range, simply a linear function with 
retinal eccentricity. This is referred to as M-scaling. As a consequence, and under simplifying 
assumptions, the mapping of retinal to cortical location follows a logarithmic function along 
a radius, as was already shown by Fischer (1973) and Schwartz (1977, 1980). The M-scaling 
function has been determined for many visual tasks. It is standardly characterized by its 
foveal threshold value, together with the eccentricity where that value doubles, called E2. 
The cortical location function, on the other hand, is commonly specified by parameters that 
are separately determined from the empirical findings. Here, the psychophysical and 
neuroscience traditions are brought together by specifying the cortical equations in terms of 
the parameters customary in psychophysics. The equations go beyond those published in 
the past in being more explicit and ready for application, and they allow easy switching 
between M-scaling and cortical mapping. A new parameter, d2, is proposed to describe the 
cortical map, as a cortical counterpart to E2 and typical values for it are given. The resulting 
cortical-location function is then applied to data from a number of fMRI studies. One pitfall 
is discussed and spelt out as a set of equations, namely the common myth that a pure 
logarithmic function will give an adequate map: The popular omission of a constant term 
renders the equations ill-defined in and around the retinotopic center. The correct equations 
are finally extended to describe the cortical map of Bouma’s law on visual crowding. The 
result contradicts recent suggestions that critical crowding distance corresponds to constant 
cortical distance.  

Keywords: Cortical map, logarithmic map, cortical magnification, visual cortex, M-scaling, E2 
value, retinotopy, Bouma’s Law, crowding, myths, visual field 

Introduction 

One of the most beautiful organizational principles of the human brain is that of 
topographical mapping. Whilst perhaps universal to the brain, its regularity is most apparent 
for the three primary senses mediated through the thalamus – sight, hearing, and touch – 
i.e., in retinotopy, tonotopy, and somatotopy. For the visual domain with which we are 
concerned here, the regularity of topography is particularly striking and is at a level that 
lends itself to mathematical description by analytic functions. The seminal papers by Fischer 
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(1973) and Schwartz (1977, 1980) derive the complex logarithm as a suitable function for 
mapping the location in the visual field to the location of its projection’s in (a flat-map of) 
the primary visual cortex, by which the visual field’s polar-coordinate grid gets mapped onto 
a rectilinear cortical grid. The log function’s image domain – the complex plane – is 
reinterpreted thereby as a two-dimensional real plane.1 As Schwartz explains in the two 
papers2, the rationale for employing the log function in the radial direction is that its first 
derivative is an inverse linear function, as implicit in the cortical magnification concept for 
the visual field as proposed by Daniel & Whitteridge (1961) (see the next section for 
explanations of the concepts, or Strasburger, Rentschler, & Jüttner, 2011, Section 3, for 
review). Expressed more directly, the integral of an inverse linear function (as implied in the 
cortical magnification concept) is the logarithmic function. Intuitively, summing-up 
(integrating over) little steps on the cortical map where each step obeys cortical 
magnification will result in the log mapping. 

Schwartz’s (1977, 1980) papers with the complex-log mapping have become rather popular 
in visual psychophysics and visual neurophysiology3. Van Essen, Newsome & Maunsell 
(1984), e.g., use it for explaining the topography of the macaque’s primary visual cortex and 
write, “Along the axis corresponding to constant polar angle, magnification is inversely 
proportional to eccentricity, and hence distance is proportional to the logarithm of 
eccentricity (x  log E)” (p. 437). Klein & Levi (1987) derive, from the log rule that, if vernier-
acuity offsets are assumed to have a constant cortical representation (i.e. one that is 
independent of eccentricity), vernier offsets will depend linearly on eccentricity in the visual 
field. Horton & Hoyt (1991) use it to point out that the well-known inverse linear function for 
cortical magnification follows from a log-spaced cortical map. Engel et al. (1997, Fig. 9, Fig 
12) and Larsson & Heeger (2006) use the (real-valued) log function implicitly when they use 
an exponential for the inverse location function (which corresponds to a log forward 
mapping). Duncan & Boynton (2003) fit their fMRI activity maps for the V1 topology using 
Schwartz’s complex-log mapping. Providing an easy-to-apply closed-form mathematical basis 
for these mappings with explicit parameter equations by deriving what I will call the cortical 
location function will be the first major goal of the present paper. 

While Fischer’s and Schwartz’s papers present the mathematical relationships and give 
examples for their application, Klein & Levi (1987) go further and provide an empirical link 
between basic psychophysical data in the visual field and the cortical map. For characterizing 
the psychophysical results they use a concept they had developed earlier (Levi, Klein, & 
Aitsebaomo, 1984; Levi, Klein, & Aitsebaomo, 1985): The slope of the normalized thresholds-
vs.-eccentricity function can be quantified by a single number, called E2. In an x-y plot of, say, 
the vernier threshold shown across eccentricity, that value is the (negative) X-axis intercept, 
or, alternatively, the (positive) eccentricity value at which the foveal threshold value doubles 

                                                
1 Note that the elegance of the complex-log representation is deceiving in that not all properties of the complex 

plane have a counterpart in the 2D real plane (which is undesirable for a mathematical representation). For 
example, the square of a value on the upper vertical meridian does not correspond to a value on the left 
horizontal meridian, as would be implied by i² = –1. 

2 “The fact that the radial magnitude of the cortical magnification factor can be approximated by an inverse linear 
function implies that the mapping function for the cortex might be the complex logarithm, because the derivative 
of this function does indeed have an inverse linear form … However, other mapping functions [also] have the 
same radial logarithmic structure.” (Schwartz, 1980, p. 647) 

3 … with 348 and 385 citations as of Aug. 2019. Fischer’s (1973) paper, even though it contains the original 
derivations, received fewer (101) citations. 
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(illustrated below in Figure 1B). To draw the link to the cortical logarithmic map, Klein & Levi 
(1987) show that relationships become simpler and more accurate, if both psychophysical 
and cortical data are not treated as a function of eccentricity (E) itself but of a transformed 
eccentricity, E*, referred to as effective eccentricity. E* is defined as E* = E + E2. In the visual 
field, the linear cortical magnification function thereby turns into a simple proportionality. In 
the cortical map, distances are then proportional to the logarithm of effective eccentricity, 
x  log (E+E2). The approach is verified by showing the empirical data both as thresholds and 
in cortical units (Klein & Levi, 1987, Fig. 5)4. 

However, the papers discussed so far have not yet fully exploited the tight mathematical link 
between psychophysics and the cortical map for its empirical use. The basic mathematical 
form of the mapping function  log (E) or log (E+E2)  is drawn upon and made use of but 
further parameters are usually left free to vary and to be determined by data fitting. The 
derivations in the present paper thus take the log mapping approach one step further. 
Unlike in Schwartz (1980), Klein & Levi (1987), and quite a few other papers discussed below, 
the parameters for the logarithmic map are here obtained by mathematical derivation from 
those in the visual field. For the latter, i.e., for the psychophysical characterization, Levi and 
Klein’s E2 concept is again the basis. We thereby arrive at a set of fully explicit equations that 
allow converting the psychophysical description by E2 to a description in the cortical map. 
These equations are the message of the paper. The empirical data for the cortical maps 
(from fMRI or single-cell analysis) are then, in a next step, used to verify the correctness of 
those parametrical equations. This approach represents a more principled one. It further 
places additional constraints on the describing functions, thus adding to their reliability. 

Since such derivations have been attempted before and have led to erroneous results (e.g. in 
our own writing), or stopped short of exploring the implications, care is taken here to 
present the derivations step-by-step, considering at each step what that means. Key result 
equations are highlighted by surrounding boxes for easy spotting, i.e. those that should be of 
practical use in describing the cortical map, or, e.g., for obtaining improved estimates for the 
foveal cortical magnification factor. 

Instead of the complex log, we here consider the simpler case of real-valued, 1D mapping, 
where eccentricity in the visual field, expressed in degrees of visual angle along a radius, is 
mapped onto the distance of its representation from the retinotopic center, expressed in 
millimeters. The resulting real-valued logarithmic function shall be called the cortical 
location function. This implies no loss of generality; that function is easily generalized to the 
2D case by writing it as a vector function. Compared to the complex log, the real function 
has the added advantage of allowing separate parameters for the horizontal and vertical 
meridian, required to meet the horizontal-vertical anisotropy of the visual field.5 

Once these relationships for the cortical location function are established, they need to be 
verified by empirical data. We use data from the literature and own data for this. It turns out 
that not only do the fits work excellently, but the constraints imposed by the parametric 
equations can be used for the long-standing problem of improving estimates for the foveal 
cortical magnification factor (M0). In one section, it is further argued that the simplified 

                                                
4 For rescaling the right ordinate in that figure, they used the relationship that 1 mm of cortex corresponds to 

approximately 10% of the effective eccentricity. 
5 A closed-form analytic representation using the complex log function, yet allowing for the horizontal-vertical 

anisotropy, is presented by Schira, Tyler, Spehar & Breakspear (2010). 
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version (x  log E) that is occasionally used in the fMRI literature needs to be avoided and 
the full version with a constant term added in the log’s argument (x  log (E + c)) needs to be 
employed. 

Finally, the cortical location function can be used (perhaps unexpectedly) to derive the 
cortical distances in visual crowding. Crowding happens when neighboring patterns to a 
target stimulus are closer than a critical distance, where the latter can be described by 
Bouma’s law (Bouma, 1970; Pelli & Tillman, 2008; Strasburger, 2020). We thus arrive at a 
cortical version of Bouma’s law. While this has been done before (Levi et al., 1985; Motter & 
Simoni, 2007; Pelli, 2008; Nandy & Tjan, 2012; Strasburger et al., 2011; Strasburger & 
Malania, 2013), the present derivations go beyond Levi et al. (1985), Motter & Simoni 
(2007), Pelli (2008), and Nandy & Tjan (2012) in that they include the fovea, and go beyond 
Strasburger et al. (2011) and Strasburger & Malania (2013) in that they provide the 
derivations and avoid derivation errors. 

Goals of the Paper 

Three goals are thus pursued in this paper. Firstly, relationships are derived that translate 
the nomenclature of psychophysics to that in cortical physiology. The approaches are closely 
linked, and results on the mapping functions can be translated back and forth. The key 
equations for the cortical location function will be eq. (10) and eq. (16) plus (17). The 
usefulness of these equations is shown in a subsequent section. 

Secondly, it is explored how the cortical function looks like in the popular simplified case 
with omitted constant term (Figure 2 below). That section can be skipped if one is aware 
that this seemingly simpler method will lead to suboptimal and misleading results. It is 
argued there that this might have been a good solution at a time but is not now when we 
have detailed knowledge of the cortical mapping close to the retinotopic center. The linear 
M-scaling function shown below in Figure 1 is accurate down to very low eccentricities, 
which is not the case for the simplified location function. It makes little sense to continue 
working with equations that do not, and cannot, apply over the whole range. 

Conversely, the usefulness of the derived improved equations is shown in a section that 
explores practical examples for the cortical mapping function, with data from the literature. 
The graphs look like those in Figure 2 but have realistic parameter values. Comprehensive 
and concise mathematical descriptions have been derived before (Schira, Tyler, et al., 2010); 
the purpose here is to do so with explicit cortical parameters using the nomenclature from 
psychophysics, (i.e., using E2), in an easily applicable way. 

Thirdly, and finally, these concepts are applied to the cortical map for visual crowding. 
Crowding, i.e. the impaired recognition of a pattern in the presence of neighboring patterns, 
is probably the prominent characteristic of peripheral vision. Remarkably, unlike typical 
perceptual tasks like acuity where critical size scales with eccentricity, crowding is mostly 
independent of target size. Instead of size, the critical distance between target and flankers 
scales with eccentricity. This characteristic has become to be known as Bouma’s law. It 
follows the same linear eccentricity law as depicted in Figure 1 below; this time, however, it 
refers to distance between patterns instead of size of patterns. Consequently, the E2 concept 
can be applied in the same way. The cortical location function derived in the first part can 
then be used to predict the cortical distances that correspond to the flanker distances in 
Bouma’s law. 
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Guide to reading the paper. The key parts of the paper are Section 2 on the cortical location 
function and Section 3 on its extension to Bouma’s law in the cortex. These are preceded by 
Section 1 on the involved concepts and history, which can be skipped if one is already 
familiar with that background. 

Regarding the structuring of Section 2, it starts with the natural way of specifying the cortical 
location function which is relative to the retinotopic center (Section 2.1). However, that 
center is notoriously difficult to locate exactly, and so for the neuroscientist it is of interest 
to be able to use some other reference location instead. Ways to do that, and their 
limitations, are discussed in Section 2.2 and 2.3. The latter of these (2.3), however, is 
intended to show how not to do it and can be skipped if that is agreed upon. Next is a 
section on practical examples (2.4), with three cases from the literature, further a method 
for estimating the foveal magnification factor (M0), and finally the introduction of a new 
metric (d2) for characterizing the cortical map that is the equivalent of E2 in the cortex. 

Section 3 for Bouma’s law in the cortex can be read mostly independently of the preceding 
sections if the underlying location function from Section 2 is taken for granted. 

In the derivations, care was taken to phrase the steps to be easy to follow. Yet a legitimate 
way of using the paper is to just take the highlighted final results as take-home message. 
These would be eq. (9), (10) or (13) for the cortical mapping of the visual field  (i.e. the 
cortical location function), eq. (8a) for the new parameter d2, eq. (17) for M0, and eq. (32) – 
(34), or (38) – (40), for the mapping of Bouma’s rule onto the cortex. 

1. Background and concepts 

Peripheral vision is unlike central vision as Ptolemy (90–168) already noted. Ibn al-Haytham 
(965–1040) was the first to study it quantitatively. Purkinje (1787–1869) determined the 
dimensions of the visual field with his sophisticated perimeter. Aubert and Foerster (1857) 
started modern quantitative research on the gradual variation across visual field 
eccentricities. Østerberg (1935) did meticulous measurements of retinal rod and cone 
receptor densities across the horizontal meridian (Strasburger et al, 2011, Fig. 4); they are 
still a part of modern textbooks on perception (see Wade, 1998, Strasburger & Wade, 2015a, 
2015b, and Strasburger et al., 2011, for review). 

Yet we still lack a grip on what the nature of peripheral vision is. The goal here in the paper is 
to draw the attention to the highly systematic organization of neural input stage, by deriving 
equations that describe its retino-cortical architecture. But before we delve into the nitty-
gritty of the equations in the main part, some background and the concepts involved are 
reviewed, to see the equations in perspective. 

Peripheral vs. central vision: qualitative or quantitative difference? Whether the difference 
between central and peripheral vision is of a qualitative or a quStrasburger et al., 
2011antitative nature has long been, and still is, an issue of debate. Early perceptual 
scientists suggested a qualitative (along with a quantitative) difference: Al-Haytham, in the 
11th century, wrote that “form […] becomes more confused and obscure” in the periphery 
(Strasburger & Wade, 2015a). Porterfield (1696–1771) pointed out the obscurity of 
peripheral vision and called its apparent clearness a “vulgar error”. Jurin’s (1738, p. 150) 
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observation that complexity of objects plays a role6 suggests that more than a simple 
quantitative change is at play (and reminds of crowding). Similarly, Aubert & Foerster (1857, 
p. 30) describe the peripheral percept of several dots as “something black of indetermined 
form”. Yet, perhaps due to the lack of alternative concepts (like Gestalt perception) or by a 
prevailing interest in the role of vision in astronomy, the underlying reasons for the 
differences were then invariably ascribed to a purely quantitative change of a basic property: 
spatial resolution. Trevarthen’s (1968) two-process theory of focal, detail-oriented central 
vision, vs. ambient, space-oriented peripheral vision, might seem a prominent example of a 
qualitative distinction. However, with its emphasis on separate higher cortical areas for the 
two roles (perhaps nowadays dorsal vs. ventral processing), it does not speak to qualitative 
differences in the visual field’s low-level representation. 

On the quantitative side, concepts for the variations across the visual field only emerged in 
the 19th century. Aubert and Foerster’s (1857) characterization of the performance decline 
with retinal eccentricity as a linear increase of minimum resolvable size – sometimes 
referred to as the Aubert-Foerster Law – is still the conceptual standard. It corresponds to 
what is now called M-scaling (Virsu & Rovamo, 1979; Virsu, Näsänen, & Osmoviita, 1987) or 
the change of local spatial scale (Watson, 1987). However, by the end of the 19th century it 
became popular to use the inverse of minimum resolvable size instead, i.e. acuity, in an 
attempt to make the decline more graphic (e.g. Fick, 1898). And, since the inverse of a linear 
function’s graph is close to a hyperbola, we arrive at the well-known hyperbola-like function 
of acuity vs. eccentricity seen in most textbooks, or in Østerberg’s (1935) figure from which 
they are derived. 

The hyperbola graph. Graphic as it may be, the familiar hyperbola graph implicit, e.g., in 
Østerberg’s (1935) receptor-density graph does not lend itself easily to a comparison of 
decline parameters. Weymouth (1958) therefore argued for returning to the original use of a 
non-inverted size by introducing the concept of the minimal angle of resolution (MAR). Not 
only as an acuity measure but also as a generalized size threshold. Based on published data, 
Weymouth summarized how the MAR and other spatial visual performance parameters 
depend on retinal eccentricity (MAR, vernier threshold, motion threshold in dark and light, 
Panum-area diameter and others, see Weymouth, 1958, e.g. Fig. 13). Importantly, 
Weymouth stressed the necessity of a non-zero, positive axis intercept for these functions.7 
This will be a major point here in the paper; it is related to the necessity of a constant term 
in the cortical-location function discussed below. The architecture of neural circuitry in the 
visual field thus appears to be such that processing units increase in size and distance from 
each other towards the periphery in retinal space. To Weymouth, these processing units 
were the span of connected receptor cells to individual retinal ganglion cells. Different 

                                                
6 “when we divide [a string of digits] so as to constitute several objects less compounded, we can more easily 

estimate the number of figures” (Jurin, 1738, p. 150). Jurin reports more examples that would count as 
qualitative differences; see Strasburger & Wade (2015a). 

7 “If the threshold as a function of eccentricity were a straight line passing through the origin (this does not occur 
and would require an infinite foveal sensitivity) the threshold would be a constant percentage of the eccentricity. 
It is here claimed that these curves approximate a straight line, but with a finite and positive intercept; this 
would lead to a decreasing percentage, falling, at first, rapidly but changing more and more slowly in the 
periphery. The ’constant’ percentage relation noted by Ogle is therefore a consequence of the straight line 
relationship here discussed and is secondary and less useful mathematically. Although Ogle must have 
observed this linear relationship, he does not seem to have developed its consequences as is here done.” 
(Weymouth, 1958, p. 109); italics added. 
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slopes, Weymouth (1958) suggested, might arise from differing task difficulty, a view not 
shared by later authors, however.  

Cortical magnification. The linear spatial concept was thus well established when in the 
sixties and seventies the cortex was taken into the picture and the role of cortical 
representation included in theories on visual field inhomogeneity. Daniel & Whitteridge 
(1961) and Cowey & Rolls (1974) introduced cortical magnification as a unifying concept 
which, for a given visual-field location, summarizes functional density along the retino-
cortical pathway into a single number, M. Linear M was defined as the diameter in the 
primary visual cortex onto which 1 deg of the visual field projects (alternatively, areal M was 
defined as the cortical area onto which 1 deg² projects). Enlarging peripherally presented 
stimuli by M was shown to counter visual-performance decline to a large degree for many 
visual tasks (reviewed, e.g., by Virsu et al., 1987) and was thus suggested as a general means 
of equalizing visual performance across the visual field (Rovamo & Virsu, 1979). Yet this so-
called strong hypothesis was soon dismissed; an early critique was expressed by Westheimer 
(1982) on the grounds that vernier acuity thresholds cannot be explained with these 
concepts.8 

Even though the relationship between the early visual architecture and psychophysical tasks 
is still a matter of debate and, with it, the question why different visual tasks show widely 
differing slopes of their eccentricity functions (see Figure 1), the variation of the cortical 
magnification factor with eccentricity is largely agreed upon: M decreases with eccentricity – 
following approximately an hyperbola – and its inverse, M–1, increases linearly. Klein & Levi 
(1987) point out that by replacing eccentricity by effective eccentricity E* = E + E2, the 
dependency turns into proportionality (i.e., twice E* leads to twice M–1). The value of M, and 
its variation with eccentricity, can be determined anatomically or physiologically (Schwartz, 
1980; Van Essen et al., 1984; Tolhurst & Ling, 1988; Horton & Hoyt, 1991, Slotnick, Klein, 
Carney, & Sutter, 2001, Duncan & Boynton, 2003; Larsson & Heeger, 2006; Schira, Wade, & 
Tyler, 2007; see Figure 1, reproduced from Fig. 9 in Strasburger et al., 2011). Assuming that 
low-level tasks like measuring the MAR reflect cortical scaling, M can also be estimated 
psychophysically (Rovamo & Virsu, 1979; Virsu & Rovamo, 1979; Virsu et al., 1987). 

                                                
8 “Psychophysical procedures do not, therefore, provide a single unambiguous measure for the changes of spatial 

grain across the visual field.” (Westheimer, 1982, p. 157). And later: “There is a rather insistent opinion abroad 
that spatial visual processing has identical properties right across the visual field save for a multiplicative factor 
which is a function of eccentricity.” (p. 161). The term “spatial grain” in the paper’s title refers to cortical units. 
With respect to an explanation for vernier acuity, Westheimer writes “If the actual threshold value is a 
manifestation of a complex cortical processing apparatus, the distance over which it operates optimally is the 
more likely parameter to be found correlated with the anatomical representation of the visual field in the cortex, 
and this, for some reason, does not show the gross increase in grain exhibited by the threshold data.” (p. 162) 
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Figure 1. A. The inverse of the cortical magnification factor, or – equivalently – the size of a patch in the 
visual field that projects onto a patch of constant size in the cortex, as a function of eccentricity in the 
visual field (Fig. 9 in Strasburger et al., 2011, reproduced for illustrating the text). All functions show a 
mostly linear behavior. Their slope is quite similar, with the exception of Van Essen et al.’s (1984) data for 
the macaque; other data show similar slopes between human and monkey (e.g. Oehler, 1985). B. An 
illustration of the E2 concept. 

The empirical data all fit the linear concept quite well, but some slight deviations are 
apparent in the considered range of about 40° eccentricity. These are asides here but should 
be mentioned. The linear equation for the eccentricity function was often “tweaked” a little 
to accommodate for these deviations: Rovamo, Virsu, & Näsänen (1978) added a small 3rd-
order term, Van Essen et al. (1984) and Tolhurst & Ling (1988) increased the exponent of the 
linear term slightly, from 1 to 1.1. Virsu & Hari (1996) took a different approach and used a 
sine function, based on geometrical considerations. Only a part of the sine’s period was used 
(one-eighth) though, so that the function is still close to linear in that range. The latter 
function is interesting because it is the only one that – because it is bounded – can be 
extended to larger eccentricities, 90° and even beyond that (note that the visual field 
extends beyond 90°; Strasburger, 2020). 

Elliptical field. Another deviation from simple uniform linearity is the fact that the visual field 
is not isotropic: Performance declines differently between radii (this is used by Greenwood, 
Danter, & Finnie, 2017, to disentangle retinal from cortical distance). Iso-performance lines 
for the binocular field are approximately elliptical rather than circular outside the central 
visual field (e.g. Wertheim, 1894, Harvey & Pöppel, 1972; Pöppel & Harvey, 1973, see their 
Fig. 6). At the transition from the isotropic to the anisotropic field (in the plateau region of 
Pöppel & Harvey, 1973), the scaling functions (Figure 1A) not only have different slopes 
along the different meridians but also necessarily deviate from linearity. Correspondingly, 
early visual areas are also anisotropic (e.g. Horton & Hoyt, 1991). The effect of anisotropy on 
the cortical magnification factor is quantitatively treated by Schira et al. (2007, 2010); their 
M0 estimate is the geometric mean of the isopolar and isoeccentric M estimates. In the 
equations presented below, the anisotropy can be accommodated by letting the parameters 
depend on the radius in question. However, different parameters (slopes) along the radii in 
the log mapping are not sufficient to adequately account for the anisotropy, as Schira et al. 
(2007, 2010) have shown. For preserving area constancy across meridians, these authors 
thus extend the model by a shear function (using the hyperbolic secans; Schira et al., 2010, 
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eq. 6 and Fig. 2) such that mappings differ between meridians, with deviations from linearity 
on the vertical meridian, and meridians close to that, at around 1° eccentricity (see Schira et 
al., 2010, Fig. 2). The derivations presented here, for simplicity, do not include these 
refinements and are thus only approximate for the vertical meridian. 

The E2 concept. For a quick comparison of eccentricity functions for psychophysical tasks, 
Levi et al. (1984, p. 794) introduced E2 – a value which denotes the eccentricity at which the 
foveal threshold for the corresponding task doubles (Figure 1B illustrates this). More 
generally, E2 is the eccentricity increment at which the threshold increases by the foveal 
value. As a graphic aide, note that this value is also the distance from the origin of where the 
linear function crosses the eccentricity axis (i.e., E2 is the negative abscissa intercept in 
Figure 1B). 

Eq. (1) below states the equation using the E2 parameter. The function’s slope is given by the 
fraction 2

1
0 / EM  , so when these functions are normalized to the foveal value their slope is 

E2
–1. E2 thus captures an important property of the functions in a single number. A summary 

of values was reported, e.g., by Levi et al. (1984, Levi et al., 1985), Klein & Levi (Klein & Levi, 
1987), or more recently by Strasburger et al. (2011, Tables 4–6). These reported E2 values 
vary widely between different visual functions. They also vary considerably for functions that 
seem directly comparable to each other (Vernier: 0.62–0.8; M–1 estimate: 0.77–0.82; 
Landolt-C: 1.0–2.6; letter acuity: 2.3–3.3; gratings: 2.5–3.0). Note also the limitations of E2: 
since the empirical functions are never fully linear for example, the characterization by E2, by 
its definition, works best at small eccentricities. 

The two centers. There is an important difference in difficulty between assessing the fovea’s 
center and the cortical retinotopic center. Whereas, for psychophysical tests, the 
measurement of the foveal value is particularly simple and reliable, the opposite is the case 
for the anatomical foveal counterpart, M0

–1. The latter is considered the most difficult to 
determine and is mostly extrapolated from peripheral values. The consequences of this 
include a different perspective on research on the map between the two fields. We will 
come back to that below. 

Using the E2 parameter, the inverse-linear scaling function can be concisely and elegantly 
stated as 

2
1

0
1 1 EEMM  . (1) 

M–1 in that equation, measured in °/mm, is the inverse cortical magnification factor as 
defined above; M0

–1 is that value in the fovea’s center. The left hand ratio in the equation, 
M–1/M0

–1, is the ratio by which a peripherally seen stimulus needs to be size-scaled to 
occupy cortical space equal to a foveal stimulus. So the equation can equally well be written 
as 

20 1 EESS  , (2) 

where S is scaled size and S0 is the size at the fovea’s center. From eq. (1), M0
–1 can be 

considered the size-scaling unit in the visual field, and E2 the locational scaling unit (i.e. the 
unit in which scaled eccentricity is measured). 

Cortical mapping: As mentioned above, Fischer (1973) and Schwartz (1977, 1980) proposed 
the complex log function for mapping the visual field to the cortical area. The key property 
of interest for that mapping, however, is the behavior along a radius from the fovea in the 
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visual field, which corresponds to the simpler real-valued log function. This then maps the 
eccentricity in the visual field to the distance from the retinotopic center on the cortical 
map. Neuroscience papers often prefer to show the inverse function (i.e. mirrored along the 
diagonal with the x and y axis interchanged, thus going “backwards” from cortical distance to 
eccentricity), which is the exponential function shown schematically in Figure 2. Schwartz 
(1980) has discussed two versions of the function that differ in whether there is a constant 
term added in the argument; the difference is illustrated in the graph. The version without 
the constant is often considered simpler and is thus often preferred (or the full version is 
ignored). An important point in the following will be that that simplicity is deceiving and can 
lead to wrong conclusions (and more complicated equations). The proposed term location 
function can refer to both the forward (log) and backward (exp) version, which are 
synonymous. 
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Figure 2.  Illustration of the cortical location function introduced by Fischer (1973) and Schwartz (1977, 
1980). A version with, and another without a constant term (parameter b in the equation) is shown. The 
constant term’s omission was intended as a simplification for large eccentricities but is physically 
impossible for the foveal center. The graph shows E as a function of d, which is an exponential; Schwartz 
(1980) discussed mainly the inverse function, i.e. for cortical distance d as a function of eccentricity E, 
which is logarithmic. 

 

Symbols in the paper: To keep a better overview, symbols used in the paper are summarized 
in Table 1. Some of those are in standard use; some are newly introduced in the remainder. 
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 Visual Field Cortical Map 
Cortical magnification factor M–1 M 
Stimulus size S – 
Location as distance from the center E d 
Location as distance from a reference – dຄ 
Levi and Klein’s E2 E2 d2 

Location of reference as distance from the center – dref

Critical distance for crowding  
Critical distance for crowding in the very center  
E2 for critical crowding distance Ê2 –

Table 1. Summary of symbols used in the paper 

2. The cortical location function 

2.1 Cortical location specified relative to the retinotopic center 

The ratio M–1/M0
–1 in eq. (1) is readily estimated in psychophysical experiments as the size of 

a stimulus relative to a foveal counterpart for achieving equal perceptual performance in a 
low-level task. However, in physiological experiments M is difficult to assess directly, even 
though it is a physiological concept. Instead, it is typically derived – indirectly – from the 
cortical-location function d = d(E) (Figure 2). The function links a cortical distance d in a 
retinotopic area to the corresponding distance in the visual field that it represents. More 
specifically, d is the distance (in mm) on the cortical surface between the representation of a 
visual-field point at eccentricity E, and the representation of the fovea center. Under the 
assumption of linearity of the cortical magnification function M–1(E), this function is 
logarithmic (and its inverse E = E(d) is exponential as in Figure 2), as shown by Fischer (1973) 
and Schwartz (1977, 1980). And since E2 allows a simple formulation of cortical magnification 
function in psychophysics, as e.g. in eq. 1, it will be useful to state the equation d = d(E) with 
those notations. This is the first goal of the paper. The location function allows a concise 
quantitative characterization of the early retinotopic maps (symbols used in the paper are 
summarized in Table 1). 

To derive the cortical location function, notice first that, locally, the cortical distance of the 
respective representations d(E) and d(E+E) of two nearby points along a radius at 
eccentricities E and E+E is given by M(E)∙E. This follows from M’s definition (and that M 
refers to 1°). The cortical magnification factor M is thus the first derivative of d(E), 

)(' EdM  . (3) 

Conversely, the location d on the cortical surface is the integral over M (starting at the fovea 
center): 


E

dEEMEd
0

)()( . (4) 

If we insert eq. (1) (i.e. the equation favored in psychophysics) into eq. (4), we have 
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 


E

dE
EE

M
Ed

0 2

0

/1
)(  

      )1ln( 220 EEEM  (with 0E ), (5) 

where ln denotes the natural logarithm (cf. Schwartz, 1980). 

The inverse function, E(d), which is derived by inverting eq. (5), is 

)1( 20
2  EM

d

eEE  (with 0d ). (6) 

It states how the eccentricity E in the visual field depends on the distance d of the 
corresponding location in a retinotopic area from the point representing the fovea center. 
With slight variations (discussed below) it is the formulation often referenced in fMRI papers 
on the cortical mapping. Note that, by its nature, it is only meaningful for positive values of 
cortical distance d. 

We can simplify that function further, by introducing an analogue to E2 in the cortex. Like 
any point in the visual field, E2 has a representation (i.e. on the meridian in question) and we 
denote the distance d of its location from the retinotopic center as d2. Thus, d2 in the cortex 
represents E2 in the visual field. 

To express eq. (6) using d2 instead of M0, first apply the equation to that location d2: 

)1( 20

2

22  EM

d

eEE  . (7) 

Solving this for the product M0 E2, 

2ln/220 dEM  , (8) 

and inserting that into eq. (6) gives 

)12( 2
2  ddEE . (9) 

Eq. (9) is the most concise way of stating the cortical location function. However, since the 
exponential to the base e is often more convenient, we restate it as 

)1( 2)2(ln
2  ddeEE  (10) 

(here, ln again denotes the natural logarithm). 

This equation (eq. 10) is particularly nice and simple provided that d2, the cortical equivalent 
of E2, is known. That value, d2, could thus play a key role in characterizing the cortical map, 
similar to the role of E2 in visual psychophysics (cf. Table 4 – Table 6 in Strasburger et al., 
2011, or earlier the tables in Levi et al., 1984, Levi et al., 1985, or Klein & Levi, 1987). 
Estimates for d2 derived from literature data are summarized in Section 2.4 below, as an aid 
for concisely formulating the cortical location function. 

The new cortical parameter d2 can be calculated from eq. (8), restated here for convenience: 

2ln202 EMd   (8a) 
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2.2 Cortical location specified relative to a reference location 

Implicit in the definition of d or d2 is the knowledge about the location of the fovea center’s 
cortical representation, i.e. of the retinotopic center. However, that locus has proven to be 
hard to determine precisely. Instead of the center it has thus become customary to use 
some fixed eccentricity Eref as a reference. Engel et al. (1997, Fig. 9), for example, use Eref 
= 10°. Larsson & Heeger (2006, Fig. 5) use Eref = 3°. 

To restate eq. (6) or (10) accordingly, i.e. with some reference eccentricity different from 
Eref = 0, we first apply eq. (10) to that reference: 

)1( 2)2(ln
2  dd

ref
refeEE , (11) 

where dref denotes the value of d at the chosen reference eccentricity, e.g. at 3° or 10°. 

Solving that equation for d2 and plugging the result into eq. (9) or (10), we arrive at 

)1)1(( /
2 2

 refref dd
E

EEE . (12) 

Expressed to the base e, we have 

)1( )/(
2  refddeEE 

, with )1ln(
2
 E

Eref  (and 0d ), (13) 

which represents the location function expressed relative to a reference eccentricity Eref and 
its equivalent in the cortical map, dref (one could also derive eq. (13) directly from eq. (6)). 
Note that if, in that equation, E2 is taken as the reference eccentricity for checking, it reduces 
to eq. (10) as expected. So, E2 can be considered as a special case of a reference eccentricity. 
Note further that, unlike the location equations often used in the retinotopy literature (Van 
Essen et al., 1984, in the introduction; Duncan & Boynton, 2003; Larsson & Heeger, 2006), 
the equations are well defined in the fovea center: for d = 0, eccentricity E is zero, as it 
should be. 

What reference to choose is up to the experimenter. However, the fovea center itself cannot 
be used as a reference eccentricity – the equation is undefined for dref = 0 (since the 
exponent is then infinite). The desired independence of knowing the retinotopic center’s 
location has thus not been achieved: That knowledge is still needed, since d, and dref, in 
these equations are defined as the respective distances from that point. 

Equations (12) and (13) have the ratio d/d ref in the exponent. It is a proportionality factor for 
d from the zero point. From the intercept theorem we know that this factor cannot be re-
expressed by any other expression that leaves the zero point undefined. True independence 
from knowing the retinotopic center, though desirable, thus cannot be achieved. 

We can nevertheless shift the coordinate system such that locations are specified relative to 
the reference location, dref. For this, we define a new variable dǻ as the cortical distance (in 
mm) from the reference dref instead of from the retinotopic center (see Figure 3 for an 
illustration for the shift and the involved parameters), where dref is the location 
corresponding to some eccentricity, Eref. By definition, then, 

refddd ˆ  (14) 
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Figure 3: Illustration of the cortical distance measures used in equations (6) – (23), and of 
parameter b in eq. (18).  
d    – cortical distance of some location from the retinotopic center, in mm;  
dref – distance (from the center) of the reference that corresponds to Eref;  
d1°  – distance of the location that corresponds to E = 1°;  
dǻ    – distance of location d from the reference dref. 

In the shifted system – i.e., with dǻ instead of d as the independent variable – eq. (6) for 
example becomes 

)1( 20

ˆ

2 


EM

dd ref

eEE . (15) 

The equation might be of limited practical use, however, like eq. (6) from which it was 
derived, since the parameters M0 and E2 in it are not independent; they are inversely related 
to each other as seen in eq. (8) or (8a) (or eq. 17). That interdependency is removed in eq. 
(9) or (10), (which work from the retinotopic center), or eq. (13) (which used a reference 
eccentricity). The latter (eq. 13), in the shifted system becomes 

)1(

ˆ

2 


ref

ref

d

dd

eEE


, with )1ln(
2
 E

Eref  (and 0ˆ  refdd ). (16) 

That equation now has the advantage over eq. (15) of having only two free parameters, E2 
and dref (Eref is not truly free since it is empirically linked to dref). The foveal magnification 
factor M0 has dropped from the equation. Indeed, by comparing eq. (13) to eq. (6) (or by 
comparing eq. (15) to (16)), M0 can be calculated from dref and E2 as 

2
0 E

d
M ref



 ,  (17) 

where  is defined as in the previous equation. With an approximate location of the 
retinotopic center (needed for calculating dref) and an estimate of E2, that latter equation 
leads to an estimate of the foveal magnification factor, M0 (see Section 2.4 for examples). 

Equations (16) and (17) are crucial to determining the retinotopic map in early areas. They 
should work well for areas V1 to V4 as discussed below. The connection between the 
psychophysical and physiological/fMRI approaches in these equations allows cross-validating 
the empirically found parameters and thus leads to more reliable results. Duncan & Boynton 
(2003), for example, review the linear law and also determine the cortical location function 
empirically but do not draw the connection. Their’s and others’ approaches are discussed as 
practical examples in the section after next (Section 2.4). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 20, 2020. ; https://doi.org/10.1101/621458doi: bioRxiv preprint 

https://doi.org/10.1101/621458
http://creativecommons.org/licenses/by/4.0/


 15 

2.3 Independence from the retinotopic center with the simplified function? 

Schwartz (1980) had offered a simplified location function (where the constant term is 
omitted) which works at sufficiently large eccentricities. Frequently that was the preferred 
one in later papers as being (seemingly) being more practical. The present section will show 
how this approach will lead astray if pursued rigorously; it can be skipped, i.e. is not required 
for following the subsequent sections. 

The simplified version of the location function E(dǻ) omits the constant term in eq. (6) and 
those that follow from it (i.e., the “–1” in eq. 6 to eq. 16). I.e., the equation 

)ˆ( bdaeE   (18) 

is fit to the empirical data, with free parameters a and b. The distance variable in it is then dǻ 
as before, i.e., the cortical distance in mm from a reference that represents some 
eccentricity Eref in the visual field. Engel et al. (1997, Fig. 9), for example, use Eref = 10° for 
such a reference, and for that condition the reported equation is E = exp (0.063 (dǻ + 36.54)). 
Larsson & Heeger (2006, Fig. 5), as another example, use Eref = 3°, and for area V1 in that 
figure give the function E = exp (0.0577 (dǻ + 18.0)). 

For a better understanding of these equations we can attach meaning to the parameters a 
and b in eq. (18) by looking at two special points, dǻ = 0 and dǻ = –b: At the point bd ˆ , 
eccentricity E equals 1° visual angle (from the equation), so we call that value dǻ1° . For 
parameter b we thus have 

 1̂db  (19) 

The value of dǻ1° is negative; it is around –36.5 mm for Eref = 10° and is the distance of the 1° 
line from the reference eccentricity’s representation (where d ǻ = 0). At d ǻ = 0, on the other 
hand, we have E = Eref by definition, and from eq. (18) it follows that 

 1̂/)(ln/)(ln dEbEa refref . (20) 

Now that we have parameters a and b we can insert those in the above equation and 
rearrange terms, by which we get 

 1
ˆ/ˆ dd

refref EEE , (21) 

or, expressed more conveniently to the base e, 

)ˆ/ˆ)((ln 1 ddE
ref

refeEE . (22) 

This is now the simplified cortical location function (the simplified analog to eq. 16), with 
parameters spelt out. One can easily verify that the equation holds true at the two defining 
points, i.e. at 1° and at the reference eccentricity. Note also that, as intended, knowing the 
retinotopic center’s location in the cortex is not required since dǻ is defined relative to a non-
zero reference. Obviously, however, the equation fails increasingly with smaller 
eccentricities, for the simple reason that E cannot become zero. In other words, the fovea’s 
center is never reached, even (paradoxically) when we are at the retinotopic center. 
Equation (18), or (21), (22) are thus better avoided. 

To observe what goes wrong towards eccentricities closer to the fovea center, let us express 
the equation relative to the absolute center. From eq. (14) and 
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refddd   11̂  (23) 

it follows 




 1
)(ln drefd

refdd
refE

ref eEE , (24) 

where d, as before, is the distance from the retinotopic center. Naturally, by its definition, 
the equation behaves well at the two defining points (resulting in the values Eref, and 1°, 
respectively). However, in between these two points the function has the wrong curvature 
(see Fig. 4 in the next section), and at the fovea center (i.e., at d = 0), the predicted 
eccentricity – instead of zero – takes on a meaningless non-zero value E0 given by 

refdd
refd

refE

ref eEE  1
)(ln

0 . (25) 

As seen in the equation, the value depends on the chosen reference eccentricity and its 
representation, and the cortical representation of 1° eccentricity, all of which should not 
happen. So, the seeming simplicity of eq. (18) that we started out from leads astray in and 
around the fovea (which, after all, is of prime importance for vision). The next section 
illustrates the differences between the two sets of equations with data from the literature. 

2.4 Practical use of the equations: examples 

2.4.1 The approach of Larsson & Heeger (2006) 

Now that we have derived two sets of equations for the location function (i.e. with and 
without a constant term in Section 2.1 and 2.3, respectively) let us illustrate the difference 
with data on the cortical map. The first example are data from Larsson & Heeger (2006, Fig. 
5) for V1. As a reminder, this is about eq. (16) on the one hand – in essence )1(

ˆ
 dbeaE , 

derived from eq. (6) – and the discouraged eq. (24) on the other hand ( dbeaE
ˆ

 , derived 
from eq. (18). 

For the reasons explained above the retinotopic center is left undefined by Larsson & Heeger 
(2006) and a reference eccentricity of Eref = 3° is used instead. The fitted equation in the 
original graph is stated as E = exp (0.0577 (dǻ+18.0)), which corresponds to eq. (18) with 
constants a = 0.0577 and b = –dǻ1° = 18.0. Its graph is shown in Figure 4 as the thick black line 
copied from the original graph. It is continued to the left as a dotted blue line to show the 
behavior toward the retinotopic center. At the value of –b, i.e. at a distance of dǻ1° = –18.0 
mm from the 3° representation (as seen from eq. 19), the line crosses the 1° point. To the 
left of that point, i.e. towards the retinotopic center, the curve deviates markedly upward 
and so the retinotopic center (E = 0°) is never reached. 
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Comparison of Laws, ref. Larsson & Heeger Fig. 5, 
V1

0

1

2

3

4

5

6

-40 -30 -20 -10 0 10 20 30
Cortical distance from 3° line (mm)

E
cc

en
tr

ic
it

y 
(d

eg
)

Larsson & Heeger
(2006) Fig. 5, V1

L & H cont.

New Law (eq. 16),
E2=0.6; dref=38 mm

New Law (eq. 16),
E2=1.0; dref=35 mm

parameters from
Duncan & Boynton
(2003)

parameters from
Duncan & Boynton
(2003), dref=15.5

 

Figure 4. Comparison of conventional and improved analytic functions for describing the cortical location 
function (retinal eccentricity vs. corresponding cortical location). Symbols show the retinotopic data for 
area V1 with dref = 3° from Larsson and Heeger (2006, Fig. 5) (symbols for nine subjects), together with the 
original fit (fat black line), according to eq. (18) (E = exp (a (dǻ + b))) or (22), i.e. a fit without a constant 
term). The blue dotted line continues that fit to lower eccentricities; the fitted E(dǻ) function goes to 
(negative) infinite cortical distance, which is physically meaningless. Pink and green line: graphs of the 
preferable eq. (16), derived from integrating the inverse linear law (eq. 1), with two different parameter 
choices; [E2 = 0.6°, dref = 38 mm] and [E2 = 1.0°, dref = 35 mm], respectively. The retinotopic center’s 
magnification factor M0 can be calculated by eq. (17) as 35.4 mm/° and 25.3 mm/° for the two cases, 
respectively. Black and brown line: E(dǻ) function with parameters derived by Duncan & Boynton (2003), 
M0 = 18.5 mm/° and E2 = 0.831° (black), and with dref = 15.5 mm (brown) for comparison (discussed in the 
next section). Note that, by definition, the curves from Larsson & Heeger pass through the 3° point at 
dǻ = 0 mm. Note also that data beyond ~10 mm were said to be biased by the authors and can be 
disregarded. 

The pink and the green curve in Figure 4 are two examples for a fit of the equation with a 
constant term (i.e., for eq. 16). The pink curve uses E2 = 0.6° and dref = 38 mm, and the green 
curve E2 = 1.0° and dref = 35 mm. Note that smaller E2 values go together with larger dref 
values for a similar shape. Within the range of the data set, the two curves fit about equally 
well; the pink curve is slightly more curved (a smaller E2 is accompanied by more curvature). 
Below about 1° eccentricity, i.e. around half way between the 3° point and the retinotopic 
center, the two curves deviate markedly from the original fit. They fit the data better there 
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and, in particular, they reach a retinotopic center. The pink curve (with E2 = 0.6°) reaches the 
center at 38 mm from the 3° point, and the green curve at 35 mm. 

The center cortical magnification factor, M0, for the two curves can be derived from eq. (17), 
giving a value of 35.4 mm/° and 25.3 mm/°, respectively. These two estimates differ 
substantially – by a factor of 1.4 – even though there is only a 3-mm difference of the 
assumed location of the retinotopic center. This illustrates the large effect of the estimate 
for the center’s location on the foveal magnification factor, M0. It also illustrates the 
importance of a good estimate for that location. 

There is a graphic interpretation of the foveal magnification factor M0 in these graphs. From 
eq. (6) one can derive that M0

–1 is equal to the function’s slope at the retinotopic center. 
Thus, if the function starts more steeply (as does the green curve compared to the pink one),  
M0

–1 is higher and thus M0 is smaller. 

The figure also shows two additional curves (black and brown), depicting data from Duncan 
& Boynton (2003), which are discussed below. To better display the various curves’ shapes, 
they are shown again in Figure 5 but without the data symbols. Figure 5 also includes an 
additional graph, depicting the exponential function E = exp(0.063(dǻ + 36.54)) reported by 
Engel et al. (1997). In it, dǻ is again the cortical distance in millimeters but this time from the 
10° representation. E, as before, is the visual field eccentricity in degrees. For comparison 
with the other curves, the curve is shifted (by 19.1 mm) on the abscissa to show the distance 
from the 3° point. The curve runs closely with that of Larsson & Heeger (2006) and shares its 
difficulties. 

Comparison of Laws, ref. Larsson & Heeger Fig. 5, V1
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Figure 5. Same as Figure 4 but without the data symbols, for better visibility of the curves. The additional 
dash-dotted curve next to that of Larsson & Heeger’s depicts the earlier equation by Engel et al. (1997). 

2.4.2 The approach of Duncan & Boynton (2003) 

In addition to the curves just discussed, Figure 4 and Figure 5 show a further E(dǻ) function 
that is based on the results of Duncan & Boynton (2003). That function obviously differs 
quite a bit from the others in the figure and it is thus worthwhile studying how Duncan & 
Boynton (2003) derived these values. The paper takes a somewhat different approach for 
estimating the retinotopic mapping parameters for V1 than the one discussed before. 

As a first step in Duncan & Boynton’s paper, the locations of the lines of equal eccentricity 
are estimated for five eccentricities  (1.5°, 3°, 6°, 9°, 12°) in the central visual field, using the 
equation w = k * log (z + a). The function looks similar to the ones discussed above, except 
that z is now a complex variable that mimics the visual field in the complex plane. On the 
horizontal half-meridian that is equivalent to eq. (6) in the present paper, i.e., to an E(d) 
function that includes a constant term (parameter a) and with the retinotopic center as the 
reference. At these locations, the authors then estimate the size of the projection of several  
1°-patches of visual space (see their Fig. 3; this is where they differ in their methodology). By 
definition, these sizes are the cortical magnification factors Mi at the corresponding 
locations. Numerically, these sizes are then plotted vs. eccentricity in the paper’s Fig. 4. 
Note, however, that this is not readily apparent from the paper, since both the graph and 
the accompanying figure caption state something different. In particular the y-axis is 
reported incorrectly (as is evident from the accompanying text). For clarity, therefore, Figure 
6 here plots these data with a corrected label and on a linear y-axis. 

Duncan & Boynton (2003), Fig. 4
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Figure 6. (A) Duncan & Boynton’s (2003) Fig. 4, showing the cortical magnification factor’s variation with 
eccentricity drawn on a linear y-axis and with a corrected y-axis label (M in mm/°). Note that the equation 
proposed earlier in the paper (p. 662), M = 9.81*E–0.83, predicts an infinite foveal magnification factor (blue 
curve). In contrast, the inverse-linear fit M–1 = 0.065 E + 0.054 proposed later in the paper (p. 666) fits the 
data equally well in the measured range of 1.5° to 12° but predicts a reasonable foveal magnification factor 
of 18.5 mm/°. The E2 value for the latter equation is E2 = 0.83. The additional green curve shows an 
equation by Mareschal et al. (2010) (see next section). (B) The inverse of the same functions. Note the slight 
but important difference at 0° eccentricity, where the linear function is non-zero and its inverse is thus well-
defined. 

The authors next fit a power function to those data, stated as M = 9.81*E–0.83 for the cortical 
magnification factor (see Figure 6). There is a little more confusion, however, because it is 
said that from such power functions the foveal value can be derived by extrapolating the fit 
to the fovea (p. 666). That cannot be the case, however, since – by the definition of a power 
function (including those used in the paper) – there is no constant term. The function 
therefore goes to infinity towards the fovea center, as shown in Figure 6 (dashed line). 
Furthermore, E2, which is said to be derived in this way in the paper, cannot be derived from 
a nonlinear function (because the E2 concept requires a linear or inverse-linear function). 
The puzzle is resolved with a reanalysis of Duncan & Boynton’s Fig. 4. It reveals how the 
foveal value and the connected parameter E2 were, in fact, derived: as an inverse-linear 
function which fits the data equally well in the measured range of 1.5° – 12° eccentricity 
(Figure 6, continuous line). From that function, the foveal value and E2 are readily derived. 
Indeed, the two values correspond to the values given in the paper. 

The distance of the isoeccentricity lines from the retinotopic center is not specified in 
Duncan & Boynton (2003). We can derive that from eq. (17), though, because M0 and E2 are 
fixed: 

20 EMdref  . (26) 

With their parameters (M0 = 18.5 mm/° and E2 = 0.83), the scaling factor  in that equation 
comes out as  = 1.03 (from eq. 16). From that, dref = d1.5° = 15.87 mm. As a further check we 
can also derive a direct estimate of dref from their Fig. 3. For subject ROD, for example, the 
1.5° line is at a distance of d1.5° = 15.45 mm on the horizontal meridian. That value is only 
very slightly smaller than the one derived above. For illustration, Figure 4 and Figure 5 in the 
previous section also contain a graph for that value (thin black line). Conversely, with dref 
given, M0 can be derived from eq. (17) (or eq. 26), which gives a slightly smaller value of M0 
= 18.0 mm/°. The two curves are hardly distinguishable; thus, as previously stated, dref and 
M0 interact, with different value-pairs resulting in similarly good fits. 

In summary, the parameters in Duncan & Boynton’s (2003) paper: M0 = 18.5 mm/° and 
E2 = 0.83, are supported by direct estimates of the size of 1°-projections. They are taken at 
locations estimated from a set of mapping templates, which themselves are derived from a 
realistic distance-vs.-eccentricity equation. The paper provides another good example how 
the linear concept for the magnification function can be brought together with the 
exponential (or logarithmic) location function. The estimate of M0 comes out considerably 
lower than in more recent papers (e.g. Schira et al., 2009; see Figure 7 below). Possibly the 
direct estimation of M at small eccentricities is less reliable than the approach taken in those 
papers. 
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2.4.3 Mareschal, Morgan & Solomon (2010) 

Figure 6 shows an additional curve from a paper by Mareschal et al. (2010) on cortical 
distance, who base their cortical location function partly on the equation of Duncan & 
Boynton (2003). Mareschal et al. (2010) state their location function as 











4)(log72.5

4)054.0065.0(
)('

73.1

1

EE

EE
EM  

The upper part of the equation is that of Duncan & Boynton (pink curve) and is used below 
an eccentricity of 4°. The green continuous line shows Mareschal’s log equation above 4°, 
and the dashed line shows how the log function would continue for values below 4°. 
Obviously, the latter is not meaningful and is undefined at zero eccentricity, which is why 
Mareschal et al. then switched to the inverse-linear function (i.e. the pink curve). The 
problem at low eccentricity is apparent in Fig. 9 in their paper where the x-axis stops at ½ 
deg, so the anomaly is not fully seen. For their analysis the switch of functions is not relevant 
since eccentricities other than 4° and 10° were not tested. The example is just added here as 
an illustration that the new equations derived here would have allowed for a single 
equation, with no need for case distinctions. 

2.4.4 Toward the retinotopic center 

As discussed above, predictions of the retinotopic center depend critically on its precise 
location and thus require data at small eccentricities. Schira, Tyler and coworkers have 
addressed that problem in a series of papers (Schira et al., 2007; Schira, Tyler, Breakspear, & 
Spehar, 2009; Schira et al., 2010) and provide detailed maps of the centers of the early visual 
areas, down to 0.075° eccentricity. They also develop parametric, closed analytical equations 
for the 2D maps. When considered for the horizontal9 direction only, these equations 
correspond to those discussed above (eq. 1 and eq. 16/17)10. 

Figure 7 shows magnification factors from Schira et al., 2009, Fig. 7A, with figure part B 
showing their V1 data (red curve), redrawn on double-linear coordinates. As can be seen, the 
curve runs close to an hyperbola. Its inverse is shown in Figure 7C, which displays the 
familiar, close-to-linear behavior over a wide range, with a positive y-axis intercept that 
corresponds to the value at the fovea center, M0

–1. From the regression line, M0 and E2 are 
readily obtained and are E2 = 0.21° and M0 = 47.6 mm, respectively. Note that a rather large 
value of M0 is obtained compared to previous reports. However, as can also be seen from 
the graph, if one disregards the most peripheral point, the centrally located values predict a 
somewhat shallower slope of the linear function with a thus slightly larger E2 and smaller M0 
value: E2 = 0.33° and M0 = 34.8 mm. The latter values might be the more accurate predictors 
for V1’s central point. 

                                                
9 The equations differ on radians close to, and on, the vertical meridian since Schira and Tyler have introduced a 

shear factor for preserving area constancy across meridians (Schira et al., 2007 Schira et al., 2010). 
10 The equations presented here go further in that they draw the direct connection to the E2 nomenclature, i.e. that 

they provide a link to psychophysics. 
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Figure 7. Cortical magnification factor from Schira, Tyler, Breakspear & Spehar (2009, Fig. 7A). (A) Original 
graph. (B) V1 data for M from Schira et al.’s graph but drawn on double-linear coordinates. (C) Resulting 
inverse factor, again on linear coordinates. The regression line, M–1 = 0.0977 E + 0.021, fits the whole set 
and predicts E2 = 0.21° and M0 = 47.6 mm. The regression equation M–1 = 0.0867 E + 0.0287 is a fit to the 
first four points and might be a better predictor for the retinotopic center, giving the values E2 = 0.33° and 
M0 = 34.8 mm. 

In summary, the derived equations provide a direct link between the nomenclature used in 
psychophysics and that in neurophysiology on retinotopy. They were applied to data for V1 
(Fig. 2) but will work equally well for higher early visual areas, including V2, V3, and V4 (cf. 
Larsson & Heeger, 2006, Fig. 5; Schira et al., 2009, Fig. 7). M0 is expected to be slightly 
different for the other areas (Schira et al., 2009, Fig. 7)) and so will likely be the other 
parameters. 

2.4.5 d2 – a parameter to describe the cortical map 

As shown in Section 2.1 (eq. 9 or 10), a newly defined parameter d2 can be used to describe 
the cortical location function very concisely. Parameter d2 is the cortical representation of 
Levi and Klein’s E2, i.e. the distance (in mm from the retinotopic center) of the eccentricity, 
E2, where the foveal value doubles. Eq. (8) can serve as a means to obtain an estimate for d2. 
Essentially, d2 is the product of M0 and E2 with a scaling factor. Table 2 gives a summary of d2 
estimates thus derived. 
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Study M0 [mm] E2 [°] d2 [mm] Curve 

Larsson & Heeger (2006) 35.4 0.6 14.72 Fig. 4, pink 

                       “ 25.3 1.0 17.54 Fig. 4, green 

Duncan & Boynton (2003) 18.5 0.831 10.66 Fig. 4, black 

Schira, Tyler, Breakspear & Spehar (2009) 47.6 0.21 6.93 Fig. 7C 

                       “ 34.8 0.33 7.96 Fig. 7C, 2nd regression 

D'Souza, Auer, Frahm, Strasburger & Lee (2016, Fig. 4) 32.32* 0.45 10.08 |L-M| Channel 

                       “ 32.32* 0.97 21.73 Lum Channel 

                       “ 32.32* 3.4 76.17 S Channel 

Table 2. Values of the parameter d2 from a reanalysis of data in several studies, by eq. (8): d2 = M0 E2 ln(2). 
d2 is the cortical representation of E2 and characterizes the cortical location function in a single value. 

*M0 was not estimated in that paper; the mean of the preceding M0 values was used for the calculation 
instead. 

3. Crowding and Bouma’s Law in the cortex 
The preceding sections were about the cortical location function; in the final section the 
derived location function will be applied to an important property of cortical organization: 
visual crowding. Thus, whereas in the preceding, cortical location was the target of interest, 
in this section we are concerned with cortical distances. 

As reviewed in the introduction, MAR-like functions like acuity generally change in 
peripheral vision in that critical size scales with eccentricity, so deficits can (mostly) be 
compensated for by M-scaling (as, e.g. in Rovamo & Virsu, 1979). For crowding, in contrast, 
target size plays little role (Strasburger, Harvey, & Rentschler, 1991; Pelli, Palomares, & 
Majaj, 2004). Instead, the critical distance between target and flankers scales with 
eccentricity, though at a different rate than MAR. This scaling characteristic of crowding is 
known as  Bouma’s rule or Bouma’s law (Bouma, 1970; Strasburger et al., 1991; Pelli et al., 
2004; Pelli & Tillman, 2008; Strasburger, 2020). The corresponding distances in the primary 
cortical map are thus governed by differences of the cortical location function as derived 
here in Section 2. Crowding’s critical distance (or indeed any distance, including acuity gap 
size) is thus, in a sense, a spatial derivative of location. Pattern recognition, at even slight 
eccentricities is, governed by the crowding phenomenon and is largely unrelated to visual 
acuity (or thus to cortical magnification) (Strasburger et al., 1991; Pelli et al., 2004; Pelli et 
al., 2007; Pelli & Tillman, 2008; Strasburger & Wade, 2015a). For understanding crowding it 
is paramount to look at its cortical basis, since we know since Flom, Weymouth, & 
Kahnemann (1963) that crowding is of cortical origin (as also emphasized by Pelli, 2008). 

A question that then arises naturally then is how the cortical equivalent of critical crowding 
distance varies across the visual field. Klein & Levi (1987) were the first to consider the 
cortical distance for position thresholds (in a vernier task), and conclude that it is 
approximately constant. That conclusion was based on the observation that taking the first 
derivative of Schwartz’s (1980) log mapping using the constancy assumption will result in the 
well-known inverse-linear cortical magnification function. Conversely, their empirically 
determined position thresholds, when mapped by an inverse-linear cortical magnification 
function (with an E2 of 0.6), turned out mostly constant across a wide rate of eccentricities 
(cf. their Fig. 5). Later, Duncan and Boynton (2003), after estimating M based on Schwartz’s 
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(1980) log mapping and applying that to obtain cortical distances (see Section 2.4.2), show 
that, for scaled vernier tasks and scaled gratings, the cortical equivalents are again mostly 
constant (above 1.5° eccentricity; 2003, Fig. 4). Motter & Simoni, 2007; Pelli, 2008; 
Mareschal, Morgan, & Solomon, 2010)11. 

Elegant as it seems, however, it will be shown here that the constancy assumption is most 
likely incorrect (and only true at sufficiently large eccentricities). If stated as a general rule, it 
rests on the same equating of linearity and proportionality – i. e. the omission of the 
constant term – that gave rise to those cortical location functions that miss the retinotopic 
center (discussed in Section 2.3). Based on the properties of the cortical location function 
derived in Section 2., it will turn out that the critical cortical crowding distance (CCCD) 
increases within the fovea (where reading mostly takes place) and reaches an asymptote 
beyond perhaps 5° eccentricity, consistent with a constancy at sufficient eccentricity. 
Accordingly, Pelli (2008) warns against extrapolating the constancy toward the retinotopic 
center. Remarkably (and to my pleasant surprise), I found out only after I had completed the 
derivations, that the analytic equation exposed below nicely agrees with the data presented 
by Motter & Simoni (2007, Fig. 7). In that figure, reproduced here in Figure 8B, only the more 
peripheral data show the presumed constancy. 

Let us turn to the equations. Bouma (1970) stated what is now known as Bouma’s law for 
crowding: 

bEspace  , (27) 

where 
space  is the free space between the patterns at the critical distance12 and b is a 

proportionality factor. Bouma (1970) proposed an approximate value of b = 0.5 = 50%, which 
is now widely cited, but he also mentioned that other proportionality factors might work 
equally well. Indeed, Pelli et al. (2004) have shown that b can take quite different values, 
depending on the exact visual task. Yet even though this factor varies quite a bit, the implied 
linearity of eq. (27) holds up in most all the reviewed cases. Bouma specified the distance 
between target and flankers as free space (the significance of that will become apparent 
below), and the law is thus best stated as saying that free space for critical spacing is 
proportional to eccentricity, with the proportionality factor taking some value around 50%, 
depending on the task (Strasburger, 2020). 

Today it has become customary to state flanker distance not as free space but as measured 
from the respective centers of the target and a flanker. The critical spacing then remains 
largely constant across sizes (Tripathy & Cavanagh, 2002, and others). To restate Bouma’s 
rule for the center-to-center distance,  , let the target pattern have the size S in the radial 
direction (i.e., width in the horizontal), so that spaceS   . Eq. (27) then becomes 

SbE  . (28) 

This equation no longer represents a proportionality yet is still linear in E. Importantly, 
however, going from Bouma’s equation (eq. 27) to that in eq. (28) reflects adding the 
constant term in the argument that we talked about in the preceding sections, and formally 
                                                
11 Curiously, these papers do not cite Fischer, 1973, or Schwartz, 1977, who were both earlier in showing the log 

mapping. 
12 To cite from the paper, “an open distance of roughly 0.5 ° is required for complete isolation” (Bouma, 1970, p. 

177, legend to Fig. 2) 
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that equation (28) is analogous to M-scaling as in eq. (2). Analogously to Levi and Klein’s E2 
we thus introduce a parameter 2Ê for crowding where the foveal value of critical distance 
doubles. Denoting the foveal value of critical distance by 0 , we get, from eq. (28): 

)1ˆ/( 20  EE . 
 (29) 

Obviously, that equation is analogous to eq. (1) and (2) that we started out with; it describes 
how critical distance in crowding is linearly dependent on, but is not proportional to, 
eccentricity in the visual field. In this respect it thus behaves like acuity and many other 
spatial visual performance measures, just with a different slope. 

With the equations derived in the preceding sections, we can now derive the critical 
crowding distance in the cortical map, i.e. the cortical representation of critical distance in 
the visual field. Let us denote that distance by   (kappa). By definition, it is the difference 
between the map locations for the target and a flanker at the critical distance in the 
crowding task: tf dd  . The two locations are in turn obtained from the mapping 

function, which is given by inverting eq. (6) above: 
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20 1ln E

EEMd , (with 0E ). (30) 

As before, d is the distance of the location in the cortical map from the retinotopic center. 
So, critical distance   for crowding in the retinotopic map is the difference of the two d 
values, tf dd  : 
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(by eq. 30 and 29), where Et and Ef are the eccentricities for target and flanker, respectively. 

After simplifying and setting target eccentricity EEt   for generality, this becomes 
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Note that we stated that equation previously (Strasburger & Malania, 2013, eq. 13, and 
Strasburger et al., 2011, eq. 28), but, alas, incorrectly: a factor was missing there. 

To explore this function, its graph is shown in Figure 8A and we look at two special cases. In 
the retinotopic center, equation (32) predicts a critical distance 0  in the cortical map of 
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With increasing eccentricity,   departs from that foveal value and increases (provided E2 > 
Ê2), depending on the ratio 22

ˆ/ EE . Numerator and denominator are the E2 values for the 
location function and the crowding function, respectively (eq. 1 vs. eq. 29). They are 
generally different, so that their ratio is not unity. 

With sufficiently large eccentricity, the equation converges to 
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E

 . (34) 

The latter expression is identical to that for the foveal value in eq. (33) except that E2 is now 
replaced by the corresponding value Ê2 for crowding. 
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Figure 8. (A) Graph of eq. (32) with realistic values for M0, E2, Ê2, and 0 . The value of E2 for M–1 was chosen 

as E2 = 0.8° from Dow, Snyder, Vautin, & Bauer, 1981 (as cited in Levi et al., 1985, or Strasburger et al., 2011, 
Table 4). M0 = 29.1 mm was chosen to give a good fit with this E2 in Fig. 2. Foveal critical distance was set to 
0 = 0.1° from Siderov, Waugh, & Bedell, 2013, , 2014. An Ê2 = 0.36° would obtain with this 0  and the value 
of4° = 1.2° in Strasburger et al., 1991; it also serves as an example for being a clearly different value than E2 

for the cortical magnification factor, to see the influence of the 
22
ˆ/ EE  ratio on the graph. Cortical critical 

distance  starts from the value given in eq. (33) (around 2 mm) and converges to the value in eq. (34). (B) 
Data for the cortical critical distance from Motter & Simoni (2007, Fig. 7). 

Importantly, note that kappa varies substantially around the center, by around two-fold 
between the center and 5° eccentricity with realistic values of E2 and Ê2. This, as said above, 
is at odds with the conjecture that the cortical critical crowding distance is a constant 
(Motter & Simoni, 2007; Pelli, 2008; Mareschal et al., 2010). Pelli (2008) presented a 
mathematical derivation for the constancy, very similar to the one presented above –  based 
on Bouma’s law and Schwartz’ (1980) logarithmic mapping function. The discrepancy arises 
from the assumptions: Pelli used Bouma’s law as proportionality, i.e., in its simplified form 
stated in eq. (27) (its graph passing through the origin). The simplification was done on the 
grounds that the error is small outside the retinotopic center and plays little role (and the 
paper appropriately warns that additional provisions must be made at small eccentricities). 
Schwartz’ (1980) mapping function was consequently also used in its simplified form (also 
leaving out the constant term), for the same reason. With these simplifications the critical 
distance in the cortex indeed turns out as simply being a constant. 
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As should be expected, at sufficiently high eccentricities   is close to constant in the 
derivations given above (Figure 8). These equations (eq. 32–34) can thus be seen as a 
generalization of Pelli’s result that now also covers the (obviously important) case of central 
vision. 

That said, an interesting (though unlikely) special case of eq. (32) is the one in which E2 and 
Ȇ2 are equal.  is then a constant, as Pelli (2008) predicted. Its value in that case would be 
simply given by 


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




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2

0
20 1ln

E
EM

 , for 22 ÊE  . (35) 

On a different note, equations (32)–(35) have M0 as a scaling factor and, as said before, M0 is 
notoriously difficult to determine empirically. However, M0 can be replaced, as shown 
above. From eq. (17) we know that 


refd

EM 20 , (36) 

which, by the definition of , takes a particularly simple form when d2 (the cortical 
equivalent of E2) is chosen as the reference: 

2ln
2

20

d
EM   (37) 

(which is the same as eq. 8a). We can then rewrite the equation for the cortical crowding 
critical distance (eq. 32) as 
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Similarly, the two special cases eq. (33) and (34) become 
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and 
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Values for d2 derived from the literature by eq. (37) that could be plugged into eq. (39) and 
(40) were provided in Table 2 above. These two equations, for the retinotopic center and 
eccentricities above around 5°, respectively, could lend themselves for determining critical 
crowding distance in the cortex. 

In summary for the cortical crowding distance, the linear eccentricity laws in psychophysics 
for cortical magnification and for critical crowding distance – both well established – 
together with Fischer’s (1973) or Schwartz’s (1977; 1980) equally well-established 
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logarithmic mapping rule, predict a highly systematic behavior of crowding’s critical distance 
in the cortical map. Given the very similar mappings in areas V2, V3, V4 (Larsson & Heeger, 
2006; Schira et al., 2009), that relationship can be expected to hold in those areas as well 
(see Figure 8A for a graph). Since the cortical location function is well established and the 
equations for crowding follow mathematically, they should work well with suitable E2 values 
inserted. Thus, direct confirmations of their behavior would cross-validate mapping models 
and might shed light on the mechanisms underlying crowding. 

4. Outlook 
Where does this leave us? The early cortical visual areas are very regularly organized. And, as 
apparent from the fMRI literature reviewed above and also earlier literature, the spatial 
maps of early visual areas appear to be pretty similar. Yet variations of visual performance 
across the visual field differ widely between visual tasks, as highlighted, e.g., by their 
respective, widely differing E2 values. E2 estimates for cortical magnification, on the other 
hand, appear to be quite similar. The puzzle of how different spatial scalings in 
psychophysics emerge on a uniform cortical architecture is still unresolved. Certainly, 
however, there can be only one valid location function on any radius; so the equivalence 
between psychophysical E2 and the cortical location function in the preceding equations can 
only hold for a single E2. That value is probably the one pertaining to certain low-level tasks, 
and likely to those tasks that are somehow connected to stimulus size. In contrast, Ê2 for 
critical crowding distance is an example for a psychophysical descriptor that is not linked to 
stimulus size (Pelli et al., 2004); it rather reflects location differences, as discussed in Section 
4. The underlying cortical architecture that brings about different psychophysical E2 values 
(like Ê2) could be neural wiring differences, within or between early visual areas. 

To go further, one of the basic messages of the cortical-magnification literature is the 
realization that by M-scaling stimulus sizes some, but not all, performance variations are 
equalized across the visual field (Virsu et al., 1987; Strasburger et al., 2011, Section 2.5). In 
parameter space, these other variables would be said to be orthogonal to target size. For 
pattern recognition, pattern contrast is such a variable (Strasburger, Rentschler, & Harvey, 
1994; Strasburger & Rentschler, 1996). Temporal resolution is another example (Poggel, 
Calmanti, Treutwein, & Strasburger, 2012). Again, differing patterns of connectivity between 
retinal cell types, visual areas, and along different processing streams might underlie these 
performance differences. The aim of the present paper is just to point out that a common 
spatial location function underlies the early cortical architecture that can be described by a 
unified equation. This equation includes the fovea and the retinotopic center, and has 
parameters that are common in psychophysics and physiology. 
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